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A FORMULATION OF THE JACOBI COEFFICIENTS cé-(oz,ﬁ)
VIA BELL POLYNOMIALS

STUART DAY and ALI TAHERI*

Communicated by M. Krnié¢

ABSTRACT. The Jacobi polynomials (,@lga”g) ik > 0,a,8 > —1) are deeply
intertwined with the Laplacian on compact rank one symmetric spaces. They
represent the spherical or zonal functions and as such constitute the main ingre-
dients in describing the spectral measures and spectral projections associated
with the Laplacian on these spaces. In this note we strengthen this connection
by showing that a set of spectral and geometric quantities associated with Ja-
cobi operator fully describe the Maclaurin coefficients associated with the heat
and other related Schwartzian kernels and present an explicit formulation of
these quantities using the Bell polynomials.

1. MACLAURIN COEFFICIENTS OF SCHWARTZIAN KERNELS

Let 2 be a compact rank one symmetric space and let —A g, denote the
(positive) Laplace-Beltrami operator on 2. By basic spectral theory the heat
kernel on 2" can be expressed by the spectral sum

— My (2 2\ e
Hi(z,y) = Z %exp (—tAY) 93,2 ”g)(cos 9), t>0. (1.1)
k=0

Here e@éa’ﬁ ) (with o, 3 > —1 and k > 0) are the normalised Jacobi polynomials,
A\ = k(k+a+ B +1) are the numerically distinct eigenvalues of —A g, M (Z)
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is multiplicity of i, Vol(Z") is the volume of 2 and @ is the geodesic distance
between x,y in 2" (see Appendix A at the end for more on Jacobi polynomials
and their main properties).

On the other hand the Jacobi polynomials can be shown to satisfy a differential-
spectral identity (with & > 0,1 > 1) in the form

%y(aﬂ)(cose) = Zcé(oz,ﬁ)[k:(k: +a+p+1) = Zcé-(oz,ﬁ) [/\k%}j,

(1.2)

for suitable choice of scalars (c}(c, ) : 1 < j < [) referred to hereafter as the
Jacobi coefficients (see Theorem 2.2 below).

To illustrate the significance of this identity we return to the expression of the
heat kernel on the rank one symmetric space 2~ as given by (1.1). Now since the
kernel H; is an even function of the geodesic distance 6 its Maclaurin expansion
about 6 = 0 takes the form

e 02[ a2l
Ht - ; Wwﬂt me 2l ', (].3)

where by, = b3,(¢t) (I > 0) denote the associated Maclaurin coefficients. Upon
invoking the Jacobi coefficients cé- (o, B) the Maclaurin coefficients b3, can now be
given the trace formulation

" X Mi(Z)e=M ,
() = 3 ML S oy

Vol(%) )tr {z@l(—A%)etA%} 7 (1.4)

prd - Vol(Z
where %, denotes the degree [ polynomial in X built out of the Jacobi coefficients
by the prescription

!
=> da,B)X7. (1.5)
j=1
We remark that this formulation does not restrict to the heat kernel only and
one can go beyond, e.g., by taking any suitable function ® = ®(X) within the
functional calculus of —Ay; then the Schwartzian kernel of ®(—Ay4 ) has the
Maclaurin expansion

= M (X N
K(p(:v,y):ZVOklE%) A 2P (cos ) Zb% 2 (1.6)
k=0

~—

where the associated Maclaurin coefficients in this case are given for [ > 0 (upon
agreeing to set Zo(X) =1) by

3(®) = G el -A ). (1.7)

A particular class of such Schwartzian kernels K¢ that directly connect to the
heat kernel H; are those associated with a function ® = ®(X) of the Laplace
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transform type, that is,
d(X) :/ f(s)e™*Xds, X >0, (1.8)
0

for some suitable integrable function f on (0,00). In this case it is not hard to
see that the Maclaurin coefficients of K¢ can be expressed via the trace formula

by = tr [Fi(=A)] (1.9)
where Fj is in turn the function defined by the integral

F(X):= /OOO f ()%, <—%) e " ds. (1.10)

In this note we give an explicit description of the Jacobi coefficients cé.(a, 3)
by utilising the Bell polynomials and the Faa di Bruno’s formula. The formula-
tion is stated and proved in Theorem 2.2. We also explicitly give the first few
coefficients and the associated polynomials %, in the sequence (see Section 2 and
Appendix B). Before ending this introduction let us note that the compact rank
one symmetric spaces of interest are the sphere, the real, complex and quater-
nionic projective spaces and the Cayley projective plane, specifically, as listed:

e S"=S0(n+1)/SO(n),

e P"(R) =5"/{+} =SO(n +1)/0(n),

e P"(C) =SU(n+1)/S(U(n) x U(1)) (of real dimension 2n),
e P"(H) = Sp(n+1)/(Sp(n) x Sp(1)) (of real dimension 4n),
e P?(Cay) = F,/Spin(9) (of real dimension 16).

For the sake of future reference we next present some of the necessary spectral
geometric quantities associated with these symmetric spaces (see Table 1 below
for the parameter values). The formulation of these in the simply connected case
are given, in turn, by the radial part of the Laplacian

2
% + (acot @+ (1/2)bcot(0/2)) %;
the numerically distinct eigenvalues of —Ag by \¥ = (0 +k)? — ¢* (with k > 0)
where o = (a + b/2) /2; the multiplicity of the eigenvalue A\ (with k > 0 and
N =a+ b+ 1) by the function

_ 2(k+o)l'(k+20)l ((a+1)/2) T (k+ N/2).
M) = = N g+ T (N2 T (h+ (a+ 1))

(1.11)

(1.12)

and the volume,
oW ™ ((a+1)/2)
L'((N+a+1)/2)

In the non simply connected case P"(R) the counterparts of these are obtained
using standard arguments from those of its double cover S™. In Table 1 below we

Vol(2') . (1.13)

All these spaces are simply connected except for the circle S' and the real projective spaces
P™(R) (with n > 1). Indeed 71 (S') = 71 (P*(R)) = Z while 71 (P"(R)) & Zy for n > 2. See
[1, 2, 4, 6, 12, 13] for related and further discussion as well as [9, 10] for spectral zetas and
determinants of Laplacians.
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TABLE 1. The Parameters a,b, N, a, 8 and \{

2 a b N a B N
S™ n—1 0 n|{n-—2/2(n-2)/2| kn+k—-1)
P"(R) [n—1 0 n (n—2)/2 (n—2)/2 | 2k(n+2k—1)
P(C) | T [2n—1)|2n| n_1 0 Fn+ k)
P(H) | 3 |4n—1)|4n ST 1 E@n+k+1)
P2(Cay)| 7 8 16| 7 3 Rk + 10)

gather together the values of the parameters a,b, N, a and [ for the symmetric
spaces described above. Note that here N is the real dimension of 2" while
a=(N-2)/2and = (a—1)/2. See, e.g., [1, 4, 6, 13] and the references therein
for background and more.

2. A DESCRIPTION OF THE JACOBI COEFFICIENTS cé(a,ﬁ) FOR a, 3 > —1
AND 1 <5<

Here we give an explicit formulation of the Jacobi coefficients as appearing in
(1.2). In order to do so we will make use of the Bell polynomials (cf. [3]). Recall
that for positive integers m, k the Bell polynomials B,,  is defined as

! 51 & fmf 1 Jm—kt1

o Jm—kt1)!

with & = (&1,...,&n—k+1) where the summation on the right is taken over all
J1y ey Jm—k+1 Such that

m—k+1 m—k+1

Z Jp =k, Z Pp = m. (2:2)
p=1 p=1

The coefficients of the Bell polynomials relate to the number of ways a given set
can be partitioned and thus have many applications in combinatorics (c¢f. [3] for
more). We will make use of the Bell polynomials via Faa di Bruno’s formula,
which is a higher order version of the chain rule and asserts that for two smooth
real-valued functions f, g on the line we have

Cg(—mmf(g(X)) =Y fPX)Builg' - g ) (X). (2.3)

The following observation simplifies the application of Faa di Bruno’s formula.

Lemma 2.1. Let | > 1, then By x(0,&,&s, ..., {u—kt+1) = 0 when k > 1+ 1 for
all & € R.

Proof. It suffices to show that all terms in the polynomial By ; depend on the
first variable. This amounts to showing that if £ > 141, (j, : 1 <p <2l —k+1)
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satisfy (2.2) with m = 2[ then j; # 0. Indeed let (j, : 1 < p <2l —k + 1) be
non-negative integers such that (2.2) are satisfied but j; = 0. Then

20—k+1
> gp=k=l+1 (2.4)
p=2
On the other hand because of the second equation in (2.2) being true we have
20—k+1 2—k+1 20—k+1
dopip= Y =25p+2 Y jp=2l+1)>2 (2:5)
p=2 p=2 p=2
which is a contradiction. 0J

We are now in a position to state the main result in this section that gives a
computable and explicit expression for the Jacobi coefficients cé-(oz, B).

Theorem 2.2. Consider the Jacobi polynomial @éa’ﬁ) with integer k > 0 and
real a, 3 > —1. Then we have

d2l
— e@é&ﬁ) (cosf)

e dod(@Bk(ktat s+l =1 (26

6=0 Jj=1

Moreover the scalars cé-(a,ﬁ) with 1 < 5 <1 are given explicitly by the formula

dla,B) = al b, (2.7)

where b are defined recursively as: bt =1, b""" = —m(m + a + 5+ 1)by" for
m > 1 and b7 = b, —m(m+a+ B+ 1)b7 for 2 < j < m while al,, are given
by

. 2" (a+1)

am_r(a+m+1)

Bom(0,—1,0,+1,0,...). (2.8)

Here By, are the partial exponential Bell polynomials as defined by (2.1).

Proof. Let us start by justifying (2.6). Indeed upon utilising the Faa di Bruno
formula we can write for any fixed [ > 1

A
a?ﬁ
=> dt—m@,ﬁ (t)
0=0 =1

Now using the following differential-recursive relation satisfied by the Jacobi
polynomials (m > 1) [see the Appendix and in particular (3.7)]

dl@(a,ﬁ) (t) = { 27"k +m+a+ B+ 1) (a+ 1)E!

k | Tk+a+ B+ D) (a+m+1)(k—m)

dQZ
— ,@,ia’ﬂ) (cosh)

7 Baym (cos' 0, cos" 6, - -)

. (2.9)

t=1

a+m,+m
dt™ !} gzlg—jn i )(t>-

(2.10)



JACOBI COEFFICIENTS AND BELL POLYNOMIALS 511

Therefore by invoking Lemma 2.1 and using (2.9) above we have

' )
W@,f’ (cos )

—QZZ{ 27"D(k+m+a+F+1)0(a+ 1)k
o Ao LDk +a+ B+ DT (a+m+1)(k—m)!

X BQl,m(07 —1,0,+1, ... )@(a+m,ﬁ+m)(1)

k—m

!
:Zainrlg(k:—l—aﬁLﬁ—i-val)k! (2.11)
—1

k+a+B+1)(k—m)’
where in deducing the second identity we have used (2.8) along with the second

equation in (3.8) and (3.9). Next it is straightforward to deduce by induction
that the coefficients b7 (with 1 < j < m) satisfy the relation

[[@—po+a+p+1)=> bra. (2.12)
p=0 Jj=1

Likewise a further set of straightforward algebraic manipulations enable us to
write the coefficients of al_ in (2.11) as

-1

3

L(k+a+p+m+1)Ek!
I'k+a+5+1)(k—m)!

(k(k+a+p+1)—plp+a+F+1))

]
|

NE

b7 [k(k +a+ B+ 1. (2.13)

.
Il

Therefore by putting all the above ingredients together we arrive at the identity

dZZ . l m . ‘
W@,ﬁ ) (cos ) = afﬂij k(k+a+8+1))
p=0 m=1  j=1
which leads to the desired conclusion. O

The list below presents the first few elements in the scale of polynomials %,
[cf. (1.5)] by explicitly calculating the associated Jacobi coefficients ¢ (a, §) (with
1 < j <1 < 4) upon invoking Theorem 2.2. The cases 5 < [ < 6 are further
discussed and presented in Appendix B at the end. Indeed for 1 <1 < 3 we have

=X 33X —(a+33+2)X
24(X) _ —15X% +15(a + 36 4 2)X? — (40 + 30a5 + 305° + 20a 4 603 + 24) X
ST 8(av + 1) (v + 2) (v + 3)
(2.15)
while for [ = 4 we can proceed by first writing
4
Qi)
= N AV AN ¢

j=1
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where
oy = (a+4)(a+3)(a +2)(a+ 1), (2.17)
and then
Q1 = 34a® + 462026 + 1050a8% + 6303° + 3060+
+ 218403 + 23105 + 884a + 26043 + 816 (2.18)
Q5 = 1470% + 105003 + 11553 + T14a + 23103 + 924 (2.19)
Q3 = 210 + 6303 + 420, @} = 105. (2.20)

3. APPENDIX A: THE ORTHOGONAL FAMILY OF JACOBI POLYNOMIALS P,i“’ﬁ)

(k>0 AND a, 3 > —1)

The purpose of this appendix is to gather together some of the main results and
calculations relating to Jacobi polynomials as used earlier, the Jacobi coefficients
as formulated above and the associated polynomials %, = Z;(X). For more
information and detail on these and related scales of orthogonal polynomials the

—

interested reader is referred to [5, 7, 8] and [11, 12].
Recall that the scale of Jacobi polynomials Pk(a’ﬁ ) (t) (with integer £ > 0 and

real o, 5 > —1) is defined by the generating function relation
9a+3 / R
(1—w+ R)*(1+w+ R)8

=S PPt wl <1, (31)
k=0

where R = /1 — 2tw + w?. The Jacobi polynomial y = Pk(a’ﬁ ) (t) satisfies the
second-order differential equation

2

U—¢ﬂ%g—ma—ﬁ+wa+ﬁ+2m%%+Mk+a+ﬁ+1wzo, (3.2)
that in turn constitute a regular Sturm-Liouville system with the associated Ja-
cobi operator a positive selfadjoint second order linear differential operator in the
weighted space L3, (—1,1) with du = (1 —t)*(1 4 t)°dt. The spectrum here is
purely discrete and given by the sequence of eigenvalues and associated eigen-
functions

N — k(b +a+p+1), (3.3)
y=P"), k>0,
respectively. In particular and as a consequence the Jacobi polynomials satisfy

the orthogonality relations:

1
(PO pls)y , — / PO PeA(t) (1 — 1) (1 +t)%dt = 0, (3.4)

m m
d
a 1

for 0 < k # m whilst for the remaining cases we have

_ ga+Bil (a+1)p(B+Dpla++Ek+1) T (a+ DI+ 1)
B (a+B8+2)k(B+a+2k+1) T(a+p+2)k

(a,0) )2
12, (35)
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Note that here and below we write (z)r = I'(x + k)/T'(z) to denote the rising
factorial. It can be shown that the Jacobi polynomials admit the power series
representation

PP (t) = (t-1)", (36

Tla+k+1) < (k)l“(a+ﬁ+k+l+1)

F(a+ﬁ+k+l); l 2 (a+ 1+ 1)k!

and that for m > 1 satisfy the useful differential-recursive formula

dm I'(k 1
& pleps) (t) = (k+m+a+B+1) (atm,B+m) (t). (3.7)

dtm”™ ¥ 2T (k+a+pB+1)
Here we also have the reflection-symmetry as well as the pointwise identities
o3 Ba e (o + 1)
P (=) = (PRI, B (1) = (3.8)

The normalised form of the Jacobi polynomial as used throughout is defined as
the quotient
PP k!
ey = L ) _ pled)
PPy (at 1)

Note that in particular 2™ (1) = 1.

(t). (3.9)

4. APPENDIX B: THE JACOBI COEFFICIENTS cé-(oz,ﬁ) FOR THE PARAMETER
RANGE 5 <1 <6

e Here we list the coefficients of the polynomial %Z5(X) = Z?Zl S(a, B)X7,
computed using Theorem 2.2. Indeed for 1 < j < 5 these can be described

as

Slanf) = (1P R, (@)
where o5 = 9% («) is the polynomial
s(a) = (a+ 1) (a+2)(a+3)(a+4)(a+5) (4.2)

and Q? = Q?(Oz, () are the degree 5 — j polynomials given respectively by
Q3 (a, B) = 8(62 a* + 1320 a8 4 5040 o* 3% + 6615 3 + 2835 34+
+ 868 a® + 10800 o* 3 4 25515 a3* + 16065 3>+
+ 4402 o + 29910 a8 + 32760 52+
+ 9548 o + 27540 3 4 7440)
Q5(a, B) = 2(1185 a® + 14805 o* 3 + 36225 aF* + 23625 3+
+ 1012502 + 75600 a8 + 88515 %+
+ 30810cr 4 101430 3 4 32040)
Q3 (a, B) = 4095 a? + 28350 a4 33075 %4+
+ 19530 o 4 66150 3 + 26460
Qi (a, B) = 2(1575 o + 4725 3 + 3150), Q2 (o, B) = 945.
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e Likewise the coefficients of the polynomial %Zs(X) = Y20, 8(a, B) X7,

_—e
again computed using Theorem 2.2, can be described for 1]§ 7 <6 as
Qf (o, B)
6 = (1= 4.3
o) = (1) s, (43)

where o5 = @%(«) is the polynomial
s = (a+1)(a+2)(a+3)(a+4)(a+5)(a+6) (4.4)
and Q? = Q?(oz, () are the degree 6 — j polynomials given respectively by
Q% = 8(1382a” 4 42306 a3 + 238425 o 3% + 509355 o* 3% + 467775 a '+
+ 155925 3° + 27640 o* + 523083 o + 2048310 o> %+
+ 2796255 o3> + 1247400 5% 4 214210 o® + 2476749 o5+
+ 5980260 5% + 3898125 3% + 801560 o + 5224362 v 3+
4 5845950 3% + 1442808 o 4 4082760 3 + 995040)
QS = 2(28479 o* + 543510 a5 + 2196810 o + 3097710 af* 4 1424115 B+
+ 371877 o + 4732695 o 3 + 12179475 a3* + 8347185 33+
+ 1950036 a® + 14481720 af + 175883403%+
+ 4660788 o + 15200460 (3 + 4173840)
Q5 = 111705 o 4 1320165 o* 3 + 3378375 a8* + 2338875 3+
+ 923670 o + 7068600 o3 + 8877330 5%+
+ 2895420 o + 10270260 3 + 3259080
Q% = 107415 o 4 727650 o3 + 883575 32+
+ 505890 v + 1767150 5 + 706360
QS = 51975 o + 155925 3 + 103950, QS = 10395.

The higher order Jacobi coefficients ¢/ (e, §) and polynomials %, (with [ > 7)
follow a similar pattern but are naturally lengthier to calculate.
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