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ABSTRACT. We show that if T is a bounded linear operator on a complex
Hilbert space, then

Lir < 20 4 D) = < wi),

where w(+) and ¢(+) are the numerical radius and the Crawford number, respec-
tively. We then apply it to prove that for each ¢ € [0, %) and natural number
k,
14 2t)2F
EE 20 () < (@),
®

where m(T") denotes the minimum modulus of T. Some other related results
are also presented.

1. INTRODUCTION AND PRELIMINARIES

Let B(H) denote the C*-algebra of all bounded linear operators on a complex
Hilbert space H with an inner product (-, -) and the corresponding norm || - ||. If
dim H = n, we identify B(H) with the space M,, of all n xn matrices with entries
in the complex field. For T' € B(H), let || T|| and m(7T") denote the usual operator
norm and the minimum modulus of T, respectively. Here m(T') is defined to be
the largest number o > 0 such that ||Tz|| > «||z|| (x € H). The numerical radius

Copyright 2016 by the Tusi Mathematical Research Group.
Date: Received: Dec. 9, 2016; Accepted: Jan. 30, 2017.
2010 Mathematics Subject Classification. Primary 47A12; Secondary 47A30.
Key words and phrases. Numerical radius, operator norm, inequality, Cartesian
decomposition.
98



SOME LOWER BOUNDS FOR THE NUMERICAL RADIUS 99

and the Crawford number of T' € B(H) are defined by
w(T) = sup{[(Tz, z)| : € H, ||z[| =1}

and
oT) =int{|(Tz,z)| : v € H,||z|| = 1},

respectively. These concepts are useful in studying linear operators and have
attracted the attention of many authors in the last few decades (e.g., see [4, 8],
and their references). It is well known that w(-) defines a norm on B(H) such
that for all T € B(H),

SITH < w(T) < |7, (11)

The inequalities in (1.1) are sharp. The first inequality becomes an equality
if T2 = 0. The second inequality becomes an equality if 7' is normal. Any
operator T' € B(H) can be represented as T" = H + iK, the so-called Cartesian
decomposition, where H = Re(T) = L2 and K = Im(T') = 5= are called the
real and imaginary parts of 7. It has been shown in [7] that,

sup {|laH + BK|| : o, € R, 0 + > = 1} = w(T).

In particular, |H|| < w(T') and || K| < w(T).
Concerning the inequality (1.1), Kittaneh [6] has shown the following precise
estimate of w(T') by using norm inequalities:

1
7 [H? + K2 < w(T) < V| H? + K2 (1.2)

Obviously, (1.2) is sharper than the inequality of (1.1). Yamazaki [9] has used
the Aluthge transform to improve the second inequality (1.1) so that

w(T) < 3 (7] +w(D)).

Here T (the Aluthge transform of 7T') is defined as T = |T|%U|T|%, where U is
a partial isometry of the polar decomposition of T and |T| = (T*T)2 means the
absolute value of T'.

Further, it has been shown in [1] that,

1 1
VTP + TP +2e(T2) < w(T) < /I + 1T + 2u(T2).

For more material about the numerical radius and other results on numerical
radius inequality, see, e.g., [3], [5], and the references therein.
For T' € B(H), let us recall the abbreviated notations
(T, )|

| cos |T' = inf{— cx € H, ||Tz|| # 0}
[Tz |[l]]]

|sin [T = 4/1 — | cos|*T.

and
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In the next section, we establish some considerable improvement of the first in-
equality (1.1). More precisely, we prove that

Lz < 20 D) o < i)

and

ST < max {r sin|T, ?} w(T) < w(T).

Next, we will give some applications. Particularly, for each ¢ € [0, %) and natural
number k, we show that

(1+2t)2

m()

< w(T).

2. MAIN RESULTS

In this section we present some lower bounds for the numerical radii of Hilbert
space operators. We start our work with the following result.

Theorem 2.1. Let T € B(H). Then

I ¢ wQ;” + ng> V(D) — (1) < (1),

Proof. Clearly, \/ \/w2 (T) < w(T). On the other hand, let

z € H with [z < 1. Let <Tx,x) = )\ |<Tm,x>| for some unit A, € C. Hence
(A\Tx,x) = |(Tw,x)| > 0. Let H +iK be the Cartesian decomposition of A,T.
Then (Hz,z) +i(Kz,z) = (\,Tx,x) > 0. Hence

NTx,2) = (Hz, 2), (Kz,z) = 0.

We have
iumﬁ _ }l (57w — (AT, )|+ (T, ) )
;1 (HHZL‘ — (Hz, x)x—}—szH + |[(Tx, x)| ) (since (Kz,z) = 0)
< 3 (1 — {Ho, 2)a] + | Kl +](Tx,))
<! ( (Vial? = et 4 12l )+ (7,2 )
<! ( W T) - [(Ta,2)? +w<T>) ¥ |<Tx,x>|2> 2.1)

(since [|Hzl, [[Kzl| < w(T) and (T, x)| = |(Hz, z)|)

2
T
=D D) @) (T )P
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Hence

%IITﬂ:II < \/wzéT) i w(QT) V) = [Tz, o) (el <), (2.2)

If we replace = by ﬁ in the above inequality, then we obtain

ST < o)y T 4 D) \/w2<T> -

2 ) (|l
w(T)  w(T) W2(T) — T T 2
S\ 2 T \/ 0~ [T fop
< \/w2§T> + ng) V(1) — (D).

Thus

girel <50 20 oy =y

Taking the supremum over z € H with ||z|| < 1 in the above inequality we deduce
the desired inequality. 0

10

Remark 2.2. Let A = [0 1

]. Then [|A|| = w(A) = ¢(A) = 1. Thus

%||A|| _ % < \/w2éA) + w(QA) V2 (A) = A(A) = g < w(d) = 1.

Hence the inequalities in Theorem 2.1 can be strict.
Corollary 2.3. Let T € B(H). Then

|Tz|* + |{Ta,2)* < 4w*(T) (€ H, || <1).
Proof. Let x € H with ||z|| < 1. By (2.1) it follows that

T < ((W )~ (T, 2)P +w<T>)2+|<Tx,x>|2>
( (\/w2 ) — (T, x)|2)2+2w2(T)+|<Tx,x)|2>

(by the arithmetic geometric mean inequality)

<

>~ =

= i (4w*(T) = (T, 2)[*)

which gives ||Txz|” + [(Tx, z)|> < 4w*(T). O
Corollary 2.4. Let A = [a;;] € M,,. Then

Dot il 2 2(A) — la.|2 ;
5 < w(A) + w(A)Vw?(A) — |ay| (1 <i<n).
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Proof. Let z =1[0,---,0,1,0,---,0]" with 1 in place of i. Then Az = [a1;, ag;, - -+ , Apil’
and (Az,z) = a;. So, by (2.2) we obtain

> ol = y1ast < 2+ 20y~

2 2

This yields
it 095 < 2(4) ()2 () — e

Theorem 2.5. Let T € B(H). Then

ST < max {r sin|T, ?} w(T) < w(T).

Proof. Clearly, max{| sin |7, ‘/75} w(T) < w(T). On the other hand, let + € H
with [|z]| < 1. By (2.2) we have

Lizal <[220 2O oy =i P

Hence

1 w*(T) | w(T) 2 2
_ < 2 —
Lzl < /0 4 D) foa) ol cos P,

or equivalently,

|T2]? = 20A(T) < 20(T)y/w(T) - |[Tw|| cos |*T. (2.3)

We consider two cases.

Case 1. ||Tz|* — 2w(T) < 0. So we get ||Tz|| < v2w(T) and hence

Lim1 < L) 2

Case 2. ||Tz||* — 2w*(T) > 0. It follows from (2.3) that
| Tz||* = 4)| Tz |*w(T) + 4w*(T) < 4w™(T) — 4w?(T)||Tx||?| cos |*T.
This implies
|T|* <4 (1 — |cos [*T) w*(T)
which yields
1
§HT33H < |sin |[Tw(T).

Taking the supremum over z € H with ||z|| <1 in the above inequality we get

1
ST < Jsin | Tw(D). (2.5)
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Finally, by (2.4) and (2.5) we conclude the desired inequality. O
Remark 2.6. Let A = [(1) 1 i)L Z} . Simple computations show that ||A]| = w(A) =
V2 and |sin |A = V2 — 1. Thus

1 2 2 2

Sl = g < max{|sin|A,\/7_} w(A) = g x V2 =1 < w(A) = V2.

Hence the inequalities in Theorem 2.5 can be strict.
As a consequence of Theorem 2.5 we have the following result.
Corollary 2.7. Let T, S € B(H). Then

w(T'S) < 4max {|sin T, g} max {|sin 1S, \/75} w(T)w(S) < 4w(T)w(S).

Proof. Applying the second inequality of (1.1) and Theorem 2.5, we get
w(T'S) < | TS|
< TS|

< 2max{|sin|T,?}w(T) X 2max{|sin|5,?}w(5)

= 4 max {\ sin |7, \/75} max {\ sin |5, \/75} w(T)w(S) < 4w(T)w(S).

O

A fundamental inequality for the numerical radius is the power inequality,
which says that for T € B(H),

w(T) < wH(T)

for k =1,2,--- (see, e.g., [5]). We are now in a position to establish one of our
main results.

Theorem 2.8. Let T € B(H). For each t € [0,3) and natural number k,
(1+2t)2

2%

Proof. Let t € [0,3) and k € N. Let € H with [|z| < 1. We consider two cases.

m(T) < w(T).

Case 1. ||Tz|* — 2w?(T) < 0. So we have
1
w?(T) — 2tw(T)Re(Tx, x) + (* — Z)HTSUHQ

> w(T) — 2tw(T)Re(Tx, ) + 2(£2 — i)wQ(T)
2 w?(T) —2|<Tx,x>|2 >0.

Tz, 2)
2w(T)

= 2uw*(T) ‘t
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Hence

1
w*(T) — 2tw(T)Re(Tx, z) + (t* — Z—l)||T:c||2 > 0. (2.6)
Case 2. ||Tz|* — 2w?(T) > 0. It follows from (2.2) that

Lzal <20 2D ey e P

This implies

(fiete - E0) < 20 (ux) - ()

which yields
4w (T)||Ta||* — | Ta|* — 4w?(T) (T, z)|* > 0. (2.7)
By (2.7), we get

WA(T) — 2w(T)Re(Ta, ) + (£ — i)uTxH?

oty - DT (O Tl = Tl — (T )
| Tz 4| Tz||
whence
w(T) — 2tw(T)Re(Tx, x) + (12 — }l)HTﬂcH2 > 0. (2.8)

By (2.6) and (2.8), we obtain
Stw(T)Re(Tz, z) < w(T) + (£ — }l)nmnz.

If we replace T' by &{{EE%T in the above inequality, then we get

1
2tw(T) [Re(Tw, z)| <w(T)+ (¢ = DIT|” (el <1).  (29)
Furthermore, if we replace T' by €T in (2.9), then we deduce
, 1
2tw(T) |Re (e (Tz, z))| < w*(T) + (* — Z>||Tx||2

Since sup {|Re (¢“(Tz,z))|: 6 € R} = [(Tz, )|, by taking the supremum over
f € R in the above inequality we reach

2tw(T)|(T, 2)| < w(T) + (£ — i)HTxHQ. (2.10)
By (2.10), we get
20T, 2)] < wA(T) + (12 = DTl < w?(T) + (2 — Dym?(D).
Thus 1
2tw(T) (T, z)| < w*(T) + (#* — —)m*(T). (2.11)
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By taking the supremum over z € H with ||z|| =1 in (2.11), we obtain

1
2tw?(T) < w*(T) + (¢* — Z)mQ(T)’
or equivalently,
14 2t)7
%mﬂ < w(T).
Replacing T by T* in the last inequality gives
1+ 2t)7
%m(T’“) < w(Th).
Since m*(T') < m(T*) and w(T*) < w*(T), the above inequality becomes
1+ 2t)7
%mkm < wh(T).
1
Thus Y2025 0 (T) < w(T). O

2k
Remark 2.9. Recall that an operator T' € B(H) is said to be idempotent if 7% = T
and an involution if 72 = I. It is well-known that, if 7" is idempotent such
that 7 # 0, then w(T) = 3(1 + ||T) and if T is involution then, w(T) =
LTI+ 1T (see, e.g., [1]). So, by Theorem 2.8 for each ¢ € [0,1) and k € N,
the following statements hold:

(i) If T is an idempotent operator such that 7" # 0, then
217k (1+ 20)%m(T) < 1+ ||T).
(ii) If T is an involution operator, then
2175 (1 + 2t)2%m(T) < | T]| + || 7.
Corollary 2.10. Let T € B(H). For each t € [0, 3),

Il < \/wQ(T) — 2tw(T)u(T)
2 = 1 — 4¢2 ’
where p(T) = inf {|Re(T'z,z)| : x € H, ||z|| < 1}.

Proof. Let t € [0,1) and let € H with ||z]| < 1. By (2.9), we have

2tw(T) [Re(Tz, z)| < w(T) + (£ — i)unu?

Since pu(7) = inf {|Re(Tz,z)| : x € H, ||z|| < 1}, so by the above inequality we
obtain

w(T) = 2tw(T)u(T) = w*(T) — 2tw(T) [Re(Tz, z)| > (i — )| Tzl

Hence

(G — )T < wA(T) — 20(T)p(T).
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By taking the supremum over x € H with ||z|| = 1 in the above inequality, we
wet )

(7 = PITI < w(T) — 2tw(T)(T).
Now, by the last inequality, we deduce the desired inequality. O

Let us recall that by [2, Lemma 2.1] we have

w(z®y) = 5 (o) + el

for all x,y € H. Here,  ® y denotes the rank one operator in B(H) defined
by (z ® y)(z) := (z,y)x for all z € H. The following result is a reverse the
Cauchy-Schwarz inequality in the setting of Hilbert spaces.

Corollary 2.11. Let 2,y € H. For each t € [0,1) and k € N, the following

’2
statements hold.
1

. - 1) ) | |
(1) (max{\/linf{ e.2) |2 'Z€H7<Z,y>#0},§} ||l’||”y|| = |<’I y>|

[ETRIET
(i) (274 (L + 205 inf {I(2,9)]: = € H, |12l = 1} = Iyl ) ll2ll < I, 0)]

Proof. Simple computations show that

[z, 2)[°

20 2 -
[EAIEa

|sin|(z ®@y) = 1—inf{ 6H,(z,y>7é0} (2.12)

and
m(z @y) = ||lzl|inf {[(z,y)| : 2 € H, ||z = 1}. (2.13)
So, by Theorem 2.5 and (2.12), we obtain

"2 (2

%HxHHyH < max {I sin |(z © y) ﬁ} )+ el

or equivalently,
1

( :
max{\/l — inf{nﬁgﬂuz cz € H (z,y) # O}, ?}

Furthermore, for each ¢ € [0, 3) and k € N, by Theorem 2.8 and (2.13) we get

= 1)zl < Iz, v)1

(1+2t)2

—lzllinf {[(z, 9] - 2 € H. [l2]] = 1} < o (I{z, )] + [l=]lly]])

N —

or equivalently,

(21—%(1 +2t)

L

*inf{[(z,y)| - 2 € H, [|2]] = 1} - ||y!|) ]l < (2, w)l-
0J
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