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A FORMULATION OF THE JACOBI COEFFICIENTS cl
j(α, β)

VIA BELL POLYNOMIALS

STUART DAY and ALI TAHERI∗

Communicated by M. Krnić

Abstract. The Jacobi polynomials (P(α,β)
k : k ≥ 0, α, β > −1) are deeply

intertwined with the Laplacian on compact rank one symmetric spaces. They
represent the spherical or zonal functions and as such constitute the main ingre-
dients in describing the spectral measures and spectral projections associated
with the Laplacian on these spaces. In this note we strengthen this connection
by showing that a set of spectral and geometric quantities associated with Ja-
cobi operator fully describe the Maclaurin coefficients associated with the heat
and other related Schwartzian kernels and present an explicit formulation of
these quantities using the Bell polynomials.

1. Maclaurin coefficients of Schwartzian kernels

Let X be a compact rank one symmetric space and let −∆X denote the
(positive) Laplace-Beltrami operator on X . By basic spectral theory the heat
kernel on X can be expressed by the spectral sum

Ht(x, y) =
∞∑

k=0

Mk(X )

Vol(X )
exp

(
−tλX

k

)
P(α,β)

k (cos θ), t > 0. (1.1)

Here P(α,β)
k (with α, β > −1 and k ≥ 0) are the normalised Jacobi polynomials,

λX
k = k(k +α +β + 1) are the numerically distinct eigenvalues of −∆X , Mk(X )
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is multiplicity of λX
k , Vol(X ) is the volume of X and θ is the geodesic distance

between x, y in X (see Appendix A at the end for more on Jacobi polynomials
and their main properties).

On the other hand the Jacobi polynomials can be shown to satisfy a differential-
spectral identity (with k ≥ 0, l ≥ 1) in the form

d2l

dθ2l
P(α,β)

k (cos θ)

∣∣∣∣∣
θ=0

=
l∑

j=1

cl
j(α, β)[k(k + α + β + 1)]j =

l∑
j=1

cl
j(α, β)

[
λX

k

]j
,

(1.2)

for suitable choice of scalars (cl
j(α, β) : 1 ≤ j ≤ l) referred to hereafter as the

Jacobi coefficients (see Theorem 2.2 below).
To illustrate the significance of this identity we return to the expression of the

heat kernel on the rank one symmetric space X as given by (1.1). Now since the
kernel Ht is an even function of the geodesic distance θ its Maclaurin expansion
about θ = 0 takes the form

Ht =
∞∑
l=0

θ2l

(2l)!

∂2l

∂θ2l
Ht

∣∣∣∣
θ=0

=
∞∑
l=0

bn
2l

θ2l

(2l)!
, (1.3)

where bn
2l = bn

2l(t) (l ≥ 0) denote the associated Maclaurin coefficients. Upon
invoking the Jacobi coefficients cl

j(α, β) the Maclaurin coefficients bn
2l can now be

given the trace formulation

bn
2l(t) =

∞∑
k=0

Mk(X )e−tλX
k

Vol(X )

l∑
j=1

cl
j[λ

X
k ]j =

1

Vol(X )
tr

{
Rl(−∆X )et∆X

}
, (1.4)

where Rl denotes the degree l polynomial in X built out of the Jacobi coefficients
by the prescription

Rl(X) =
l∑

j=1

cl
j(α, β)Xj. (1.5)

We remark that this formulation does not restrict to the heat kernel only and
one can go beyond, e.g., by taking any suitable function Φ = Φ(X) within the
functional calculus of −∆X ; then the Schwartzian kernel of Φ(−∆X ) has the
Maclaurin expansion

KΦ(x, y) =
∞∑

k=0

Mk(X )

Vol(X )
Φ(λX

k )P(α,β)
k (cos θ) =

∞∑
l=0

bn
2l

θ2l

(2l)!
, (1.6)

where the associated Maclaurin coefficients in this case are given for l ≥ 0 (upon
agreeing to set R0(X) = 1) by

bn
2l(Φ) =

1

Vol(X )
tr [RlΦ](−∆X ). (1.7)

A particular class of such Schwartzian kernels KΦ that directly connect to the
heat kernel Ht are those associated with a function Φ = Φ(X) of the Laplace
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transform type, that is,

Φ(X) =

∫ ∞

0

f(s)e−sX ds, X ≥ 0, (1.8)

for some suitable integrable function f on (0,∞). In this case it is not hard to
see that the Maclaurin coefficients of KΦ can be expressed via the trace formula

bn
2l = tr [Fl(−∆)] (1.9)

where Fl is in turn the function defined by the integral

Fl(X) :=

∫ ∞

0

f(s)Rl

(
− d

ds

)
e−sX ds. (1.10)

In this note we give an explicit description of the Jacobi coefficients cl
j(α, β)

by utilising the Bell polynomials and the Faà di Bruno’s formula. The formula-
tion is stated and proved in Theorem 2.2. We also explicitly give the first few
coefficients and the associated polynomials Rl in the sequence (see Section 2 and
Appendix B). Before ending this introduction let us note that the compact rank
one symmetric spaces of interest are the sphere, the real, complex and quater-
nionic projective spaces and the Cayley projective plane, specifically, as listed:

• Sn = SO(n + 1)/SO(n),
• Pn(R) = Sn/ {±} = SO(n + 1)/O(n),
• Pn(C) = SU(n + 1)/S(U(n)×U(1)) (of real dimension 2n),
• Pn(H) = Sp(n + 1)/(Sp(n)× Sp(1)) (of real dimension 4n),
• P2(Cay) = F4/Spin(9) (of real dimension 16).

For the sake of future reference we next present some of the necessary spectral
geometric quantities associated with these symmetric spaces (see Table 1 below
for the parameter values). The formulation of these in the simply connected case
are given, in turn, by the radial part of the Laplacian

∂2

∂θ2
+ (a cot θ + (1/2)b cot(θ/2))

∂

∂θ
; (1.11)

the numerically distinct eigenvalues of −∆X by λX
k = (% + k)2 − %2 (with k ≥ 0)

where % = (a + b/2) /2; the multiplicity of the eigenvalue λX
k (with k ≥ 0 and

N = a + b + 1) by the function

Mk(X ) =
2(k + %)Γ(k + 2%)Γ ((a + 1)/2) Γ (k + N/2)

k!Γ(2% + 1)Γ (N/2) Γ (k + (a + 1)/2)
; (1.12)

and the volume,

Vol(X ) = 2N πN/2Γ ((a + 1)/2)

Γ ((N + a + 1)/2)
. (1.13)

In the non simply connected case Pn(R) the counterparts of these are obtained
using standard arguments from those of its double cover Sn. In Table 1 below we

All these spaces are simply connected except for the circle S1 and the real projective spaces
Pn(R) (with n ≥ 1). Indeed π1(S1) ∼= π1(P1(R)) ∼= Z while π1(Pn(R)) ∼= Z2 for n ≥ 2. See
[1, 2, 4, 6, 12, 13] for related and further discussion as well as [9, 10] for spectral zetas and
determinants of Laplacians.
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Table 1. The Parameters a, b, N , α, β and λX
k

X a b N α β λX
k

Sn n− 1 0 n (n− 2)/2 (n− 2)/2 k(n + k − 1)
Pn(R) n− 1 0 n (n− 2)/2 (n− 2)/2 2k(n + 2k − 1)
Pn(C) 1 2(n− 1) 2n n− 1 0 k(n + k)
Pn(H) 3 4(n− 1) 4n 2n− 1 1 k(2n + k + 1)

P2(Cay) 7 8 16 7 3 k(k + 11)

gather together the values of the parameters a, b, N , α and β for the symmetric
spaces described above. Note that here N is the real dimension of X while
α = (N−2)/2 and β = (a−1)/2. See, e.g., [1, 4, 6, 13] and the references therein
for background and more.

2. A description of the Jacobi coefficients cl
j(α, β) for α, β > −1

and 1 ≤ j ≤ l

Here we give an explicit formulation of the Jacobi coefficients as appearing in
(1.2). In order to do so we will make use of the Bell polynomials (cf. [3]). Recall
that for positive integers m, k the Bell polynomials Bm,k is defined as

Bm,k(ξ) =
∑ m!

j1! . . . j(m−k+1)!

(
ξ1

1!

)j1

. . .

(
ξm−k+1

(m− k + 1)!

)jm−k+1

(2.1)

with ξ = (ξ1, . . . , ξm−k+1) where the summation on the right is taken over all
j1, . . . , jm−k+1 such that

m−k+1∑
p=1

jp = k,
m−k+1∑

p=1

pjp = m. (2.2)

The coefficients of the Bell polynomials relate to the number of ways a given set
can be partitioned and thus have many applications in combinatorics (cf. [3] for
more). We will make use of the Bell polynomials via Faà di Bruno’s formula,
which is a higher order version of the chain rule and asserts that for two smooth
real-valued functions f, g on the line we have

dm

dXm
f(g(X)) =

m∑
k=1

f (k)(g(X))Bm,k(g
1, . . . , g(m−k+1))(X). (2.3)

The following observation simplifies the application of Faà di Bruno’s formula.

Lemma 2.1. Let l ≥ 1, then B2l,k(0, ξ2, ξ3, . . . , ξ2l−k+1) = 0 when k ≥ l + 1 for
all ξi ∈ R.

Proof. It suffices to show that all terms in the polynomial B2l,k depend on the
first variable. This amounts to showing that if k ≥ l +1, (jp : 1 ≤ p ≤ 2l− k +1)



510 S. DAY, A. TAHERI

satisfy (2.2) with m = 2l then j1 6= 0. Indeed let (jp : 1 ≤ p ≤ 2l − k + 1) be
non-negative integers such that (2.2) are satisfied but j1 = 0. Then

2l−k+1∑
p=2

jp = k ≥ l + 1. (2.4)

On the other hand because of the second equation in (2.2) being true we have

2l−k+1∑
p=2

pjp =
2l−k+1∑

p=2

(p− 2)jp + 2
2l−k+1∑

p=2

jp ≥ 2(l + 1) > 2l. (2.5)

which is a contradiction. �

We are now in a position to state the main result in this section that gives a
computable and explicit expression for the Jacobi coefficients cl

j(α, β).

Theorem 2.2. Consider the Jacobi polynomial P(α,β)
k with integer k ≥ 0 and

real α, β > −1. Then we have

d2l

dθ2l
P(α,β)

k (cos θ)

∣∣∣∣∣
θ=0

=
l∑

j=1

cl
j(α, β)[k(k + α + β + 1)]j, l ≥ 1. (2.6)

Moreover the scalars cl
j(α, β) with 1 ≤ j ≤ l are given explicitly by the formula

cl
j(α, β) =

l∑
m=j

al
mbm

j , (2.7)

where bm
j are defined recursively as: bm

m = 1, bm+1
1 = −m(m + α + β + 1)bm

1 for

m ≥ 1 and bm+1
j = bm

j−1 −m(m + α + β + 1)bm
j for 2 ≤ j ≤ m while al

m are given
by

al
m =

2−mΓ(α + 1)

Γ(α + m + 1)
B2l,m(0,−1, 0, +1, 0, . . . ). (2.8)

Here Bk,m are the partial exponential Bell polynomials as defined by (2.1).

Proof. Let us start by justifying (2.6). Indeed upon utilising the Faà di Bruno
formula we can write for any fixed l ≥ 1

d2l

dθ2l
P(α,β)

k (cos θ)

∣∣∣∣∣
θ=0

=
2l∑

m=1

dm

dtm
P(α,β)

k (t)

∣∣∣∣∣
t=1

B2l,m (cos′ θ, cos′′ θ, · · · )

∣∣∣∣∣
θ=0

. (2.9)

Now using the following differential-recursive relation satisfied by the Jacobi
polynomials (m ≥ 1) [see the Appendix and in particular (3.7)]

dm

dtm
P(α,β)

k (t) =

[
2−mΓ(k + m + α + β + 1)Γ(α + 1)k!

Γ(k + α + β + 1)Γ(α + m + 1)(k −m)!

]
P(α+m,β+m)

k−m (t).

(2.10)
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Therefore by invoking Lemma 2.1 and using (2.9) above we have

d2l

dθ2l
P(α,β)

k (cos θ)

∣∣∣∣∣
θ=0

=
2l∑

m=1

[
2−mΓ(k + m + α + β + 1)Γ(α + 1)k!

Γ(k + α + β + 1)Γ(α + m + 1)(k −m)!

]
×

×B2l,m(0,−1, 0, +1, . . . )P(α+m,β+m)
k−m (1)

=
l∑

m=1

al
m

Γ(k + α + β + m + 1)k!

Γ(k + α + β + 1)(k −m)!
, (2.11)

where in deducing the second identity we have used (2.8) along with the second
equation in (3.8) and (3.9). Next it is straightforward to deduce by induction
that the coefficients bm

j (with 1 ≤ j ≤ m) satisfy the relation

m−1∏
p=0

(x− p(p + α + β + 1)) =
m∑

j=1

bm
j xj. (2.12)

Likewise a further set of straightforward algebraic manipulations enable us to
write the coefficients of al

m in (2.11) as

Γ(k + α + β + m + 1)k!

Γ(k + α + β + 1)(k −m)!
=

m−1∏
p=0

(
k(k + α + β + 1)− p(p + α + β + 1)

)
=

m∑
j=1

bm
j [k(k + α + β + 1)]j. (2.13)

Therefore by putting all the above ingredients together we arrive at the identity

d2l

dθ2l
P(α,β)

k (cos θ)

∣∣∣∣∣
θ=0

=
l∑

m=1

al
m

m∑
j=1

bm
j [k(k + α + β + 1)]j

which leads to the desired conclusion. �

The list below presents the first few elements in the scale of polynomials Rl

[cf. (1.5)] by explicitly calculating the associated Jacobi coefficients cl
j(α, β) (with

1 ≤ j ≤ l ≤ 4) upon invoking Theorem 2.2. The cases 5 ≤ l ≤ 6 are further
discussed and presented in Appendix B at the end. Indeed for 1 ≤ l ≤ 3 we have

R1(X) =
−X

2(α + 1)
, R2(X) =

3X2 − (α + 3β + 2)X

4 (α + 1)(α + 2)
, (2.14)

R3(X) =
−15X3 + 15(α + 3β + 2)X2 − (4α2 + 30αβ + 30β2 + 20α + 60β + 24)X

8(α + 1)(α + 2)(α + 3)
(2.15)

while for l = 4 we can proceed by first writing

R4(X) =
4∑

j=1

(−1)j
Q4

j(α, β)

24A4(α)
Xj, (2.16)
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where

A4 = (α + 4)(α + 3)(α + 2)(α + 1), (2.17)

and then

Q4
1 = 34α3 + 462α2β + 1050αβ2 + 630β3 + 306α2+

+ 2184αβ + 2310β2 + 884α + 2604β + 816 (2.18)

Q4
2 = 147α2 + 1050αβ + 1155β2 + 714α + 2310β + 924 (2.19)

Q4
3 = 210α + 630β + 420, Q4

4 = 105. (2.20)

3. Appendix A: The orthogonal family of Jacobi polynomials P
(α,β)
k

(k ≥ 0 and α, β > −1)

The purpose of this appendix is to gather together some of the main results and
calculations relating to Jacobi polynomials as used earlier, the Jacobi coefficients
as formulated above and the associated polynomials Rl = Rl(X). For more
information and detail on these and related scales of orthogonal polynomials the
interested reader is referred to [5, 7, 8] and [11, 12].

Recall that the scale of Jacobi polynomials P
(α,β)
k (t) (with integer k ≥ 0 and

real α, β > −1) is defined by the generating function relation

2α+β/R

(1− w + R)α(1 + w + R)β
=

∞∑
k=0

P
(α,β)
k (t)wk, |w| < 1, (3.1)

where R =
√

1− 2tw + w2. The Jacobi polynomial y = P
(α,β)
k (t) satisfies the

second-order differential equation(
1− t2

) d2y

dt2
− (α− β + (α + β + 2)t)

dy

dt
+ k(k + α + β + 1)y = 0, (3.2)

that in turn constitute a regular Sturm-Liouville system with the associated Ja-
cobi operator a positive selfadjoint second order linear differential operator in the
weighted space L2

dµ(−1, 1) with dµ = (1 − t)α(1 + t)βdt. The spectrum here is
purely discrete and given by the sequence of eigenvalues and associated eigen-
functions

λ
(α,β)
k = k(k + α + β + 1), (3.3)

y = P
(α,β)
k (t), k ≥ 0,

respectively. In particular and as a consequence the Jacobi polynomials satisfy
the orthogonality relations:

〈P (α,β)
k , P (α,β)

m 〉L2
dµ

=

∫ 1

−1

P
(α,β)
k (t)P (α,β)

m (t) (1− t)α(1 + t)βdt = 0, (3.4)

for 0 ≤ k 6= m whilst for the remaining cases we have

||P (α,β)
k ||2L2

dµ
= 2α+β+1 (α + 1)k(β + 1)k(α + β + k + 1)

(α + β + 2)k(β + α + 2k + 1)

Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)k!
. (3.5)



JACOBI COEFFICIENTS AND BELL POLYNOMIALS 513

Note that here and below we write (x)k = Γ(x + k)/Γ(x) to denote the rising
factorial. It can be shown that the Jacobi polynomials admit the power series
representation

P
(α,β)
k (t) =

Γ(α + k + 1)

Γ(α + β + k + 1)

k∑
l=0

(
k

l

)
Γ(α + β + k + l + 1)

2lΓ(α + l + 1)k!
(t− 1)l, (3.6)

and that for m ≥ 1 satisfy the useful differential-recursive formula

dm

dtm
P

(α,β)
k (t) =

Γ(k + m + α + β + 1)

2mΓ(k + α + β + 1)
P

(α+m,β+m)
k−m (t). (3.7)

Here we also have the reflection-symmetry as well as the pointwise identities

P
(α,β)
k (−t) = (−1)kP

(β,α)
k (t), P

(α,β)
k (1) =

(α + 1)k

k!
. (3.8)

The normalised form of the Jacobi polynomial as used throughout is defined as
the quotient

P(α,β)
k (t) =

P
(α,β)
k (t)

P
(α,β)
k (1)

=
k!

(α + 1)k

P
(α,β)
k (t). (3.9)

Note that in particular P(α,β)
k (1) = 1.

4. Appendix B: The Jacobi coefficients cl
j(α, β) for the parameter

range 5 ≤ l ≤ 6

• Here we list the coefficients of the polynomial R5(X) =
∑5

j=1 c5
j(α, β)Xj,

computed using Theorem 2.2. Indeed for 1 ≤ j ≤ 5 these can be described
as

c5
j(α, β) = (−1)j

Q5
j(α, β)

25A5(α)
, (4.1)

where A5 = A5(α) is the polynomial

A5(α) = (α + 1)(α + 2)(α + 3)(α + 4)(α + 5) (4.2)

and Q5
j = Q5

j(α, β) are the degree 5− j polynomials given respectively by

Q5
1(α, β) = 8(62 α4 + 1320 α3β + 5040 α2β2 + 6615 αβ3 + 2835 β4+

+ 868 α3 + 10800 α2β + 25515 αβ2 + 16065 β3+

+ 4402 α2 + 29910 αβ + 32760 β2+

+ 9548 α + 27540 β + 7440)

Q5
2(α, β) = 2(1185 α3 + 14805 α2β + 36225 αβ2 + 23625 β3+

+ 10125α2 + 75600 αβ + 88515 β2+

+ 30810α + 101430 β + 32040)

Q5
3(α, β) = 4095 α2 + 28350 αβ + 33075 β2+

+ 19530 α + 66150 β + 26460

Q5
4(α, β) = 2(1575 α + 4725 β + 3150), Q5

5(α, β) = 945.
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• Likewise the coefficients of the polynomial R6(X) =
∑6

j=1 c6
j(α, β)Xj,

again computed using Theorem 2.2, can be described for 1 ≤ j ≤ 6 as

c6
j(α, β) = (−1)j

Q6
j(α, β)

26A6(α)
, (4.3)

where A6 = A6(α) is the polynomial

A6 = (α + 1)(α + 2)(α + 3)(α + 4)(α + 5)(α + 6) (4.4)

and Q6
j = Q6

j(α, β) are the degree 6− j polynomials given respectively by

Q6
1 = 8(1382 α5 + 42306 α4β + 238425 α3β2 + 509355 α2β3 + 467775 αβ4+

+ 155925 β5 + 27640 α4 + 523083 α3β + 2048310 α2β2+

+ 2796255 αβ3 + 1247400 β4 + 214210 α3 + 2476749 α2β+

+ 5980260 αβ2 + 3898125 β3 + 801560 α2 + 5224362 αβ+

+ 5845950 β2 + 1442808 α + 4082760 β + 995040)

Q6
2 = 2(28479 α4 + 543510 α3β + 2196810 α2β2 + 3097710 αβ3 + 1424115 β4+

+ 371877 α3 + 4732695 α2β + 12179475 αβ2 + 8347185 β3+

+ 1950036 α2 + 14481720 αβ + 17588340β2+

+ 4660788 α + 15200460 β + 4173840)

Q6
3 = 111705 α3 + 1320165 α2β + 3378375 αβ2 + 2338875 β3+

+ 923670 α2 + 7068600 αβ + 8877330 β2+

+ 2895420 α + 10270260 β + 3259080

Q6
4 = 107415 α2 + 727650 αβ + 883575 β2+

+ 505890 α + 1767150 β + 706860

Q6
5 = 51975 α + 155925 β + 103950, Q6

6 = 10395.

The higher order Jacobi coefficients cl
j(α, β) and polynomials Rl (with l ≥ 7)

follow a similar pattern but are naturally lengthier to calculate.
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