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Abstract. We show that if T is a bounded linear operator on a complex
Hilbert space, then

1
2
‖T‖ ≤

√
w2(T )

2
+

w(T )
2

√
w2(T )− c2(T ) ≤ w(T ),

where w(·) and c(·) are the numerical radius and the Crawford number, respec-
tively. We then apply it to prove that for each t ∈ [0, 1

2 ) and natural number
k,

(1 + 2t)
1
2k

2
1
k

m(T ) ≤ w(T ),

where m(T ) denotes the minimum modulus of T . Some other related results
are also presented.

1. Introduction and preliminaries

Let B(H) denote the C∗-algebra of all bounded linear operators on a complex
Hilbert space H with an inner product 〈·, ·〉 and the corresponding norm ‖ · ‖. If
dim H = n, we identify B(H) with the space Mn of all n×n matrices with entries
in the complex field. For T ∈ B(H), let ‖T‖ and m(T ) denote the usual operator
norm and the minimum modulus of T , respectively. Here m(T ) is defined to be
the largest number α ≥ 0 such that ‖Tx‖ ≥ α‖x‖ (x ∈ H). The numerical radius
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and the Crawford number of T ∈ B(H) are defined by

w(T ) = sup{|〈Tx, x〉| : x ∈ H, ‖x‖ = 1}

and

c(T ) = inf{|〈Tx, x〉| : x ∈ H, ‖x‖ = 1},
respectively. These concepts are useful in studying linear operators and have
attracted the attention of many authors in the last few decades (e.g., see [4, 8],
and their references). It is well known that w(·) defines a norm on B(H) such
that for all T ∈ B(H),

1

2
‖T‖ ≤ w(T ) ≤ ‖T‖. (1.1)

The inequalities in (1.1) are sharp. The first inequality becomes an equality
if T 2 = 0. The second inequality becomes an equality if T is normal. Any
operator T ∈ B(H) can be represented as T = H + iK, the so-called Cartesian
decomposition, where H = Re(T ) = T+T ∗

2
and K = Im(T ) = T−T ∗

2i
are called the

real and imaginary parts of T . It has been shown in [7] that,

sup
{
‖αH + βK‖ : α, β ∈ R, α2 + β2 = 1

}
= w(T ).

In particular, ‖H‖ ≤ w(T ) and ‖K‖ ≤ w(T ).
Concerning the inequality (1.1), Kittaneh [6] has shown the following precise

estimate of w(T ) by using norm inequalities:

1√
2

√
‖H2 + K2‖ ≤ w(T ) ≤

√
‖H2 + K2‖. (1.2)

Obviously, (1.2) is sharper than the inequality of (1.1). Yamazaki [9] has used
the Aluthge transform to improve the second inequality (1.1) so that

w(T ) ≤ 1

2

(
‖T‖+ w(T̃ )

)
.

Here T̃ (the Aluthge transform of T ) is defined as T̃ = |T | 12 U |T | 12 , where U is

a partial isometry of the polar decomposition of T and |T | = (T ∗T )
1
2 means the

absolute value of T .
Further, it has been shown in [1] that,

1

2

√∥∥|T |2 + |T ∗|2
∥∥+ 2c(T 2) ≤ w(T ) ≤ 1

2

√∥∥|T |2 + |T ∗|2
∥∥+ 2w(T 2).

For more material about the numerical radius and other results on numerical
radius inequality, see, e.g., [3], [5], and the references therein.

For T ∈ B(H), let us recall the abbreviated notations

| cos |T = inf

{
|〈Tx, x〉|
‖Tx‖‖x‖

: x ∈ H, ‖Tx‖ 6= 0

}
and

| sin |T =

√
1− | cos |2T .
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In the next section, we establish some considerable improvement of the first in-
equality (1.1). More precisely, we prove that

1

2
‖T‖ ≤

√
w2(T )

2
+

w(T )

2

√
w2(T )− c2(T ) ≤ w(T )

and

1

2
‖T‖ ≤ max

{
| sin |T,

√
2

2

}
w(T ) ≤ w(T ).

Next, we will give some applications. Particularly, for each t ∈ [0, 1
2
) and natural

number k, we show that

(1 + 2t)
1
2k

2
1
k

m(T ) ≤ w(T ).

2. Main results

In this section we present some lower bounds for the numerical radii of Hilbert
space operators. We start our work with the following result.

Theorem 2.1. Let T ∈ B(H). Then

1

2
‖T‖ ≤

√
w2(T )

2
+

w(T )

2

√
w2(T )− c2(T ) ≤ w(T ).

Proof. Clearly,
√

w2(T )
2

+ w(T )
2

√
w2(T )− c2(T ) ≤ w(T ). On the other hand, let

x ∈ H with ‖x‖ ≤ 1. Let 〈Tx, x〉 = λx|〈Tx, x〉| for some unit λx ∈ C. Hence
〈λxTx, x〉 = |〈Tx, x〉| ≥ 0. Let H + iK be the Cartesian decomposition of λxT .
Then 〈Hx, x〉+ i〈Kx, x〉 = 〈λxTx, x〉 ≥ 0. Hence

〈λxTx, x〉 = 〈Hx, x〉, 〈Kx, x〉 = 0.

We have

1

4
‖Tx‖2 =

1

4

(∥∥λxTx− 〈λxTx, x〉x
∥∥2

+ |〈Tx, x〉|2
)

=
1

4

(
‖Hx− 〈Hx, x〉x + iKx‖2 + |〈Tx, x〉|2

)
(since 〈Kx, x〉 = 0)

≤ 1

4

(
(‖Hx− 〈Hx, x〉x‖+ ‖Kx‖)2 + |〈Tx, x〉|2

)
≤ 1

4

((√
‖Hx‖2 − |〈Hx, x〉|2 + ‖Kx‖

)2

+ |〈Tx, x〉|2
)

≤ 1

4

((√
w2(T )− |〈Tx, x〉|2 + w(T )

)2

+ |〈Tx, x〉|2
)

(2.1)

(since ‖Hx‖, ‖Kx‖ ≤ w(T ) and |〈Tx, x〉| = |〈Hx, x〉|)

=
w2(T )

2
+

w(T )

2

√
w2(T )− |〈Tx, x〉|2.
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Hence

1

2
‖Tx‖ ≤

√
w2(T )

2
+

w(T )

2

√
w2(T )− |〈Tx, x〉|2 (‖x‖ ≤ 1). (2.2)

If we replace x by x
‖x‖ in the above inequality, then we obtain

1

2
‖Tx‖ ≤ ‖x‖

√√√√w2(T )

2
+

w(T )

2

√
w2(T )−

∣∣∣∣〈T (
x

‖x‖
),

x

‖x‖
〉
∣∣∣∣2

≤

√√√√w2(T )

2
+

w(T )

2

√
w2(T )−

∣∣∣∣〈T (
x

‖x‖
),

x

‖x‖
〉
∣∣∣∣2

≤
√

w2(T )

2
+

w(T )

2

√
w2(T )− c2(T ).

Thus
1

2
‖Tx‖ ≤

√
w2(T )

2
+

w(T )

2

√
w2(T )− c2(T ).

Taking the supremum over x ∈ H with ‖x‖ ≤ 1 in the above inequality we deduce
the desired inequality. �

Remark 2.2. Let A =

[
1 0
0 1

]
. Then ‖A‖ = w(A) = c(A) = 1. Thus

1

2
‖A‖ =

1

2
<

√
w2(A)

2
+

w(A)

2

√
w2(A)− c2(A) =

√
2

2
< w(A) = 1.

Hence the inequalities in Theorem 2.1 can be strict.

Corollary 2.3. Let T ∈ B(H). Then

‖Tx‖2 + |〈Tx, x〉|2 ≤ 4w2(T ) (x ∈ H, ‖x‖ ≤ 1).

Proof. Let x ∈ H with ‖x‖ ≤ 1. By (2.1) it follows that

1

4
‖Tx‖2 ≤ 1

4

((√
w2(T )− |〈Tx, x〉|2 + w(T )

)2

+ |〈Tx, x〉|2
)

≤ 1

4

(
2

(√
w2(T )− |〈Tx, x〉|2

)2

+ 2w2(T ) + |〈Tx, x〉|2
)

(by the arithmetic geometric mean inequality)

=
1

4

(
4w2(T )− |〈Tx, x〉|2

)
,

which gives ‖Tx‖2 + |〈Tx, x〉|2 ≤ 4w2(T ). �

Corollary 2.4. Let A = [aij] ∈Mn. Then∑n
k=1 |aki|2

2
≤ w2(A) + w(A)

√
w2(A)− |aii|2 (1 ≤ i ≤ n).
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Proof. Let x = [0, · · · , 0, 1, 0, · · · , 0]t with 1 in place of i. Then Ax = [a1i, a2i, · · · , ani]
t

and 〈Ax, x〉 = aii. So, by (2.2) we obtain

1

2

√√√√ n∑
k=1

|aki|2 =
1

2
‖Ax‖ ≤

√
w2(A)

2
+

w(A)

2

√
w2(A)− |〈Ax, x〉|2

=

√
w2(A)

2
+

w(A)

2

√
w2(A)− |aii|2.

This yields ∑n
k=1 |aki|2

2
≤ w2(A) + w(A)

√
w2(A)− |aii|2.

�

Theorem 2.5. Let T ∈ B(H). Then

1

2
‖T‖ ≤ max

{
| sin |T,

√
2

2

}
w(T ) ≤ w(T ).

Proof. Clearly, max
{
| sin |T,

√
2

2

}
w(T ) ≤ w(T ). On the other hand, let x ∈ H

with ‖x‖ ≤ 1. By (2.2) we have

1

2
‖Tx‖ ≤

√
w2(T )

2
+

w(T )

2

√
w2(T )− |〈Tx, x〉|2.

Hence
1

2
‖Tx‖ ≤

√
w2(T )

2
+

w(T )

2

√
w2(T )− ‖Tx‖2| cos |2T ,

or equivalently,

‖Tx‖2 − 2w2(T ) ≤ 2w(T )

√
w2(T )− ‖Tx‖2| cos |2T . (2.3)

We consider two cases.

Case 1. ‖Tx‖2 − 2w2(T ) ≤ 0. So we get ‖Tx‖ ≤
√

2w(T ) and hence

1

2
‖T‖ ≤

√
2

2
w(T ). (2.4)

Case 2. ‖Tx‖2 − 2w2(T ) > 0. It follows from (2.3) that

‖Tx‖4 − 4‖Tx‖2w2(T ) + 4w4(T ) ≤ 4w4(T )− 4w2(T )‖Tx‖2| cos |2T.

This implies
‖Tx‖2 ≤ 4

(
1− | cos |2T

)
w2(T )

which yields
1

2
‖Tx‖ ≤ | sin |Tw(T ).

Taking the supremum over x ∈ H with ‖x‖ ≤ 1 in the above inequality we get

1

2
‖T‖ ≤ | sin |Tw(T ). (2.5)
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Finally, by (2.4) and (2.5) we conclude the desired inequality. �

Remark 2.6. Let A =

[
1 0
0 1 + i

]
. Simple computations show that ‖A‖ = w(A) =

√
2 and | sin |A =

√
2− 1. Thus

1

2
‖A‖ =

√
2

2
< max

{
| sin |A,

√
2

2

}
w(A) =

√
2

2
×
√

2 = 1 < w(A) =
√

2.

Hence the inequalities in Theorem 2.5 can be strict.

As a consequence of Theorem 2.5 we have the following result.

Corollary 2.7. Let T, S ∈ B(H). Then

w(TS) ≤ 4 max

{
| sin |T,

√
2

2

}
max

{
| sin |S,

√
2

2

}
w(T )w(S) ≤ 4w(T )w(S).

Proof. Applying the second inequality of (1.1) and Theorem 2.5, we get

w(TS) ≤ ‖TS‖
≤ ‖T‖‖S‖

≤ 2 max

{
| sin |T,

√
2

2

}
w(T )× 2 max

{
| sin |S,

√
2

2

}
w(S)

= 4 max

{
| sin |T,

√
2

2

}
max

{
| sin |S,

√
2

2

}
w(T )w(S) ≤ 4w(T )w(S).

�

A fundamental inequality for the numerical radius is the power inequality,
which says that for T ∈ B(H),

w(T k) ≤ wk(T )

for k = 1, 2, · · · (see, e.g., [5]). We are now in a position to establish one of our
main results.

Theorem 2.8. Let T ∈ B(H). For each t ∈ [0, 1
2
) and natural number k,

(1 + 2t)
1
2k

2
1
k

m(T ) ≤ w(T ).

Proof. Let t ∈ [0, 1
2
) and k ∈ N. Let x ∈ H with ‖x‖ ≤ 1. We consider two cases.

Case 1. ‖Tx‖2 − 2w2(T ) ≤ 0. So we have

w2(T )− 2tw(T )Re〈Tx, x〉+ (t2 − 1

4
)‖Tx‖2

≥ w2(T )− 2tw(T )Re〈Tx, x〉+ 2(t2 − 1

4
)w2(T )

= 2w2(T )

∣∣∣∣t− 〈Tx, x〉
2w(T )

∣∣∣∣2 +
w2(T )− |〈Tx, x〉|2

2
≥ 0.



104 A. ZAMANI

Hence

w2(T )− 2tw(T )Re〈Tx, x〉+ (t2 − 1

4
)‖Tx‖2 ≥ 0. (2.6)

Case 2. ‖Tx‖2 − 2w2(T ) > 0. It follows from (2.2) that

1

2
‖Tx‖ ≤

√
w2(T )

2
+

w(T )

2

√
w2(T )− |〈Tx, x〉|2.

This implies (
1

4
‖Tx‖2 − w2(T )

2

)2

≤ w2(T )

4

(
w2(T )− |〈Tx, x〉|2

)
which yields

4w2(T )‖Tx‖2 − ‖Tx‖4 − 4w2(T )|〈Tx, x〉|2 ≥ 0. (2.7)

By (2.7), we get

w2(T )− 2tw(T )Re〈Tx, x〉+ (t2 − 1

4
)‖Tx‖2

= ‖Tx‖2

∣∣∣∣t− w(T )〈Tx, x〉
‖Tx‖2

∣∣∣∣2 +
4w2(T )‖Tx‖2 − ‖Tx‖4 − 4w2(T )|〈Tx, x〉|2

4‖Tx‖2 ≥ 0,

whence

w2(T )− 2tw(T )Re〈Tx, x〉+ (t2 − 1

4
)‖Tx‖2 ≥ 0. (2.8)

By (2.6) and (2.8), we obtain

2tw(T )Re〈Tx, x〉 ≤ w2(T ) + (t2 − 1

4
)‖Tx‖2.

If we replace T by Re〈Tx,x〉
|Re〈Tx,x〉|T in the above inequality, then we get

2tw(T ) |Re〈Tx, x〉| ≤ w2(T ) + (t2 − 1

4
)‖Tx‖2 (‖x‖ ≤ 1). (2.9)

Furthermore, if we replace T by eiθT in (2.9), then we deduce

2tw(T )
∣∣Re

(
eiθ〈Tx, x〉

)∣∣ ≤ w2(T ) + (t2 − 1

4
)‖Tx‖2.

Since sup
{∣∣Re

(
eiθ〈Tx, x〉

)∣∣ : θ ∈ R
}

= |〈Tx, x〉|, by taking the supremum over
θ ∈ R in the above inequality we reach

2tw(T )|〈Tx, x〉| ≤ w2(T ) + (t2 − 1

4
)‖Tx‖2. (2.10)

By (2.10), we get

2tw(T )|〈Tx, x〉| ≤ w2(T ) + (t2 − 1

4
)‖Tx‖2 ≤ w2(T ) + (t2 − 1

4
)m2(T ).

Thus

2tw(T )|〈Tx, x〉| ≤ w2(T ) + (t2 − 1

4
)m2(T ). (2.11)
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By taking the supremum over x ∈ H with ‖x‖ = 1 in (2.11), we obtain

2tw2(T ) ≤ w2(T ) + (t2 − 1

4
)m2(T ),

or equivalently,

(1 + 2t)
1
2

2
m(T ) ≤ w(T ).

Replacing T by T k in the last inequality gives

(1 + 2t)
1
2

2
m(T k) ≤ w(T k).

Since mk(T ) ≤ m(T k) and w(T k) ≤ wk(T ), the above inequality becomes

(1 + 2t)
1
2

2
mk(T ) ≤ wk(T ).

Thus (1+2t)
1
2k

2
1
k

m(T ) ≤ w(T ). �

Remark 2.9. Recall that an operator T ∈ B(H) is said to be idempotent if T 2 = T
and an involution if T 2 = I. It is well-known that, if T is idempotent such
that T 6= 0, then w(T ) = 1

2
(1 + ‖T‖) and if T is involution then, w(T ) =

1
2
(‖T‖+ ‖T‖−1) (see, e.g., [1]). So, by Theorem 2.8 for each t ∈ [0, 1

2
) and k ∈ N,

the following statements hold:

(i) If T is an idempotent operator such that T 6= 0, then

21− 1
k (1 + 2t)

1
2k m(T ) ≤ 1 + ‖T‖.

(ii) If T is an involution operator, then

21− 1
k (1 + 2t)

1
2k m(T ) ≤ ‖T‖+ ‖T‖−1.

Corollary 2.10. Let T ∈ B(H). For each t ∈ [0, 1
2
),

‖T‖
2

≤
√

w2(T )− 2tw(T )µ(T )

1− 4t2
,

where µ(T ) = inf {|Re〈Tx, x〉| : x ∈ H, ‖x‖ ≤ 1}.

Proof. Let t ∈ [0, 1
2
) and let x ∈ H with ‖x‖ ≤ 1. By (2.9), we have

2tw(T ) |Re〈Tx, x〉| ≤ w2(T ) + (t2 − 1

4
)‖Tx‖2.

Since µ(T ) = inf {|Re〈Tx, x〉| : x ∈ H, ‖x‖ ≤ 1}, so by the above inequality we
obtain

w2(T )− 2tw(T )µ(T ) ≥ w2(T )− 2tw(T ) |Re〈Tx, x〉| ≥ (
1

4
− t2)‖Tx‖2.

Hence

(
1

4
− t2)‖Tx‖2 ≤ w2(T )− 2tw(T )µ(T ).
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By taking the supremum over x ∈ H with ‖x‖ = 1 in the above inequality, we
wet

(
1

4
− t2)‖T‖2 ≤ w2(T )− 2tw(T )µ(T ).

Now, by the last inequality, we deduce the desired inequality. �

Let us recall that by [2, Lemma 2.1] we have

w(x⊗ y) =
1

2
(|〈x, y〉|+ ‖x‖‖y‖) ,

for all x, y ∈ H. Here, x ⊗ y denotes the rank one operator in B(H) defined
by (x ⊗ y)(z) := 〈z, y〉x for all z ∈ H. The following result is a reverse the
Cauchy-Schwarz inequality in the setting of Hilbert spaces.

Corollary 2.11. Let x, y ∈ H. For each t ∈ [0, 1
2
) and k ∈ N, the following

statements hold.

(i)
(

1

max

�r
1−inf

n
|〈x,z〉|2

‖x‖2‖z‖2
:z∈H,〈z,y〉6=0

o
,
√

2
2

� − 1
)
‖x‖‖y‖ ≤ |〈x, y〉|.

(ii)
(
21− 1

k (1 + 2t)
1
2k inf {|〈z, y〉| : z ∈ H, ‖z‖ = 1} − ‖y‖

)
‖x‖ ≤ |〈x, y〉|.

Proof. Simple computations show that

| sin |(x⊗ y) =

√√√√1− inf

{
|〈x, z〉|2

‖x‖2‖z‖2 : z ∈ H, 〈z, y〉 6= 0

}
(2.12)

and
m(x⊗ y) = ‖x‖ inf {|〈z, y〉| : z ∈ H, ‖z‖ = 1} . (2.13)

So, by Theorem 2.5 and (2.12), we obtain

1

2
‖x‖‖y‖ ≤ max

{
| sin |(x⊗ y),

√
2

2

}
1

2
(|〈x, y〉|+ ‖x‖‖y‖) ,

or equivalently,( 1

max

{√
1− inf

{
|〈x,z〉|2

‖x‖2‖z‖2 : z ∈ H, 〈z, y〉 6= 0
}

,
√

2
2

} − 1
)
‖x‖‖y‖ ≤ |〈x, y〉|.

Furthermore, for each t ∈ [0, 1
2
) and k ∈ N, by Theorem 2.8 and (2.13) we get

(1 + 2t)
1
2k

2
1
k

‖x‖ inf {|〈z, y〉| : z ∈ H, ‖z‖ = 1} ≤ 1

2
(|〈x, y〉|+ ‖x‖‖y‖) ,

or equivalently,(
21− 1

k (1 + 2t)
1
2k inf {|〈z, y〉| : z ∈ H, ‖z‖ = 1} − ‖y‖

)
‖x‖ ≤ |〈x, y〉|.

�
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