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Abstract. A bounded linear operator T on a normed linear space X is said to
be right symmetric (left symmetric) if A ⊥B T ⇒ T ⊥B A (T ⊥B A ⇒ A ⊥B

T ) for all A ∈ B(X), the space of all bounded linear operators on X. Turnšek
[Linear Algebra Appl., 407 (2005), 189-195] proved that if X is a Hilbert space
then T is right symmetric if and only if T is a scalar multiple of an isometry
or coisometry. This result fails in general if the Hilbert space is replaced by a
Banach space. The characterization of right and left symmetric operators on a
Banach space is still open. In this paper we study the orthogonality in the sense
of Birkhoff-James of bounded linear operators on (Rn, ‖.‖∞) and characterize
the right symmetric and left symmetric operators on (Rn, ‖.‖∞).

1. Introduction

Let (X, ‖.‖) be a real normed linear space and B(X) be the space of all bounded
linear operators on X. For any two elements x, y in X, x is said to be orthogonal
to y in the sense of Birkhoff-James [1, 2, 3], written as x ⊥B y, if and only
if ‖x‖ ≤ ‖x + λy‖ for all λ ∈ R. In [2, 3] James studied many important
properties related to the notion of orthogonality in the sense of Birkhoff-James.
Orthogonality is related to many important geometric properties of normed linear
spaces, including strict convexity, uniform convexity and smoothness of the space.
For any two elements x, y in X, x is said to be strongly orthogonal to y in the
sense of Birkhoff-James [5], written as x ⊥SB y, if and only if ‖x‖ < ‖x + λy‖ for
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all 0 6= λ ∈ R. In [5] Paul et al. characterized exposed point of the unit ball in
terms of strong orthogonality. Following the notion introduced by Sain [6], left
symmetric and right symmetric points in a normed space are defined as follows:
Left symmetric point: An element x ∈ X is called left symmetric if x ⊥B y ⇒
y ⊥B x for all y ∈ X.
Right symmetric point: An element x ∈ X is called right symmetric if y ⊥B

x ⇒ x ⊥B y for all y ∈ X.
An element x ∈ X is said to be symmetric if it is both left and right symmetric,
i.e., x ⊥B y ⇔ y ⊥B x for all y ∈ X. James [2] proved that Birkhoff-James
orthogonality is symmetric in a normed linear space X of three or more dimensions
if and only if a compatible inner product can be defined on X. For any two
elements T,A ∈ B(X), T is said to be orthogonal to A, in the sense of Birkhoff-
James, written as T ⊥B A, if and only if

‖T‖ ≤ ‖T + λA‖, for all λ ∈ R.

Since B(X) is not an inner product space so it is interesting to study the symmetry
of orthogonality of operators in B(X).

In [4] we proved that if T is a compact operator on a real Hilbert space H
then T is left symmetric if and only if T is the zero operator, we also proved that
if T is compact then T is right symmetric if and only if T is a scalar multiple
of an isometry or a coisometry when H is finite dimensional and T is the zero
operator when H is infinite dimensional. A more general characterisation of right
symmetric operators was proved by Turnšek [8] in this connection, he proved
that for a bounded linear operator T on a complex Hilbert space H, T is right
symmetric if and only if T is a scalar multiple of an isometry or a coisometry.
These results fail, in general, if the Hilbert space is replaced by a Banach space.
The characterization of right and left symmetric operators on a Banach space,
both in finite and infinite dimensional case, in general, is still open.

In this paper we study the orthogonality of operators on (Rn, ‖·‖∞) in the sense
of Birkhoff-James. We find a necessary and sufficient condition for an operator T
to be right symmetric. Furthermore, we find a necessary and sufficient condition
for an operator T to be left symmetric. We prove that T = (tij) is right sym-
metric if and only if for each i ∈ {1, 2, . . . , n}, exactly one term of ti1, ti2, . . . , tin
is nonzero and of the same magnitude. We prove that T is left symmetric if and
only if T is the zero operator when the dimension is more than 2. We also prove
that if T is a linear operator on (R2, ‖ · ‖∞), then T is left symmetric if and only
if T attains norm at only one extreme point, say e, Te is a left symmetric point
and image of the other extreme point is zero.

From now onwards, by Rn we will mean the normed linear space Rn equipped
with the `∞ norm, which will be denoted by ‖.‖. The following standard notation
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will be used, for x ∈ R,

sgn(x) = 1, x > 0

sgn(x) = −1, x < 0

sgn(x) = 0, x = 0

2. Main Results

We begin this section with a theorem that characterizes nonzero right symmet-
ric linear operators on Rn.

Theorem 2.1. Suppose T = (tij) is a nonzero linear operator on Rn. For any lin-
ear operator A on Rn, A ⊥B T ⇒ T ⊥B A if and only if for each i ∈ {1, 2, . . . , n},
exactly one term of ti1, ti2, . . . , tin is nonzero and of the same magnitude.

Proof. Without any loss of generality we may assume that ‖T‖ = 1. We first
prove the sufficient part. Assume that for each i ∈ {1, 2, . . . , n}, there exists
ki ∈ {1, 2, . . . , n} such that tiki

6= 0 and tij = 0 for all j 6= ki and |t1k1 | = |t2k2 | =
. . . = |tnkn|.
Let A = (amn) be a linear operator on Rn such that A ⊥B T. We show that T ⊥B

A. For this we first claim that there exists i, j ∈ {1, 2, . . . , n} such that sgn(aiki
) =

sgn(tiki
) and sgn(ajkj

) = −sgn(tjkj
). If possible, suppose that sgn(aiki

) = sgn(tiki
)

for all i ∈ {1, 2, . . . , n}. Choose 0 < λ < max{2|aiki
|

|tiki
| : i ∈ {1, 2, . . . , n}}. Since

for each i ∈ {1, 2, . . . , n}, |ai1−λti1|+ . . .+ |ain−λtin| = |ai1|+ |ai2|+ . . .+ |aiki
−

λtiki
|+ . . . + |ain| < ‖A‖ it is easy to see that ‖A− λT‖ < ‖A‖ i.e., A 6⊥B T.

Similarly, if sgn(aiki
) = −sgn(tiki

) for all i ∈ {1, 2, . . . , n}, one can check that
A 6⊥B T.
So, there exist i, j ∈ {1, 2, . . . , n} such that sgn(aiki

) = sgn(tiki
) and sgn(ajkj

) =
−sgn(tjkj

).
We next show that T ⊥B A. Let λ > 0 be fixed. Then

‖T +λA‖ ≥ |ti1+λai1|+ |ti2+λai2|+ . . .+ |tin+λain| ≥ |tiki
+λaiki

| > |tiki
| = ‖T‖

Also

‖T−λA‖ ≥ |tj1−λaj1|+|tj2−λaj2|+. . .+|tjn−λajn| ≥ |tjkj
−λajkj

| > |tjkj
| = ‖T‖

This proves that T ⊥B A. This completes the proof of the sufficient part.

Conversely, let T be a linear operator on Rn such that A ⊥B T ⇒ T ⊥B A for
any linear operator A on Rn. We show that for each i ∈ {1, 2, . . . , n}, exactly one
term of ti1, ti2, . . . , tin is nonzero and are of the same magnitude. We complete
the proof in the following two steps.

Step 1: We prove that |ti1|+|ti2|+|ti3|+. . .+|tin| = 1 for each i ∈ {1, 2, . . . , n}.
Case 1. If possible, suppose |t11|+ |t12|+ |t13|+ . . . + |t1n| = 0. Then |t1j| = 0

for all j ∈ {1, 2, . . . , n}. Take t = min{|tij| : tij 6= 0}. Now there exists a natural
number p such that 1

np < t.
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Take

A =


−n −n . . −n

−tsgn(t21) −tsgn(t22) . . −tsgn(t2n)
. . . . .
. . . . .

−tsgn(tn1) −tsgn(tn2) . . −tsgn(tnn)


It is easy to see that ‖A‖ = n2. For any scalar λ, we have ‖A + λT‖ ≥

n + n + . . . + n = n2 = ‖A‖ which shows that A ⊥B T . Take λ0 = 1
np+2 . For

any i 6= 1, |ti1 + λ0ai1| + . . . + |tin + λ0ain| = |ti1 − 1
np+2 tsgn(ti1)| + . . . + |tin −

1
np+2 tsgn(tin)| < |ti1|+. . .+|tin| ≤ 1 = ‖T‖ and so |t11+λ0a11|+. . .+|t1n+λ0a1n| =

n
np+1 = 1

np < t ≤ ‖T‖. Then ‖T − λ0A‖ < ‖T‖ i.e., T 6⊥B A. Thus we get
|ti1|+ |ti2|+ |ti3|+ . . . + |tin| 6= 0 for each i ∈ {1, 2, . . . , n}.

Case 2. If possible suppose that 0 < |t11|+ |t12|+ |t13|+ . . . + |t1n| < 1. Then
there exists at least one j such that t1j 6= 0. Without any loss of generality we
assume that t11 6= 0. Let

A =


−sgn(t11) 0 . . 0

t21 t22 . . t2n

. . . . .

. . . . .
tn1 tn2 . . tnn


Clearly, ‖A‖ = 1. Let λ > 0, then ‖A+λT‖ ≥ |an1+λtn1|+|an2+λtn2|+. . .+|ann+
λtnn| = |tn1+λtn1|+|tn2+λtn2|+. . .+|tnn+λtnn| = (|tn1|+|tn2|+. . .+|tnn|)|1+λ| =
|1+λ| > 1. For λ < 0, ‖A+λT‖ ≥ |a11 +λt11|+ |a12 +λt12|+ . . .+ |a1n +λt1n| =
| − sgn(t11) + λt11| + |λtn2| + |λtn3| + . . . + |λtnn| ≥ | − sgn(t11) + λt11| ≥ 1. So
A ⊥B T .

Now take 0 < λ0 < 1− (|t11|+ |t12|+ . . . + |t1n|). Then we get

(T − λ0A) =


t11 − λ0a11 . . t1n − λ0a1n

t21 − λ0a21 . . t2n − λ0a2n

. . . .

. . . .
tn1 − λ0an1 . . tnn − λ0ann


For any i 6= 1, |ti1−λ0ai1|+ . . . + |tin−λ0ain| = |ti1−λ0ti1|+ . . . + |tin−λ0tin| =
(|ti1|+ . . . + |tin|)|1− λ0| < |ti1|+ . . . + |tin| ≤ 1 = ‖T‖ and |t11 − λ0a11|+ . . . +
|t1n−λ0a1n| = |t11+λ0sgn(t11)|+|t12|+. . .+|t1n| = ||t11|+λ0|+|t12|+. . .+|t1n| ≤
|t11| + . . . + |t1n| + |λ0| < 1 = ‖T‖. So ‖T − λ0A‖ < ‖T‖ i.e., T 6⊥B A. This
contradiction leads to |t11|+ |t12|+ |t13|+ . . .+ |t1n| = 1. This completes the proof
of Step 1 i.e., |ti1|+ |ti2|+ |ti3|+ . . . + |tin| = 1 for each i ∈ {1, 2, . . . , n}.

Step 2. We prove that for each i ∈ {1, 2, . . . , n} exactly one of ti1, ti2, . . . , tin
is nonzero. Fix i ∈ {1, 2, . . . , n}. Since T is nonzero, using Step 1 it is easy to
see that at least one of ti1, ti2, . . . , tin is nonzero. If possible suppose that, there
exists k, l ∈ {1, 2, . . . , n} (k < l) such that tik, til 6= 0.
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Case 1: tiktil > 0. Without any loss of generality we may assume that tik, til >
0 and tik ≥ til. Let c = 1

(
|til|
2

+|tik|)
. Take

A =



t11
c

t12
c

. . . . t1k

c
. . . . . t1l

c
. . . . t1n

c
t21
c

t22
c

. . . . t2k

c
. . . . . t2l

c
. . . . t2n

c
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 0 . . . 0 − til

2
0 . . . 0 tik 0 . . . 0

. . . . . . . . . . . . . . . . . .
tn1

c
tn2

c
. . . . tnk

c
. . . . . tnl

c
. . . . tnn

c


Clearly, ‖A‖ = 1

c
= til

2
+ tik. Let λ > 0 be fixed. Then ‖A + λT‖ ≥ | t11

c
+

λt11| + | t12
c

+ λt12| + . . . + | t1n

c
+ λt1n| > |t11|

c
+ |t12|

c
+ . . . + |t1n|

c
= 1

c
= ‖A‖ and

‖A−λT‖ ≥ |− til
2
−λtik|+ |tik−λtil| ≥ |( til

2
+ tik)+λ(tik− til)| ≥ | til

2
+ tik| = ‖A‖.

So A⊥BT.
Now take λ0 = til

tik
. We have

(T − λ0A) =


t11 − λ0a11 . . t1n − λ0a1n

t21 − λ0a21 . . t2n − λ0a2n

. . . .

. . . .
tn1 − λ0an1 . . tnn − λ0ann


For any j 6= i, |tj1−λ0aj1|+ . . .+ |tjn−λ0ajn| = |tj1− til

tik

tj1
c
|+ . . .+ |tjn− til

tik
tjn| <

|tj1|+. . .+|tjn| = ‖T‖. Also, |ti1−λ0ai1|+. . .+|tin−λ0ain| = |ti1− til
tik

.0|+. . .+|tik+
til
tik

til
2
|+. . .+|til− til

tik
tik|+. . .+|tin− til

tik
.0| = |ti1|+|ti2|+. . .+|tik+

t2il
2tik
|+. . .+|tin| ≤

|ti1|+ . . . + |tik|+ | t2il
2tik
|+ . . . + |tin| < |ti1|+ . . . + |tik|+ |til|+ . . . + |tin| = ‖T‖.

So ‖T − λ0A‖ < ‖T‖ i.e., T 6⊥B A. This is a contradiction.

Case 2: tiktil < 0. Assume that tik < 0, til > 0 and |tik| ≥ |til|. Let c =
1

(
|til|
2

+|tik|)
.

A =



− t11
c

− t12
c

. . . . − t1k

c
. . . . . − t1l

c
. . . . − t1n

c

− t21
c

− t22
c

. . . . − t2k

c
. . . . . − t2l

c
. . . . − t2n

c
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 0 . . . 0 − til

2
0 . . . 0 tik 0 . . . 0

. . . . . . . . . . . . . . . . . .
− tn1

c
− tn2

c
. . . . − tnk

c
. . . . . − tnl

c
. . . . − tnn

c


As before, we can show that A⊥BT but, T 6⊥B A.

We next assume that tik > 0, til < 0 and |tik| ≥ |til|. In this case take U = −T.
As before we can show that there exists a linear operator A such that A⊥BU
but U 6⊥B A. By the homogeneity of Birkhoff-James orthogonality it follows that
A⊥BT but T 6⊥B A. Therefore, for each i ∈ {1, 2, . . . , n} exactly one term of
ti1, ti2, . . . , tin is nonzero. This completes the proof of our Step 2. The proof of
the necessary part now follows from Step 1 and Step 2. �
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Remark 2.2. The right symmetric linear operators on Rn attains norm at all
extreme points and images of the extreme points are also extreme points.

We next characterize the left symmetric linear operators on R2. Note that the
unit ball of R2 has only two pair of extreme points which are denoted as ±e1,±e2.

Theorem 2.3. Suppose T is a linear operator on R2. Then for any linear op-
erator A on R2, T ⊥B A ⇒ A ⊥B T if and only if T attains norm at only
one extreme point, say e1, Te1 is a left symmetric point and image of the other
extreme point is zero.

Proof. Let the four extreme points of the unit ball of R2 be ±e1,±e2. Suppose T
attains norm at e1 and Te2 = 0. Let A be a linear operator such that T ⊥B A.
Then by Theorem 2.1 of Sain and Paul [7] Te1 ⊥B Ae1. As Te1 is a left symmetric
point, it follows that Ae1 ⊥B Te1. Also Ae2 ⊥B Te2 = 0. Clearly, A attains norm
at either e1 or e2 and Aej ⊥B Tej for j = 1, 2. So we get A ⊥B T .

Conversely, let T ⊥B A ⇒ A ⊥B T for all linear operator A on R2. Clearly,
T attains norm at an extreme point, say e1. We claim that Te2 = 0. Suppose

Te2 6= 0. Define a linear operator A on R2 as Ae1 = 0, Ae2 = Te2. It is easy
to verify that A attains norm only at ±e2. Also T ⊥B A, as Te1 ⊥B Ae1 and
‖Te1‖ = ‖T‖. But A 6⊥B T as Ae2 6⊥B Te2. So Te2 = 0.

Our next claim is that Te1 is a left symmetric point. Suppose Te1 is not a
left symmetric point, i.e., there exists w such that Te1 ⊥B w but w 6⊥B Te1.
Define a linear operator A on R2 as Ae1 = w, Ae2 = 0. It is easy to verify that
A attains norm only at ±e1. Also T ⊥B A, as Te1 ⊥B Ae1 and ‖Te1‖ = ‖T‖.
But A 6⊥B T as Ae1 6⊥B Te1. Thus we get T ⊥B A but A 6⊥B T , a contradiction
to our hypothesis. This completes the proof of the theorem. �

Example 2.4. Note that, (1, 0), (0, 1) are nonzero left symmetric points of R2.
So, there are nonzero left symmetric linear operators on R2. One such linear
operator can be given in the following way:

T (1, 1) = (1, 0)

T (1,−1) = (0, 0)

It is easy to verify that T attains norm only at ±(1, 1), image of which is a nonzero
left symmetric point of R2 and image of the other extreme point is zero.

The next theorem characterizes the left symmetric linear operators on Rn, n ≥
3.

Theorem 2.5. Suppose T is a linear operators on Rn, n ≥ 3. Then T is left
symmetric if and only if T is the zero operator.

Proof. One part of the proof is obvious. For the other part, suppose that T
is a nonzero linear operator on Rn such that for any linear operator A on Rn,
T ⊥B A ⇒ A ⊥B T . Now T attains norm at an extreme point, say e1.
We claim that Te = 0 for all extreme point e 6= ±e1. If possible, suppose
that, there exists an extreme point e2 6= ±e1 such that Te2 6= 0. As e2 ⊥SB
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e1, there exists a hyperplane H such that e1 ∈ H and e2 ⊥SB H − {0}. Let
{e1, e3, e4, . . . , en} be a basis of H so that {e2, e1, e3, e4, . . . , en} is a basis of Rn.
Define a linear operator A on Rn such that

Ae2 = Te2

Aei = 0, i 6= 2

It is easy to verify that A attains norm only at ±e2. Also T ⊥B A, as Te1 ⊥B Ae1

and ‖Te1‖ = ‖T‖. But A 6⊥B T as Ae2 6⊥B Te2. So Te = 0 for all extreme point
e 6= ±e1. Let S denote the set of extreme points e different from ±e1. Then
S contains a basis B and Te = 0 for all e ∈ B, which forces T to be the zero
operator on the whole space. This completes the proof. �

Remark 2.6. The question that still remains to be answered is the characterization
of right and left symmetric operators on `p(1 < p < ∞) spaces and more generally
on a normed linear space.
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