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TWO-WEIGHT NORM INEQUALITIES FOR THE
HIGHER-ORDER COMMUTATORS OF FRACTIONAL
INTEGRAL OPERATORS

CAIYIN NIU! and XTAOJIN ZHANG?*

Communicated by H. Hudzik

ABSTRACT. In this paper, we obtain several sufficient conditions such that the
higher-order commutators I/, generated by I and b € BMO(R") is bounded

from LP(v) to L(u), where % = % —sand 0 < a<n.

1. INTRODUCTION AND MAIN RESULTS

For 0 < a < n and f € C§°, the fractional integral operator is defined by

I f(2) :/R f(y)

n o —ylnme

It is a classical operator and has close connections with the partial differential
equations. Many mathematicians have investigated its boundedness on various
settings, which can be found in [1, 2, 3, 4, 5, 6, 7] and their references and so on.

Let 1 be a nonnegative locally integrable function on R"”. A function b €
BMO(p), if there is a constant C' > 0 such that

/B|b(l’) — bpldr < C'/Bu(a:)dx,
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where bg = B‘ J5b 5 b(z)dr and B is any ball in R". Obviously, when p = 1,
BMO(p) is the classwal BMO spaces with

1
o = [Blasio = sup 1 [ [b(e) ~ balde < .
B |B’ B
generated by

Let m be a nonnegative integer. The m-order commutator 15",
I, and b € BMO(p), is defined by

) = [ HO= gy

|£If _ ylnfa
When b € BMO, the boundedness of I7?, from LP(R") to LI(R") have been
established. We refer readers to [2] and its references.
To state the following results, let us recall the definition of A,, weights. A
nonnegative locally integrable function v on R™ is said to belong to A4, , (1 <
P, g < o0) if there exists a constant C' > 0 such that

o o) (3 [

where % + 1% =1 and @ is a cube in R™ with its sides parallel to the coordinate
axes.

The (LP(wP), LY(w?)) boundedness of 11}, can be seen in [2] and its references
and so on.

In 1999, Y. Ding and S. Z. Lu [8] gave the weighted boundedness of higher-
order commutators for a class of rough operators. As a special case of the results
n [8], the follow theorem offered a sufficient condition which can ensure the

boundedness of 17, from LP(u”) to L(v7).
Theorem A [8] Suppose 0 < o < m, % = 110 — 2. Ifb € BMO(u), u(z)®,v(z)* €
Ar o for some s € [1, p) and u(x)v (x)™' = u(z)™, then there exists constant

c’ > 0 independent of f such that 177, satisfies

G <‘C>'”<x>>"dfﬁ>; <o [ trhut)ya) g

A function B : [0, +00) — [0, 00) is said to be a Young function if it is convex,
increasing, B(0) = 0 and B(¢) — oo as t — oco. Given a Young function B, the
mean Luxembourg norm of f on a cube () is defined by

. 1
HfHB7Q:1nf{)\>O: @/QB(&)?)')dyg 1}.

For0 < a<n,1<p<ooandbe BMO, Z. G. Liu and S. Z. Lu [9] proved that
for some r > 1 and all cubes Q, if

1

TP 1
Qn(—/ xrdx) vrl|leg <C,
then I, is bounded from LP(v) to WLF(u), where W(t) = ' (1 4 log*t)”'.
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W. M. Li [10] gave a sufficient condition for the two-weight (p,q) inequalities
for the commutators of potential type integral operators. As an application of
this result, he obtained another sufficient condition for the boundedness of I
from LP(uP) to L9(v?), and his conditions are expressed by the mean Luxembourg
norm of w, v on any cube (). More detail can be found in [10].

Rakotonratsimba [11] studied the two-weight inequality for the commutators of
singular integral operators. Inspired by [11], we also consider the (LP(v), LI(u))
boundedness for I, and obtain several different sufficient conditions in this paper.

Throughout thls paper, u, v, w are nonnegative locally integral functions. De-
note B = B(z, R) :{ZE]R”: |z — z| < R} with R > 0 and z € R". For any
k € Z, define

By :={z eR": |z| <2}, B, :={z e R": 2F < |z| < 2F+1},

1
b =10 ~1B(0. 2| el
= 0 = T

and xx(z) := xg, () is the characteristic function of Ej.

Definition 1.1. Given 0 < a < n, 1<p<— = — 2 and b € BMO.

(1) Let

1
p

1 1
o

A(j, k) =2 Hn=a) [( 1b(z) — bj|™u(w )dx>q</ (z)! pdz)

+(/Ek r)dr) /|b )= by u(z) 7 dz) }

(u,v,b) is said to belong to A(j, k) if there exist some constants p, n, A > 0 such
that

AG k) < Alk = §)m2070m ]
(2) Let

A, ) ;:2—k<n—a>{< /E bt —bj|mqu(x)dx>;( [E o2 dz)?

k

o u(w)da) ( [ o)y )]

(u,v,b) is said to belong to A*(j, k) if there exist some constants 7, n, A > 0
such that

1
7

A"(j, k) < Ak — )20 |
A*(j, k) can be seen as a dual of A(j, k). Our main results are as follows:

— =~ and b € BMO. If
,b) € A(j, k) NA* (5, k)

n 1

Theorem 1.2. Given 0 < a <n, 1 <p < 2, i
there exist some constants p, T, n, A > 0 such that (u,
for j <k—2, and

(a) u(@)(SuPgy: 4-1joicycalely 7)) < A% ae. x €R,

eﬁh—‘

(b) sup,ep, u(z) < C(sup,ep, u(2))?, k€2
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Then 11", is bounded from LP(udx) to L(udx). Condition (a) can be replaced by

(@) (SUPgy: 41 foiciyl<ateny WY)) oy < A% ace. w €R™

And the above results remain true when (u,v,b) € A(j, k)NA*(j, k) for j < k—ny,
where integer ng = 2.

Theorem 1.3. Given 0 < a < n, 1<p<a,;:%—%andb€BMO. For
J € Z, define
U; = sup u(x), V; = sup v(z)' 7.
zcE; zcE;

Then 17, is bounded from LP(udx) to L(udx) whenever for some constant A > 0,
the condztzons (a) (b) or (a’) (b) in Theorem 1.2 are satisfied and

(c) U VP < C2UHkna 4 U VP < O2UHkna” 4
for all mtegers k and j with j < k — 2. Here a,a* are constants with —I% <a
and —% < ar.

Let M be the classical Hardy-Littlewood maximal operator. We say w(-) € H
if there exists constant C' > 0 such that

1
supw(z) <O [ w(y)dy
{2: 1 R<|2|<4R} R S R<lyl<2V R

for any R > 0 and some integer N > 3.

It is easy to see w € 'H whenever w is radical and monotone. However w € H
is not necessarily a monotone weight (see [12] ).

We say w € RD., (the reverse doubling condition) if there exist nonnegative
constant C' and « such that

/ w(y)dy < Ct™ / w(y)dy
B(0,tR) B(0, R)

forall R>0and 0 <t < 1.

It has been proved that each doubling weight (in particular each A..-weight)
satisfies necessarily the reverse doubling condition RD (see [13][14]), but there
exist reverse doubling weights which are not doubling ones (see [13][15]).

By Theorem 1.3 we can get another two sufficient conditions such that 177", is
bounded from LP(udz) to L(udx) .

Corollary 1.4. Let b € BMO. If u satisfies condition (b) in Theorem 1.2 and
u € HNRD, for somey > 0, then 117!, is bounded from LP(Mu) to L9(u). Here,

0 <a<min{n,ny}, 1 <p<min{?, 2}, and;—]—)—%.

Corollary 1.5. Let b € BMO, u € HN RD., and v'"* € H N RD,, for some
v > 0. Ifu satisfies condition (b) in Theorem 1.2 and there exists constant A > 0
such that for all R > 0

@ ) G [ o) <o o
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then I, is bounded from LP(vdx) to L(udz). Here 0 < o < min{n,ny}, 1 <
p<min{® 2} 11

_ e
a’al’ - n’
q p

Remark 1.6. The set of (u,v,b) satisfying the conditions in Theorem 1.2, The-
orem 1.3 or Corollary 1.4 is not empty, and the conditions in Theorem 1.2 are
different from that in Theorem A. For example:

L, |2/ <1 (x) = z, |z] <1
|z, |x] > 1 S x> 1
(u, v, b) satisfies the conditions in Theorem 1.2. Furthermore, (u, v, b) does not
satisfy the condition in Theorem A for b ¢ BM O((uv_l)i) for any m > 1.
<1 1, <1

(i) Lot u(z) = 4 ¥ 1IST 0y =

L |z[>1 lz|, |z| >1
conditions in Theorem 1.3 and (u, v, b) satisfies the conditions in Theorem 1.2
for any b € BMO.
jzf, [z <1
iii) Let u(x) =
i) Let () = 4 7S

and (Mu, u) satisfies the conditions in Theorem 1.3.

(i) Let u(z) =1, v(x) = for x € R, then

, then (u, v) satisfies the

, then u satisfies the conditions in Corollary 1.4

Remark 1.7. It would be noted that all conditions in above results are not ex-
pressed in term of arbitrary cubes as in the classical A, condition, and they are
also not expressed in term of the Luxembourg norm. These conditions involving
annuli and balls centered at the origin are easy to be checked in many situations.

2. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.2. For f € Cg°(R"), by the definition of I, and the
Minkowski inequality, we have

(L.

I f(x) (q u(x)da:) %

(2

+ I (X ys2mt2) (@)

]Qb(fX|.|<2k71)($) + IZ}b(fX2k71<|.|<2k+2)($)

1
q q

ul) dx)

Q=

< C(S1 + S2+ S3) 9,
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where

o q

si= 3 [ e @) @ .
k=—o0 ¥/ Ek
© q

Sy 1= Z / I, (fxar-1qp<orez) (@) | u(z) dz,
k=—o00 ¥ Ek
o q

Sy 1= Z / I (X s2m2) ()| u() da.
k=—o00 * Bk

First, we give the estimate for S; . It is easy to see that

)@ < 30 [ ) =)l =l sl

j=—o00

For j < k—2,ifx € By, y € Ej, then |z —y| > |z —y| > |z[/2 and |z —y|~"") <
Clz|~™=*). Applying m > 1, ¢ > 1 we obtain

S1

<03 [ (X [ b - sl e

<03 [ (X [0l ) b ) o)
<o S [ (3 me-urm [ 15wlas) o) e

FY (Y / b)) |x|—<n—a>qu<x>dx)

k=—0c0 j=—00

=: C(S11 + S12).

Obviously,
00 k—2 q
suce S 2 [uwar)( X [ 1w - srismia)
k=—o0 Ek Jj=—00 Ej

By the Holder inequality, we have

> [ b - bl

j:—oo EJ

1
ol

ey (] rwrw @)’ ( e = az) 2

j==oc
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Therefore by (2.1) and (u,v,b) € A(j, k) for j < k — 2, we can get

e’} k—2

swscanolz Y (X w-are e [rwmma)’). e

k=—00 “j=—o00

Applying the Holder inequality,

(2

N‘
[\

772(] np / | £ () [Pu( )dy) )q

8M

k-2 qg—1 k-2
0(2 -yt 3 gyt / F)Poy) dy)”.

(2.3)

Put (2.3) into (2.2) and exchange the order of summation, we can obtain

q
< Catpize 3 ([ ornan)* (3 (i)
j=—00

k=742

<caplp( [ 1@l as)”

For
si- 3 [ | (¥ b -t I [ 1) et
k=—00 j=—00
if we consider w(z) := |z|~ ™ %(z) as a weight function, then

/(Z“’ —b’m/ | f(y Idy ||~y () de

j=—00

| T e UL IR |

J=—00

Li(Ey, wda:)
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Therefore, using the Minkowski inequality, the Holder inequality and (u,v,b) €
A(j, k) for j < k — 2, we have

si<e s (Y Aty ) =l 0y an)’ )

3 (5 (L
« Q—k(n—a)< i b(z) — b;|™u(x) dx)é)q
. k—2 AN
qlln11ma _ \noli—knp Py ’
<campier 3 (3 w-grere( [ )

<canolre( [ 1@l )’

where the last inequality follows from the similar estimate as that for (2.2).
Next we consider the estimate for S3. It is easy to see that

)@ < Y [ 1) = b7l ol )

j=k+2

When j > k+2, ifz € Ey,y € Ej, then |z —y| > |y|—|z| > %‘ and |z —y|~ (" <
C|y|~=). Therefore by m > 1,q > 1, we get

S3

<3 [ (T [ tw - 1)) uie) as

<O X [ (30 [ 8= b+ 1) = el ) ) )
<02 [ (3 e -ain [ b)) u) as

+C i ( i [Ej |b(y)—bklmly\‘(”‘“)lf(y)\dy>q/Ek u(r) da

k=—oco j=k+2

= 0(831 + 532).
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By the Holder inequality and (u,v,b) € A*(k,j) for k < j — 2, we get

<Y ( 3 g / ) = b1 / Re dx)i)q

k=—oc0 j=k+2

<C i ( i (/E If(y)l”v(y)dy);

k=—oc0 “j=k+2

<capzr (2 G- w [ perema)

k=—oc0 *j=k+2

<ol 3 ([ 1rwri)a)’

—carole( [ 1@t ),

where the last inequality follows from the similar estimate as that for (2.2).
For

= 3 / ( S [bla) — bil” / BRI dy)qu@)dx,

k=—o0 j=k—+2

we can consider [, (32720, [b(z) — by|™ ij |F()|Jyl~") dy) "u(x) dz as:

q

> o) =l [ 1wl dy

j=k+2

Li(Ey,udz)

Thus, applying the Minkowski inequality, the Holder inequality and (u,v,b) €
A*(k,j) for k < j — 2, we have

sn<C 3 (X (f wor-nira)’ [ sl a)

k=—o0 *j=k+2

<C i ( i 2*]'(”*&)( /E Ib(z) — by, |™u(z) da:);

k=—o00 j=k+2

([ v ) ([ voriwan)’)

< CA9|[p|™ i ( i (5 — k:)772(k_j)m</E. |f()[Po(y) dy>;)q

k=—co “j=k+2
<carp( [ 1wl dy)”
Rn

At last, we estimate Sy. Denote M, = {z € R™,2F1  |z| < 2F2}.
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Suppose the conditions (a’) and (b) are satisfied. When = € My, z € Ej, we
have I|z| < 2% < |z| < 2" < 4|z|. Then by the LP(R") — Lq(R”)(q = % -9
boundedness of 17, ( see [2], Remark 3.6.1) and conditions (a’), (b), we obtain

Sy < Z sup u(z)/E 112 (fxan) ()| da

0o zEE),

<clpr Y supu(e)( /M F@)ar)?

ke —o0 z€E)

a

< C||o||e Z /M ('sup u(2)) dx)p

zeEy,

q

< o] Z / ‘p sup u(z)) dx) !

k=—00 2 glel<|z[<4|z[}

<oapp > () )\f(z)i%@s)dx)z

k=—o00

—canole( [ |r)lot i)’

Now suppose condition (a) and (b) are satisfied. We have ]z < 257! < |y| <
282 L d|z| fory € My, 2 € Ey,. Therefore 1 = ﬁxv(az) < SUDP . 41 2| <|y] <d|]} ﬁx
v(x) for & € M. By condition (a) and the estimate above, we get

-1

<03 (f, er(apua)er)

k=—o00

<chubn’:qi ([ rr(sw e s o))

oo 2€Ey, {y: 471 z|<|y|<4)2]} v(y)

< CA9|[b||™ Z / 2)[Po(x da:)
= canjp| / fpete)a)”

Applying all the estimates for Sy, Sy, S3 implies the result. O

B

The proof of Theorem 1.3. By Theorem 1.2, we only need to prove that if
u, v satisfy (c), then (u,v,b) € A(j, k) NA*(j,k) for j < k—2 and any b € BMO.

Let b € BMO and 1 < r < oo. Then there exist constants Cy, Cy > 0 such
that for j € Z,

/ |b(z) — b;|"dz < oU+1)n ’ '/, —b;|"dz < Cy||b]]; % 2]" (2.4)
J+1 J+1

1
by —bal < gy [ 10—l < O / (o) - bylds < Cpl.. (25
e |By 1] |Bj| B,



INEQUALITIES FOR THE HIGHER-ORDER COMMUTATORS 211
Let j, k be integers with j < k — 2. By (2.4), the Holder inequality and (2.5),

Ib(z) — bj|"dx <0( | Io(e) = byl b - bjr)
k

Ey
k
<C|bll < 2 + C(k = j+ 1)1 > [bi = bia|”
i=j+1
<Oz x 25+ C(k = )" [bll:
<Cp|l5(k — j) 2t (2.6)
By the condition (c), (2.4) and (2.6),

1

(], o) = biidz)”
+V %Qk”Uk% /|b —b|mpdz> }

< CA||b||m2Hn—e ((k;_j)kaﬁ FH(—kna oL E(- k)na)
(

Bn(at )

=

Aj, k) < C2Ho=o [Uk (2mV;)7

< CA|b||™(k — 5)m2Y™

Therefore, (u,v,b) € A(j, k) with n =m and p = z% + a.
Similarly, by condition (c), (2.4) and (2.6), we have

1 1
7/

A*(j, k) < 270 {(23”U>V1'< 1b(2) — b|™"' dz)

<2k"vk /|b —b\dex”

< CA|b||m2~* )<( j)m227+3"+(3 k)na* +2];"+J”+(j—k)na*>
= CA|B||(k — )2+,
Thus, (u,v,b) € A*(j, k) with n =m and 7 = é—i—a*. O

The proof of Corollary 1.4. By Theorem 1.3, it is sufficient to check condi-
tions (a’) and (c¢) with v(x) = Mu(z).
Since for each x € R™ and some integer N > 3,
1 / 1
— u(z)dz <C’—/ u(z)dz
2™ J 3 al<)z1<2]al @V z|)™ Jpaj<aniipy

<C Mu(z) = Co(z),

then by u € H,
1
< sup u(y)) X
Lz|<|y|<4|z] v(z)

-1
<c(on | u(2)az) (o [ u(z)dz) =0,
=] sivlel<lzl<2 |zl |z] sirlel<|zl<2Na|
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Therefore, the condition (a’) is satisfied.
Let j, k be integers with j <k —2. For any y € Ej, by (b), v € H and N > 3,

q q
Uy <CU} < C( sup u(a:))p
{z: 52k <|z|<4-2F}

g

<C< d )
2kn /2—N+’<<|:c|<2N+k U(ZE) !

(G [ ) < COIY? = o
Then )
V; = sup v(y)' 7 < C’ng(1 " CU,;%.
yEE;
Therefore ) )
UEV-” CU U, * <C. (2.7)

For any y € Ej, by (b), u € HNRD, and N >

3
1 »
2 2*N+j<|z\<2N+J
1 :
27" [ p(0,20-kaN+#)
gc(z(j—k)mfz—jn/ u(x)dx)E
|z|<2N+k

. 1 q
<C 2(]_]“)”(7_1)—/ u(x dx) '
h (2NF12R)m i j<on+1ok (@)

<C Q(j—k)n(v—l)Mu(x)>g —C’< 9l —=k)n(y— )v(x)> )

RS2

Then
Vi = sup v(y)l_p/ < C 2U=Fn(y=1)(F'-1) U" (1= _ — O 2U—kn(r-1 p/—l)U;%’_
yeEy
Thus L L
U]'EVIF < CQ(j—k)n(’Y—l)%UlgUl;E < OQ(j—k)”(W—l)%' (2.8)
By (2.7), (2.8), condition (c) is satisfied with a = 0 and a* = 7771. O

The proof of Corollary 1.5. By Theorem 1.3, it is sufficient to check condi-
tions (a’) and (c).
Let z € R™. Since v'™7 € H, for some integer N; > 3 we have

v(z)™ :(“@)l_pl)p’%l < C( sup v(y)l_p/yll_l

Tl <ly|<4|z|

1 N =
(5 / o(y) P dy)"
E Sy lzl<lz1<2Mfa]
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Then applying u € H and (1.1), we obtain that for some integer Ny > 3,

% 1 2
sup  u(y)) X (—=)7
<i|x<|y|<4|x| ) v()
1
1 | o\
<C(W/l U(y)dy> (W/l v(y)! pdy)
lal<lz|<2V2 lal<[2|<2V o
1
1 P 1 , %
<C(—/ U(y)dy> —/ o(y)' Pdy)”
(2N]z])™ /o) <onfaf <(2N|$|)" 2| <2N |2 )
<,

where N = max{N;, Ny} and C depends on Ny, N,. Therefore, the condition
(a') is satisfied.
Using condition (b), u,v'™? € H N RD, and (1.1)

1 1

1 1 1
UV <ULV

1 1 1 , %
Ol [ ) (e [ )

251 Jy Nk g <N 2 Jamnti <o <on i

1 ® (o : /
<C(qm [ wlye) (20mn [ ey’

|z|<2N+k |z|<2N+k
1

; 1 1 l 1 /
<C2U=Rn0=1); < / d ) P ( / 1-7'3 ) g
2N+ | o u(z)dz 2N+Rn [ o v(x) x

_Ooli—RnG=1F 4

=

Similarly, by condition (b), u,v'™ € HN RD. and (1.1), we have
1 1
a9 j—k)n(y—1)%
Uj V7 < OQ(J (=13 4

Thus, condition (c) is satisfied with a = (y — 1)2% and ax = (y— 1) O

1
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