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EXISTENCE THEOREMS FOR ATTRACTIVE POINTS OF
SEMIGROUPS OF BREGMAN GENERALIZED

NONSPREADING MAPPINGS IN BANACH SPACES

BASHIR ALI,1 MURTALA HARUNA HARBAU,2∗ and LAWAL HARUNA YUSUF3

Communicated by B. Sims

Abstract. In this paper, we establish new attractive point theorems for semi-
groups of generalized Bregman nonspreading mappings in reflexive Banach
spaces. Our theorems improve and extend many results announced recently in
the literature.

1. Introduction

Throughout this paper, the set of natural numbers is denoted by N, the set
of real numbers by R and the set (−∞, +∞] by R̄, the extended real line.The
concept of attractive points for nonlinear mappings in a Hilbert space was first
introduced by Takahashi and Takeuchi [11]. Let C be a nonempty subset of a
real Hilbert space H, and T : C → C be a mapping. A point u ∈ H is called an
attractive point of T if

‖Tv − u‖ ≤ ‖v − u‖ ∀v ∈ C.

Denote by A(T ), the set of all attractive points of T i.e

A(T ) = {u ∈ H : ‖Tv − u‖ ≤ ‖v − u‖,∀v ∈ C}.
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Remark 1.1. Observe that every fixed point of quasi-nonexpansive mapping is an
attractive point.

A mapping T : C → H is called (α, β)-generalized hybrid see Takahashi et al.
[7] if ∃ α, β ∈ R such that

α‖Tu− Tv‖2 + (1−α)‖u− Tv‖2 ≤ β‖Tu− v‖2 + (1− β)‖u− v‖2 ∀u, v ∈ C.

Putting α = 1, β = 0 we obtain (1, 0)-generalized hybrid mapping which is
called nonexpansive i.e

‖Tu− Tv‖ ≤ ‖u− v‖ ∀u, v ∈ C.

Also, putting α = 3
2
, β = 1

2
we obtain (3

2
, 1

2
)-generalized hybrid mappings which

are called hybrid mapping see [8] i.e

3‖Tu− Tv‖2 ≤ ‖u− Tv‖2 + ‖Tu− v‖2 + ‖u− v‖2 ∀u, v ∈ C.

In the case of α = 2, β = 1, we obtain (2, 1)-generalized hybrid mapping which is
called a nonspreading mapping, see [8] i.e

2‖Tu− Tv‖2 ≤ ‖u− Tv‖2 + ‖Tu− v‖2 ∀u, v ∈ C.

T : C → H is called (α, β, γ, δ)- normally generalized hybrid see Takahashi et al.
[12] if ∃α, β, γ, δ ∈ R such that

(i) α + β + γ + δ ≥ 0
(ii) α + β > 0 or γ + δ > 0; and
(iii) α‖Tu− Tv‖2 + β‖u− Tv‖2 + γ‖Tu− v‖2 + δ‖u− v‖2 ≤ 0 ∀u, v ∈ C.

Let E be a real smooth Banach space and E∗ be the dual space of E. Let C be a
nonempty closed convex subset of E. The normalised duality map J : E → 2E∗

is defined by

Ju =
{
u∗ ∈ E∗ : 〈u, u∗〉 = ‖u‖2 = ‖u∗‖2

}
∀u ∈ E.

Let φ : E × E → R be a Lyapanov functional defined by

φ(u, v) = ‖u‖2 − 2〈u, Jv〉+ ‖v‖2, ∀u, v ∈ E.

A mapping T from C into itself is called generalized nonspreading mapping if
∃α, β, γ, δ ∈ R such that

αφ(Tx, Ty) + (1− α)φ(x, Ty) + γ{φ(Ty, Tx)− φ(Ty, x)}
≤ βφ(Tx, y) + (1− β)φ(x, y) + δ{φ(y, Tx)− φ(y, x)},∀x, y ∈ C.

If such a mapping T is called (α, β, γ, δ)-generalized nonspreading mapping then
A (1,1,1,0)-generalized nonspreading mapping is called a nonspreading mapping
[8], i.e

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x)∀x, y ∈ C.

Also, A (1,0,0,0)-generalized nonspreading mapping is called a φ-nonenpansive
mapping i.e

φ(Tx, Ty) ≤ φ(x, y)∀x, y ∈ C.
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Let f : E → R̄ be a convex and Gateaux differentiable function. The function
Df : domf× intdomf → R̄, defined as follows:

Df (u, v) := f(u)− f(v)− 〈5f(v), u− v〉, (1.1)

is called the Bregman distance with respect to f .

Remark 1.2. If E is smooth and strictly convex Banach space and f(u) = ‖u‖2 for
all u ∈ E, then we have 5f(u) = 2Ju for all u ∈ E and hence Df (u, v) = φ(u, v).

Observe that from (1.1), we have

Df (u, w) := Df (u, v) + Df (v, w) + 〈5f(v)−5f(w), u− v〉. (1.2)

Nonspreading and hybrid mappings are generally not continuous, see for example
[6]. Takahashi and Takeuchi [11] proved the following attractive point and mean
convergence theorems without convexity in Hilbert spaces:

Theorem 1.3. (Takahashi and Takeuchi) [11] Let H be a Hilbert space and C be
a nonempty subset of H. Let T : C → C be a generalized hybrid mapping . Then
T has an attractive point if and only if ∃z ∈ C such that {T nz : n = 0, 1, ...} is
bounded.

Theorem 1.4. (Takahashi and Takeuchi) [11] Let H be a real Hilbert space and
let C be a nonempty subset of H. Let T : C → C be a generalized hybrid mapping.
Let {vn} and {bn} be sequences defined by

v1 ∈ C, vn+1 = Tvn, bn =
1

n

n∑
k=1

vk ∀n ∈ N.

If {vn} is bounded then the following hold:

(i) A(T ) is nonempty, closed and convex;
(ii) {bn} converges weakly to u0 ∈ A(T ) where u0 = limn→∞ PA(T )vn and PA(T )

is the metric projection of H onto A(T ).

In 1975, Riech [15](see also Goebel and Reich [5]) proved that, for any nonex-
pansive mapping T : C → C, if a specfied given sequence of iterate is bounded,
then T has a fixed point

For commutative semigroups of nonexpansive mappings, Atsushita and Taka-
hashi [2] proved some attractive point theorem in a real Hilbert space. Takahashi
et al. [13] proved an attractive point and mean convergence theorems for semi-
group of mappings without continuity in Hilbert spaces which unified the results
of [2] and [11].
More recently, Takahashi et al. [14] extended these results to some Banach space
setting much more general than Hilbert spaces. In fact they proved the following
theorems:

Theorem 1.5. Takahashi, Wong and Yao [14] Let E be a smooth and reflexive
Banach space with the duality mappping J and C be a nonempty subset of E.
Let S be a commutative semitopological semigroup with identity. Let S = {Ts :
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s ∈ S} be a continuous representation of S as mapping of C into itself such that
{Tsx : s ∈ S} is bounded for some x ∈ C. Let µ be a mean on C(S). Suppose
that µsφ(Tsx, Tty) ≤ µsφ(Tsx, y),∀y ∈ C and t ∈ S then A(S) = ∩{A(Ts) : s ∈
S} 6= ∅. In particular, if E is strictly convex and C is closed and convex, then
F (S) = ∩{F (Tt) : t ∈ S} 6= ∅.

Theorem 1.6. Takahashi, Wong and Yao. [14] Let E be a smooth and reflexive
Banach space and C be a nonempty subset of E. Let T : C → C be a generalized
nonspreading mapping, then the following are equivalent:

(i) A(T ) 6= ∅
(ii) {T nv0} is bounded for some v0 ∈ C.

Additionally if E is strictly convex and C is closed and convex, then the following
are equivalent:

(i) F (T ) 6= ∅
(ii) {T nv0} is bounded for some v0 ∈ C.

Motivated by the above results, in this paper, we established Bregman attrac-
tive point theorems using Bregman distance in a reflexive Banach spaces. Our
results improved and generalized recently announced results of Takahashi et al.
[14], Lin et al. [9] and many others.

2. Preliminaries

Definition 2.1. A normed space E is called smooth if for every u ∈ E, ‖u‖ = 1,
there exists a unique u∗ ∈ E∗ such that ‖u∗‖ = 1 and 〈u, u∗〉 = ‖u‖.

Definition 2.2. Let E be a normed linear space and ϕ : E → E∗∗ be the canon-
ical embedding. If ϕ is onto, then E is reflexive.

Let E be a real reflexive Banach space with norm ‖·‖ and E∗ the the dual space
of E. Let f : E → R̄ be a proper, lower semi-continuous and convex function.
The Fenchel conjugate of f is the convex function f ∗ : E∗ → R̄ defined by

f ∗(u∗) = sup{〈u∗, u〉 − f(u) : u ∈ E}.
Let u ∈ int domf ; the subdifferential of f at u is the convex set defined by

∂f(u) = {u∗ ∈ E∗ : f(u) + 〈u∗, v − u〉 ≤ f(v), ∀v ∈ E}.
For any u∈intdomf and v∈E, the right-hand derivative of f at u in the direction
v is defined by

f ◦(u, v) := lim
t→0+

f(u + tv)− f(u)

t
.

The function f is said to be Gateaux differentiable at u if limt→0+
f(u+tv)−f(u)

t
exists for any v. In this case,f ◦(u, v) coincides with 5f(u), the value of the
gradient 5f of f at u. The function f is said to be Gateaux differentiable if it is
Gateaux differentiable for any u∈ intdomf . The function f is said to be Fréchet
differentiable at u if this limit is attained uniformly in ‖v‖ = 1. Finally, f is said
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to be Gateaux differentiable on a subset C of E if the limit is attained uniformly
for u ∈ C and ‖v‖ = 1. it is well known that if f is Gateaux differentiable
(resp. Frechet differentiable) on intdomf , then f is continuous and its Gateaux
differentiable 5f is norm-to-weak∗ continuous (resp. continuous) on intdomf
(see also [1]) .

Definition 2.3. The function f is said to be:
(i)Essentially smooth, if ∂f is both locally bounded and single-valued on its
domain;
(ii)Essentially strictly convex, if (∂f)−1 is locally bounded on its domain and f
is strictly convex on every subset of domf ;
(iii)Legendre, if it is both essentially smooth and essentially strictly convex.

Remark 2.4. Let E be reflexive Banach space. Then we have:
(i) f is essentially smooth if and only if f ∗ is essentially strictly convex;
(ii) (∂f)−1 = ∂f ∗

(iii) f is Legendre if and only if f ∗ is Legendre
(iv)If f is Legendre, then 5f is a bijection satifying 5f = (5f ∗)−1, ran5f =
dom5f ∗ = intdomf ∗ and ran 5f ∗ = domf = intdomf .

Examples of Legendre functions were given in [3]. One important and inter-
esting Legendre function is 1

p
‖ · ‖p (1 < p < ∞) when E is a smooth and strictly

convex Banach space. In this case the gradient5f of f is coincident with the gen-
eralized duality mapping of E, i.e, 5f = Jp (1 < p < ∞). In particular, 5f = I
the identity mapping in Hilbert spaces. In the rest of this paper, we always
assume that f : E → R̄ is a Legendre function.

Definition 2.5. (Conjugate Operator)[17] Let E be a reflexive Banach space and
C be a subset of E. Let f : E → R̄ be Legendre and T : C ⊂ intdomf → intdomf .
The conjugate operator T ∗

f : 5f(C) → intdomf ∗ associated with T denoted by
T ∗ is defined by

T ∗ = 5foTo5 f ∗. (2.1)

Lemma 2.6. (see [4], Theorem 7.3 (vi), (vii)) Suppose u ∈ E and v ∈ domf .
Then
(i)If f is essentially strictly convex, then Df (u, v) = 0 ⇔ u = v
(ii)If f is differentiable on intdomf and essentially strictly convex, then Df (u, v) =
Df∗(5f(v),5f(u)).

Lemma 2.7. [16] If f : E → R is uniformly Fréchet differentiable and bounded
on bounded subsets of E, then 5f is uniformly continuous on bounded subsets of
E from the strong topology of E to the strong topology of E∗.

3. Semitopological Semigroups and Invariant Means

A semitopological semigroup S is a semigroup with a Hausdorff topology such
that for each x ∈ S, the mappings s → x.s and s → s.x from S into itself are
continuous. If S is commutative then st is denoted by s+t. Let the Banach space
of all bounded real-valued functions on S with supremum norm be B(S) and let
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the subspace of such Banach space B(S) of all bounded real-valued continuous
functions on S be C(S) . Let µ be an element of the dual space of C(S). The
value of µ at f ∈ C(S) is denoted by µ(f). It is sometimes denoted by µt(f(t)).
For each s ∈ S and f ∈ C(S), defining the two (rsf) and (lsf) functions are
defined as follows:

(rsf)(t) = f(ts) and (lsf)(t) = f(st) ∀t ∈ S.

An element µ of C(S)∗ is called a mean on C(S) if

µ(e) = ‖µ‖ = 1,

where e(s) = 1 ∀s ∈ S. It is known that µ ∈ C(S)∗ is a mean on C(S) if and
only if

inf
s∈S

f(s) ≤ µ(s) ≤ sup
s∈S

f(s) ∀f ∈ C(S).

A right invariant mean is a mean µ on C(S) for which µ(rsf) = µ(f) ∀f ∈ C(S)
and s ∈ S. Similarly, a left invariant mean is a mean µ on C(S) for which
µ(lsf) = µ(f) ∀f ∈ C(S) and s ∈ S. A right and left invariant mean on C(S) is
called an invariant mean on C(S). if S = N , an invariant mean on C(S) = B(S)
is called a Banach limit on l∞.

Theorem 3.1. Takahashi, [10]. Let S be a commutative semitopological semi-
group. Then ∃ an invariant mean on C(S) ; i.e ∃ an element µ on C(S)∗ such
that µ(e) = ‖µ‖ = 1 and µ(rsf) = µ(f)∀f ∈ C(S) and s ∈ S.

Let C be a nonempty subset of a Banach space and E. Let S be a semitopolog-
ical semigroup and let S| = {Ts : s ∈ S} be a family of mappings of C into itself.
Then S| = {Ts : s ∈ S} is called a continuous representation of S as mappings
on C if Tst = TsTt for all s, t ∈ S and s → Tsx is continuous for each x ∈ C.
Denoting the set of common fixed point of Ts for s ∈ S by F (S|) i.e

F (S|) = ∩{F (Ts) : s ∈ S}.

The following definition is very essential in the studies of nonlinear ergodic theory
of abstract semigroups:

Definition 3.2. Let E be a reflexive space and let E∗ be the dual space of E.
Let u : S → E be a continuous function such that {u(s) : s ∈ S} is bounded and
let µ be a mean on C(S). Then there exists a unique point z0 ∈ c̄o{u(s) : s ∈ S}
such that

µs〈u(s), y∗〉 = 〈z0, y
∗〉 ∀y∗ ∈ E∗.

Such z0 ∈ c̄o{u(s) : s ∈ S} is called the mean vector of u for µ. see [14] for
details.

4. Main Results

Let E be a reflexive Banach space and f : E → R̄ be convex and Gâteaux
differentiable function. Let T be a mapping from C into itself where C is a
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nonempty subset of E. Denoting the set of Bregman attractive point of T by
AB(T ) i.e

AB(T ) = {v ∈ E : Df (v, Tz) ≤ Df (v, z),∀z ∈ C}.
Now, let S be a semitopological semigroup with identity. Let S| = {Ts : s ∈ S}

be a continous representation of S as mapping of C into itself. Denoting the set
of common Bregman attractive points of S| by AB(S|) i.e

AB(S|) = {AB(Tt) : t ∈ S}.

We now prove the following Bregman attractive point theorems:

Theorem 4.1. Let E be a reflexive Banach space and f : E → R̄ be a convex and
Gâteaux differentiable function and C be a nonempty subset of E. Let S be a semi-
topological semigroup with identity. Let S| = {Ts : s ∈ S} be a continuous repre-
sentation of S as mapping of C into itself such that S| = {Tsx : s ∈ S} is bounded
for some x ∈ C. Let µ be a mean on C(S). Suppose that µsDf (Tsx, Tsy) ≤
µsDf (Tsx, y),∀y ∈ C and t ∈ S then AB(S|) = ∩{AB(Ts) : s ∈ S} 6= ∅.

Proof. Using a mean µ on a bounded set {Tsx : s ∈ S} and define a function
g : E∗ → R by

g(x∗) = µs〈Tsx, x∗〉 ∀x∗ ∈ E∗.

Since E is reflexive as shown by (Takahashi [14] in section 3) ∃! z ∈ E∗ such that

g(x∗) = µs〈Tsx, x∗〉 = 〈z, x∗〉 ∀x∗ ∈ E∗.

and such z ∈ c̄o{Ts : s ∈ S}. Now, for s,t ∈ S, we have

Df (Tsx, y) = Df (Tsx, Tty) + Df (Tty, y) + 〈5f(Tty)−5f(y), Tsx− Tty〉
= Df (Tsx, Tty) + Df (Tty, y) + 〈5f(Tty), Tsx− Tty〉 − 〈5f(y), Tsx− Tty〉.

Applying mean µs on both side of the above expression we get,

µsDf (Tsx, y) = µsDf (Tsx, Tty) + µsDf (Tty, y) + µs〈5f(Tty), Tsx− Tty〉
− µs〈5f(y), Tsx− Tty〉
= µsDf (Tsx, Tty) + Df (Tty, y) + 〈5f(Tty), z − Tty〉 − 〈5f(y), z − Tty〉
≤ µsDf (Tsx, y) + Df (Tty, y) + 〈5f(Tty), z − Tty〉 − 〈5f(y), z − Tty〉.

This implies,

0 ≤ Df (Tty, y) + 〈5f(Tty), z − Tty〉 − 〈5f(y), z − Tty〉
= Df (Tty, y) + Df (z, Tty)−Df (z, Tty) + 〈5f(Tty)−5f(y), z − Tty〉
= Df (z, Tty) + Df (Tty, y) + 〈5f(Tty)−5f(y), z − Tty〉 −Df (z, Tty)

= Df (z, y)−Df (z, Tty).

Hence

Df (z, Tty) ≤ Df (z, y).
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This implies z ∈ AB(Tt) for each t and so z ∈ AB(S|). Hence AB(S|) 6= ∅. This
completes the proof.

�

Definition 4.2. Let E be a reflexive Banach space and C be a nonempty subset
of E. A mapping T from C into itself is called generalized Bregman nonspreading
mapping if ∃α, β, γ, δ ∈ R such that

αDf (Tx, Ty) + (1− α)Df (x, Ty) + γ{Df (Ty, Tx)−Df (Ty, x)}
≤ βDf (Tx, y) + (1− β)Df (x, y) + δ{Df (y, Tx)−Df (y, x)}, ∀x, y ∈ C.

If such a mapping T is called (α, β, γ, δ)-generalized Bregman nonspreading
mapping, then a (1,1,1,0)-generalized Bregman nonspreading mapping is called a
Bregman nonspreading mapping. i.e

Df (Tx, Ty) + Df (Ty, Tx) ≤ Df (Tx, y) + Df (Ty, x)∀x, y ∈ C.

Putting α = 1 and β = γ = δ = 0, we obtain Bregman nonexpansive mapping

Df (Tx, Ty) ≤ Df (x, y) ∀x, y ∈ C.

Theorem 4.3. Let E be a reflexive Banach space and f : E → R̄ be a convex and
Gâteaux differentiable function and C be a nonempty subset of E. Let T : C → C
be a generalized Bregman nonspreading mapping, then AB(T ) 6= ∅ if and only if
{T nv0} is bounded for some v0 ∈ C

Proof. By Theorem 4.1, following the line of proof of (Theorem 4.3 in [14]) and
considering the generalized Bregman nonspreading mapping in Definition 4.2, the
result follows:

�

Theorem 4.4. Let E be a reflexive Banach space and f : E → R̄ be essentially
strictly convex and Gâteaux differentiable function. Let D a nonempty, closed
and convex subset of E. Let S be a semitopological semigroup with identity and
let C(S) be a Banach space of all bounded real-valued continuous functions on S
with supremum norm.Let u : S → E be a continuous function such that {u(s) :
s ∈ S} ⊂ D is bounded and let µ be a mean on C(S). if g : D → R is defined by

g(z) = µsDf (u(s), z)∀z ∈ D,

then the mean vector z0 of {u(s) : s ∈ S} for µs is a unique minimizer in D
such that

g(z0) = min{g(z) : z ∈ D}.

Proof. For a bounded net {u(s)} ⊂ D and a mean on C(S), we see that a function
g : D → R defined by

g(z) = µsDf (u(s), z)∀z ∈ D

is well defined as u(s) ∈ E, z ∈ D ⊆ E and Df (u(s), z) = f(u(s)) − f(z) −
〈5f(z), u(s)− z〉. Since f : E → (−∞, +∞], it is clear that f can see both u(s)
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and z. Also, from (section 3 of [14]) ∃ a mean vector z0 of {u(s)} for µ that is ∃
z0 ∈ c̄o{u(s) : s ∈ S} such that

µs〈u(s), y∗〉 = 〈z0, y
∗〉 ∀y∗ ∈ E∗.

Since D is closed and convex and {u(s)} ⊂ D, we have z0 ∈ D.
Using the three point identity of Bregman distance, we have

g(z)− g(z0) = µsDf (u(s), z)− µsDf (u(s), z0) = µs

(
Df (u(s), z)−Df (u(s), z0)

)
= µs

(
Df (u(s), z)−Df (u(s), z)−Df (z, z0)− 〈5f(z)−5f(z0), u(s)− z〉

)
= −µs

(
Df (z, z0) + 〈5f(z)−5f(z0), u(s)− z〉

)
= −Df (z, z0)− µs〈5f(z)−5f(z0), u(s)− z〉
= −Df (z, z0)− µs〈5f(z), u(s)− z〉+ µs〈5f(z0), u(s)− z〉
= −Df (z, z0)− 〈5f(z), z0 − z〉+ 〈5f(z0), z0 − z〉
= −f(z) + f(z0) + 〈5f(z0), z − z0〉 − 〈5f(z), z0 − z〉+ 〈5f(z0), z0 − z〉
= f(z0)− f(z)− 〈5f(z), z0 − z〉
= Df (z0, z).

Thus,

g(z) = Df (z0, z) + g(z0) ∀z ∈ D.

This implies z0 ∈ D is a minimizer , that is,

g(z0) = min{g(z) : z ∈ D}.

Now, suppose u ∈ D satisfies g(u) = g(z0), then we get g(u) = Df (z0, u) + g(z0)
and Df (z0, u) = 0 ⇔ z0 = u as f is an essential strictly convex. Hence z0 ∈ D is
a unique minimizer. This completes the proof.

�

Let E be a reflexive Banach space and C be a nonempty subset of E. Let T
be a mapping from C into E. Denoting the set of skew-Bregman attractive point
of T by BB(T ) i.e

BB(T ) = {z ∈ E : Df (Tx, z) ≤ Df (x, z),∀x ∈ C}.

Lemma 4.5. Let E be a reflexive Banach space and f : E → R̄ be Legendre. Let
T : C ⊂ intdomf → intdomf be an operator and T ∗ be the conjugate operator
associated with T . Then the following hold:

(i) BB(T ) = 5f ∗
(
AB(T ∗)

)
,

(ii) AB(T ) = 5f ∗
(
BB(T ∗)

)
.
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Proof.

z ∈ BB(T ) ⇔ Df (Tx, z) ≤ Df (x, z) ∀x ∈ C

⇔ Df∗
(
5 f(z),5f(Tx)

)
≤ Df∗

(
5 f(z),5fx

)
∀x ∈ C

⇔ Df∗
(
5 f(z),5fT 5 f ∗5 fx

)
≤ Df∗

(
5 f(z),5fx

)
∀x ∈ C

⇔ Df∗
(
5 f(z), T ∗x∗

)
≤ Df∗

(
5 f(z), x∗

)
where x∗ = 5fx ∈ intdomf ∗

⇔ 5f(z) ∈ A(T ∗)

⇔ z ∈ 5f ∗
(
AB(T ∗)

)
.

Hence BB(T ) = 5f ∗
(
AB(T ∗)

)
. This completes the proof.

�

Let E be a reflexive Banach space and f : E → R̄ be convex and Gâteaux
differentiable function. Let S| = {Ts : s ∈ S} be a family of mappings of C
into itself where C is a nonempty subset of E. Denoting the set of Bregman
skew-attractive point of T by BB(S|) i.e

BB(S|) = ∩{BB(Tt) : t ∈ S}.

We now obtain the following skew-attractive point theorem for semigroup of map-
pings without continuity in a Banach space.

Theorem 4.6. Let E be a reflexive Banach space and f : E → (−∞, +∞] be
Legendre. Let S be a commutative semitopological semigroup with identity. Let
S = {Ts : s ∈ S} be a continuous representation of S as mapping of C into
itself such that S = {Tsx : s ∈ S} is bounded for some x ∈ C. Let µ be a mean
on C(S). Suppose that µsDf (Tty, Tsx) ≤ Df (y, Tsx) ∀y ∈ C and t ∈ S. Then
BB(S|) = ∩{B(Tt) : t ∈ S} 6= ∅.

Proof. Since S = {Tsx : s ∈ S} is bounded subset of C for some x ∈ C. Put
x∗ = 5fx and y∗ = 5fy. Then by Definition 2.5 we have

T ∗
s T ∗

t = 5fTs 5 f ∗5 fTt 5 f ∗

= 5fTsTt 5 f ∗

= 5fTs+t 5 f ∗

= T ∗
s+t ∀s ∈ S.

Since 5f is continuous then for any y∗ ∈ 5f(C) we have,

‖T ∗
s y∗−T ∗

t y∗‖ = ‖5fTs5f ∗5f(y)−5fTt5f ∗5f(y)‖ = |5fTsy−5fTty‖ →
0 as s → t.
Therefore, S|∗ = {T ∗

s : s ∈ S} is a continuous representation of S as mappings
of 5f(C) into intdomf ∗. Further more Since S = {Ts : s ∈ S} is bounded and
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µsDf (Tx, z) ≤ µsDf (x, z) ∀y ∈ C and t ∈ S, we have

µsDf∗(T
∗
s x∗, T ∗

t y∗) = µsDf∗(5fTs 5 f ∗5 fx,5fTt 5 f ∗5 fy)

= µsDf∗(5fTsx,5fTty)

= µsDf (Tty, Tsx) ≤ µsDf (y, Tsx) = µsDf∗(5fTsx,5fy)

= µsDf∗(5fTs 5 f ∗5 fx,5fy) = µsDf∗(T
∗
s x∗, y∗).

Therefore µsDf∗(T
∗
s x∗, T ∗

t y∗) ≤ µsDf∗(T
∗
s x∗, y∗) ∀y∗ ∈ 5f(C) and t ∈ S.

Using Theorem 4.1 we see that

AB(S|∗) = ∩{AB(T ∗
t ) : t ∈ S} 6= ∅.

Since 5f : intdomf → intdomf ∗ is bijection and using Lemma 4.5 we have

BB(S|) = ∩{BB(Tt) : t ∈ S}
= ∩{5f ∗AB(T ∗

t ) : t ∈ S}
= 5f ∗{∩(AB(T ∗

t )) : t ∈ S}
= 5f ∗(AB(S|∗)).

Since AB(S|∗) is nonempty ⇒ BB(S|) 6= ∅. This completes the proof.
�

Definition 4.7. Let E be reflexive Banach space and C be a nonempty subset
of E. A mapping T from C into itself is called skew-generalized Bregman non-
spreading mapping if ∃α, β, γ, δ ∈ R such that

αDf (Ty, Tx) + (1− α)Df (Ty, x) + γ{Df (Tx, Ty)−Df (x, Ty)}
≤ βDf (y, Tx) + (1− β)Df (y, x) + δ{Df (Tx, y)−Df (x, y)},∀x, y ∈ C.

Theorem 4.8. Let E be a reflexive Banach space and f : E → R̄ be a convex and
Gâteaux differentiable function and C be a nonempty subset of E. Let T : C → C
be a skew-generalized Bregman nonspreading mapping, then BB(T ) 6= ∅ if and
only if {T nv0} bounded for some v0 ∈ C.

Proof. By Theorem 4.6 above, following the line of proof of (Theorem 5.4 in
[14]) and considering the skew-generalized Bregman nonspreading mapping in
Definition 4.7 above, the result follows. �

Remark 4.9. Observe that using Remark 1.2, we see that the results in this paper
extend and improve all the results in Takahashi et al. [14] and many others.
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