

Adv. Oper. Theory 2 (2017), no. 2, 108–113

http://doi.org/10.22034/aot.1612-1067

ISSN: 2538-225X (electronic)

http://aot-math.org

ON MAPS COMPRESSING THE NUMERICAL RANGE BETWEEN C^* -ALGEBRAS

ASHWAQ FAHAD ALBIDEEWI¹ and MOHAMED MABROUK^{1,2*}

Communicated by A. Sims

ABSTRACT. In this paper, we deal with the problem of characterizing linear maps compressing the numerical range. A counterexample is given to show that such a map need not be a Jordan *-homomorphism in general even if the C^* -algebras are commutative. Next, under an auxiliary condition we show that such a map is a Jordan *-homomorphism.

1. Introduction

Let \mathcal{A} and \mathcal{B} be unital complex Banach algebras. Denote by $\mathbf{1}_{\mathcal{A}}$ and $\mathbf{1}_{\mathcal{B}}$ the units of \mathcal{A} and \mathcal{B} respectively (or simply 1 if no confusion can arise). Define the set of normalized states

$$S(\mathcal{A}) = \{ f \in \mathcal{A}' : f(\mathbf{1}) = ||f|| = 1 \},$$

where \mathcal{A}' denotes the dual space. For any element $a \in \mathcal{A}$, the algebraic numerical range V(a) and numerical radius v(a) of a are defined by

$$V(a) = \{ f(a) : f \in S(A) \}$$
 and $v(a) = \sup_{z \in V(a)} |z|$.

It is well known that V is a compact and convex set of the complex plane, v(.) is a norm on \mathcal{A} and this norm is equivalent to the usual operator norm. The suggested references on numerical ranges are [2, 10]. A linear map $T : \mathcal{A} \longrightarrow \mathcal{B}$ is said to be numerical range (resp. numerical radius) preserving if V(T(a)) = V(a)

Copyright 2016 by the Tusi Mathematical Research Group.

Date: Received: Dec. 2, 2016; Accepted: Feb. 16, 2017.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 15A86, 47A12; Secondary 46L05, 47B49.

 $[\]mathit{Key\ words\ and\ phrases}.$ Numerical Range; C^* -algebra, compressing the numerical range, Jordan *-homomorphism.

(resp. v(T(a)) = v(a)) for every $a \in \mathcal{A}$. Also, we shall say that T compresses the numerical range if $V(T(a)) \subset V(a)$ for every $a \in \mathcal{A}$.

There has been considerable interest in studying maps between C^* -algebras leaving invariant the numerical range or the numerical radius. A nice survey of earlier known results relating to the preserving problem can be found in [4, 14]. In 1975, Pellegrini [16] studied numerical range preserving operators on a Banach algebra. Particularly, when \mathcal{A} and \mathcal{B} are two C^* -algebras, it was shown that a linear isomorphism $T: \mathcal{A} \longrightarrow \mathcal{B}$ is a Jordan *-isomorphism if and only if it is numerical range preserving. Later, Chan [5] showed that a linear isomorphism $T: \mathcal{A} \longrightarrow \mathcal{A}$ is numerical radius preserving if and only if cT is a Jordan *-isomorphism for some central and unitary element $c \in \mathcal{A}$. Surjective nonlinear maps $T: \mathcal{A} \longrightarrow \mathcal{B}$ between unital C^* -algebras that satisfy v(T(a) - T(b)) = v(a - b) for all $a, b \in \mathcal{A}$ were characterized in [1] under a mild condition that $T(\mathbf{1}) - T(0)$ belongs to the center of \mathcal{B} . Recently, in [3], the assumption $T(\mathbf{1}) - T(0)$ belongs to the center of \mathcal{B} is successfully removed.

The aim of this paper, is to study maps between C^* -algebras compressing the numerical range. Firstly, we shall give an example showing that such a map need not to be a Jordan *-homomorphism. Next, We will show that under some supplementary condition such a map is a Jordan *-homomorphism.

We close this Introduction with some definitions and properties of the numerical range needed in the sequel. In the case of C^* -algebra, a linear functional $f \in \mathcal{A}'$ is said to be *positive* $(f \geq 0)$ if $f(xx^*) \geq 0$ for all $x \in \mathcal{A}$. Note that the set of normalized states $S(\mathcal{A})$ is nothing but

$$S(\mathcal{A}) = \{ f \in \mathcal{A}' : f \ge 0 \text{ and } f(\mathbf{1}) = 1 \}.$$

Recall also that a positive linear functional f on \mathcal{A} is said to be *pure* if for every positive functional g on \mathcal{A} satisfying $g(xx^*) \leq f(xx^*)$ for all $x \in \mathcal{A}$, there is a scalar $0 \leq \lambda \leq 1$ such that $g = \lambda f$. The set of pure states on \mathcal{A} is denoted by $P(\mathcal{A})$. It is well known that $P(\mathcal{A})$ coincides with the set of all extremal points of $S(\mathcal{A})$.

For any element $a \in \mathcal{A}$ and any scalars $\alpha, \beta \in \mathbb{C}$, we have: $V(a) \subset \mathbb{R}$ (resp. $V(a) \subset [0, +\infty)$) if and only if $a = a^*$ (resp. $a \ge 0$). Also $V(\alpha 1 + \beta a) = \alpha + \beta V(a)$ and $V(a) = \{\alpha\} \iff a = \alpha 1$. The numerical radius v is a norm and satisfies $\frac{1}{e}||a|| \le v(a) \le ||a||$, where $e = \exp(1)$. See [2] and [11] for further details.

2. Main result

Let \mathcal{A} and \mathcal{B} be two unital complex C^* -algebras. Let $T: \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Recall that T is numerical range compressing if

$$V(T(a)) \subset V(a), \forall a \in \mathcal{A},$$
 (2.1)

Note that if T compresses the numerical range then $T(\mathbf{1}) = \mathbf{1}$, since the numerical range is a nonempty set of \mathbb{C} and $V(T(\mathbf{1})) \subset V(\mathbf{1}) = \{1\}$. Let us begin by the following example, which shows that a linear map which compresses the numerical range need not to be a Jordan *-homomorphism.

Example 2.1. Consider the C^* -algebra $\mathcal{A} = \mathcal{M}_2(\mathbb{C})$ and define the map $T: \mathcal{A} \longrightarrow \mathcal{A}$ for any matrix $A = (a_{ij})_{1 \leq i,j \leq 2} \in \mathcal{A}$ by

$$T(A) = \frac{1}{2} A + \frac{1}{4} tr(A) \mathbf{1}$$

where tr denotes the usual function trace. Clearly, we have $f \circ T \in S(\mathcal{A})$ whenever $f \in S(\mathcal{A})$. Hence according to [16, Theorem 2.2], T satisfies condition (2.1). Consider the two matrices $A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}$. An easy calculation will convince the reader that B is unitary, but $T(A^2) \neq T(A)^2$ and T(B) is not unitary. This shows that T is not neither a Jordan *-homomorphism nor a unitary preserving map.

At the 4th Seminar on Functional analysis and its applications, which was held in University of Mashhad in March 2016 it is shown that in [9] that if \mathcal{A} and \mathcal{B} are commutative and T is a numerical range compressing, then T is a unital *-homomorphism, see [9, Theorem 2.5 & 2.6]. In fact, in his proof, the author shows that such a map is completely positive and preserves unitary elements. But we remark that this proof is based on the fact that if an element u is unitary in \mathcal{A} , then |f(u)| = 1 for any $f \in S(\mathcal{A})$. But this fails to be true even if the C^* -algebras \mathcal{A} and \mathcal{B} are commutative. It is in fact true only when f is a pure state, see for instance [5, Proposition 1]. To see why this, let $\mathcal{A} = C(\mathbb{T})$ be the C^* -algebra of all continuous functions on the unit circle \mathbb{T} and let m be the normalised arc length measure on \mathbb{T} . Then the linear functional φ , defined by $\varphi(f) = \int f \, dm = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it}) \, dt$ is a state of \mathcal{A} . The element $u \in \mathcal{A}$ defined by $u(z) = z, \forall z \in \mathbb{T}$ is unitary but $\varphi(u) = 0 < 1$. Finally observe that φ is not a *-homomorphism although that $V(\varphi(a)) \subset V(a)$ for all $a \in \mathcal{A}$, since φ is a state. Therefore, the main result [9, Theorem 2.5 & 2.6] is wrong in general.

Based on the aforesaid a natural question arises. Namely, what additional condition on a linear map T compressing the numerical range which forces T to be a Jordan *-homomorphism? To that end, we shall impose the following additional requirement on the map T.

Assumption 2.2. For any $a, b \in \mathcal{A}^+$ such that ab = 0, we have $T(a) \geq T(b)$ implies that T(a)T(b) = 0.

We establish the following.

Theorem 2.3. Let \mathcal{A} and \mathcal{B} be two unital C^* -algebras. Any surjective linear map $T: \mathcal{A} \longrightarrow \mathcal{B}$ compressing the numerical range and satisfying Assumption 2.2 is a unital Jordan *-homomorphism.

Before turning to the proof of Theorem 2.3, few remarks can be made.

Remark 2.4. If T preserves the numerical range then Assumption 2.2 is already satisfied. Indeed, let $a, b \in \mathcal{A}^+$ such that ab = 0 and $T(a) \geq T(b)$. Since V(T(a-b)) = V(a-b) and $T(a-b) \geq 0$, then $a-b \geq 0$. By [15, Theorem 2.2.5], $0 \leq b^3 \leq bab = 0$. Accordingly $b^3 = b = 0$. Therefore T(a) = T(b) = 0.

Remark 2.5. Conditions (2.1) and Assumption 2.2 do not imply in general that T is linear as the following example quoted from [12] shows. Let $\mathcal{A} = \mathcal{B} = \mathcal{M}_2(\mathbb{C})$. Consider the mapping $T: \mathcal{A} \longrightarrow \mathcal{A}$ defined as

$$T(A) = \begin{cases} A & \text{if } A \text{ is invertible} \\ 0 & \text{otherwise.} \end{cases}$$

Straightforward computations show that T satisfies assumptions (2.1) and Assumption 2.2 but is not additive.

Remark 2.6. In [6], it was been shown that if $T: \mathcal{A} \longrightarrow \mathcal{B}$ is a bounded linear map between unital C^* -algebras preserving the zero products of self-adjoint elements in \mathcal{A} then T = T(1)J for a Jordan *-homomorphism J from \mathcal{A} into the bidual B^{**} of \mathcal{B} . Note that Assumption 2.2 does not imply in general that T preserves the zero product of self-adjoint elements or a Jordan *-homomorphism. To see why this consider the C^* -algebra $\mathcal{A} = C([0,1])$ and the map $T: \mathcal{A} \longrightarrow \mathcal{A}$ given by T(f) = 2f - f(1). Clearly, T is surjective and unital. But then $(T(f))^2 T(f^2) = 2f^2 - 4f(1)f + 2f(1)^2$ is not always zero. Hence T is not a Jordan *homomorphism. Next, let $f, g \in \mathcal{A}^+$ be such that fg = 0 and $T(f) \geq T(g)$. Since $T(f) \ge T(g)$, then $f(1) \ge g(1)$ and $f(x) \ge g(x) + \frac{1}{2}(f(1) - g(1))$, for any $x \in [0, 1]$. This together with the fact fg = 0 yields that g = 0. Therefore T(f)T(g) = 0. Accordingly T satisfies Assumption 2.2. On the other hand, one can check easily that T does not preserve the zero product of self-adjoint elements.

3. Proof of Theorem 2.3:

We present now the proof of Theorem 2.3. Our arguments are influenced by ideas from the proof of [7, Theorem 5] but by using properties of the numerical range. We divide the proof into three steps.

Step 1. T is unital and positive. Moreover, for each $b \ge 0$ in \mathcal{B} there is an $a \ge 0$ in \mathcal{A} such that T(a) = b.

Firstly, note that T(1) = 1, since $V(T(1)) \subset V(1) = \{1\}$. Now, let $a \in \mathcal{A}^+$. Then $V(a) \subset [0,\infty)$. Since $V(T(a)) \subset V(a)$ we infer that $T(a) \in \mathcal{B}^+$ and in particular T is self adjoint, that is $T(a)^* = T(a), \forall a = a^* \in \mathcal{A}$. Now, let $b \geq 0$ and $a \in \mathcal{A}$ such that T(a) = b. Without loss of generality we may assume that $a=a^*$ (otherwise take $\frac{a+a^*}{2}$ instead of a). By [8, Proposition 12.5], there exist $a_+, a_- \geq 0$ such that $a=a_+-a_-$ and $a_+a_-=a_-a_+=0$. Then $b = T(a_+) - T(a_-)$ with $T(a_+) \ge 0$ and $T(a_-) \ge 0$. Assumption 2.2 entails that $T(a_+)T(a_-) = T(a_-)T(a_+) = 0$. Since every self adjoint element in a C^* algebra can be uniquely written as the difference of two positive elements with zero product, we infer that $T(a_{-}) = 0$. This completes the proof of the first step.

Step 2. The kernel of T is a closed ideal of A.

Firstly observe that by the proof of Step 1, we have that if T(a) = 0 and $a = a_{+} - a_{-}$ with $a_{+}a_{-} = a_{-}a_{+} = 0$ and $a_{\pm} \geq 0$, then $T(a_{+}) = T(a_{-}) = 0$. Thus each element in $\ker T$ is a linear combination of positive elements in $\ker T$. Now, Lemma 5.1 of [17] can be used to deduce that ker T is a two sided ideal. However, for the sake of completeness we sketch a different proof of this fact. To that end it suffices to show that $a \geq 0$ and T(a) = 0 imply that T(ax) = T(xa) = 0 for all positive element $x \in \mathcal{A}$. Fix such an $a \in \mathcal{A}$, a similar reasoning to that of [7, Theorem 5] entails that $T(ax)^* = T(xa) = -T(ax)$. By keeping in mind that $T(x) \geq 0$ for any $x \in \mathcal{A}^+$, we infer that the linear functional $f \circ T$ is positive and unital, for any $f \in S(\mathcal{B})$. Accordingly $f \circ T \in S(\mathcal{A})$. Hence, applying the Cauchy-Schwarz inequality to $f \circ T$ yields

$$|f \circ T(ax)|^2 = |f \circ T(a^{\frac{1}{2}}a^{\frac{1}{2}}x)|^2 \le f \circ T(a) \ f \circ T(xax) = 0.$$

Accordingly, f(T(ax)) = 0, for all $f \in S(\mathcal{B})$ and so T(ax) = T(xa) = 0 as desired. The kernel of T is therefore an ideal. Since $v(T(a)) \leq v(a), \forall a \in \mathcal{A}, v$ and $\|.\|$ are two equivalent norms, then T is bounded and so the kernel of T is closed.

Step 3. T is a Jordan *-homomorphism.

Firstly, note that by Step 1 we have T(1) = 1 and T is positive. By Step 2, $\ker T$ is a closed ideal of \mathcal{A} . Then T induces the unital and positive bijective linear map $\widetilde{T}: \mathcal{A}/\ker T \longrightarrow \mathcal{B}$ defined by $\widetilde{T}(a + \ker T) = T(a)$. Again Step 1, entails that \widetilde{T}^{-1} is also positive. So, by [13, Corollary 5] we have \widetilde{T} is a Jordan *-isomorphism. Thus T, the composition of the natural quotient map and \widetilde{T} , is a Jordan *-homomorphism.

Acknowledgments. The authors wish to express their thanks to the referee for carefully reading the paper and for giving valuable suggestions.

References

- 1. Z. Bai, J. Hou, and Z. Xu, Maps preserving numerical radius distance on C^* -algebras, Studia Math. **162** (2004), no. 2, 97–104.
- 2. F. F Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, Cambridge Univ. Press, London, 1971.
- 3. A. Bourhim and M. Mabrouk, On maps preserving the numerical radius distance between C*-algebras, preprint.
- A. Bourhim and J. Mashreghi, A survey on preservers of spectra and local spectra, Invariant Subspaces of the Shift Operator, Contemp. Math., Amer. Math. Soc., Providence, RI, 2015, pp. 45–98.
- J. T. Chan, Numerical radius preserving operators on C*-algebras, Arch. Math. (Basel) 70 (1998), no. 6, 486–488.
- M. A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong, Mappings preserving zero products, Studia Math. 155, no. 1, 77–94.
- M. D. Choi, D. Hadwin, E. Nordgren, H. Radjavi, and P. Rosenthal, On positive linear maps preserving invertibility, J. Funct. Anal. 59 (1984), 462–469.
- 8. R. S. Doran and V. A. Belfi, *Characterizations of C*-algebras. The Gelfand-Naimark theo*rems, Monographs and Textbooks in Pure and Applied Mathematics, 101. Marcel Dekker, Inc., New York, 1986.
- 9. F. Golfarshchi, Numerical range compressing linear maps on C*-algebras, The 4th Seminar on Functional Analysis and its Applications 2016, Mashhad, Iran, 1–4.
- 10. K. E. Gustafson and D. K. M. Rao, Numerical range: the field of values of linear operators and matrices., Springer, New york, 1997.
- 11. P. R. Halmos, A Hilbert space problem book 2nd ed., Springer, New York, 1982.

- 12. R. El Harti and M. Mabrouk, Maps compressing and expanding the numerical range on C^* -algebras, Linear Multilinear Algebra **63** (2015), no. 11, 2332–2339.
- 13. R. V. Kadison, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math (2) **56** (1952), 494–503.
- 14. C.-K. Li, A survey on linear preservers of numerical ranges and radii, Taiwanese J. Math. 5 (2001), no. 3, 477–496.
- 15. G. J. Murphy, C^* -algebras and operator theory, Academic Press, 1990.
- 16. V. Pellegrini, Numerical range preserving operators on a Banach algebra, Studia Math. 54 (1975), no. 2, 143–147.
- 17. E. Størmer, On partially ordered vector spaces and their duals, with applications to simplexes and C*-algebras, Proc. London Math. Soc. (3) 18 (1968), no. 2, 245–265.
- 1 Department of Mathematics, College of Applied Sciences, P. O. Box 715, Makkah 21955, Saudi Arabia.

E-mail address: Ashwaq.F.B@hotmail.com

 2 Department of Mathematics, Faculty of Sciences Cité Erriadh, 6072 Zrig, Gabès, Tunisia.

E-mail address: mohamed.mabrouk@fsg.rnu.tn