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Abstract. In this paper, first we characterize the spectra of skew [m,C]-
symmetric operators and we also prove that if operators T and S are C-doubly
commuting operators, T is a skew [m,C]-symmetric operator and Q is an n-
nilpotent operator, then T + Q is a skew [m + 2n− 2, C]-symmetric operator.
Finally, we show that if T is skew [m,C]-symmetric and S is [n, D]-symmetric,
then T ⊗ S is skew [m + n− 1, C ⊗D]-symmetric.

1. Introduction and preliminaries

Let H be a complex Hilbert space with the inner product 〈 , 〉 and B(H) be
the set of all bounded linear operators on H. J. Agler and M. Stankus studied
m-isometric operators ([1]). L.W. Helton introduced m-symmetric operators for
the study of Jordan operators ([6]). For an operator T ∈ B(H), the operator
αm(T ) is defined by

αm(T ) :=
m∑

j=0

(−1)j

(
m

j

)
T ∗m−jT j (m ∈ N),

where N is the set of all natural numbers. In particular, if T is normal, then
αm(T ) = (T ∗ − T )m. An operator T ∈ B(H) is said to be m-symmetric if
αm(T ) = 0. Hence it is clear that if T is normal and m-symmetric, then T
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is Hermitian. Since, αm+1(T ) = T ∗ · αm(T ) − αm(T ) · T , it holds that if T is
m-symmetric, then T is n-symmetric for all n ≥ m. S. A. McCullough and L.
Rodman proved that if T is m-symmetric and m is even, then T is always (m−1)-
symmetric (Theorem 3.4 of [9]). For an operator T ∈ B(H), the spectrum, the
point spectrum, the approximate point spectrum and the surjective spectrum of
T are denoted by σ(T ), σp(T ), σa(T ) and σs(T ), respectively. It’s well known
that σ(T ) = σa(T )

⋃
σs(T ) and σa(T )∗ = σs(T

∗), where A∗ = {a : a ∈ A ⊂ C}.
Recently, C. Gu and M. Stankus ([5]) showed interesting properties of m-

symmetric operators. An antilinear operator C on H is said to be a conjugation if
C satisfies C2 = I and 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H, where I is the identity
operator on H. An operator T ∈ B(H) is said to be a complex symmetric opera-
tor if CTC = T ∗ for some conjugation C. An operator T ∈ B(H) is said to be a
skew symmetric operator if CTC = −T ∗ for some conjugation C. For an operator

T ∈ B(H) and a conjugation C, let A =
1

2
(T +CT ∗C) and B =

1

2
(T −CT ∗C).

Then it is easy to see that A is complex symmetric, B is skew symmetric and
T = A + B. In [8], C. G. Li and S. Zhu showed Structure Theorem for skew
symmetric normal operators as follows:

Theorem 1.1. (Theorem 1.10, [8]) Let T ∈ B(H) be normal. Then the following
are equivalent:

(1) T is skew symmetric;

(2) T| ker(T )⊥ ' N ⊕ (−N), where N is a normal operator on some Hilbert
space K.

See [2], [4], [7] and [8] for examples and details of conjugations, complex symmetric
operators and skew symmetric operators. In [7], S. Jung, E. Ko, M. Lee, and J. E.
Lee studied spectral properties of complex symmetric operators and they proved
the following.

Proposition 1.2. (Lemma 3.21, [7]). For T ∈ B(H) and a conjugation C it
holds

σ(CTC) = σ(T )∗, σp(CTC) = σp(T )∗, σa(CTC) = σa(T )∗ andσs(CTC) = σs(T )∗.

Remark 1.3. In the above proposition, there is no relation between T and CTC.

Definition 1.4. For T ∈ B(H) and a conjugation C, set

ζm(T ; C) :=
m∑

j=0

(
m

j

)
CTm−jC · T j.

An operator T is said to be skew [m, C]-symmetric if ζm(T ; C) = 0.

It holds that CTC · ζm(T ; C) + ζm(T ; C) · T = ζm+1(T ; C). Hence, if T is skew
[m, C]-symmetric, then T is skew [n, C]-symmetric for all n ≥ m. In [2], M. Chō,
Dragan S. Djordjevic, Ji Eun Lee and B. Načevska Nastovska have been studied
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properties of the approximate point spectra of skew [m, C]-symmetric operators
and others.

If T is skew [1, C]-symmetric, then it holds CTC = −T . For A ⊂ C, let
−A = {−a : a ∈ A}. By Proposition 1.2, if T is skew [1, C]-symmetric, then it
clearly holds

σ(T )∗ = −σ(T ), σp(T )∗ = −σp(T ), σa(T )∗ = −σa(T ) and σs(T )∗ = −σs(T ).

Throughout this paper, let C be a conjugation on H and m, n be natural
numbers. An operator Q ∈ B(H) is said to be an n-nilpotent operator if Qn = 0.

2. Main results

First we show the following result for skew [m, C]-symmetric operators.

Theorem 2.1. Let T ∈ B(H) be skew [m, C]-symmetric. Then the following
statements hold:

σ(T )∗ = −σ(T ), σp(T )∗ = −σp(T ), σa(T )∗ = −σa(T ) and σs(T )∗ = −σs(T ).

Proof. Proof of σa(T )∗ = −σa(T ). Let a ∈ σa(T ). Then there exists a sequence
{xn} of unit vectors such that (T − a)xn → 0 as n →∞. Since

0 =
m∑

j=0

(
m

j

)
CTm−jC ·T jxn = (CTC + a)mxn +

m∑
j=1

(
m

j

)
CTm−jC · (T j − aj)xn,

it holds that lim
n→∞

(CTC + a)mxn = 0. So, since −a ∈ σa(CTC) = σa(T )∗, we get

−σa(T ) ⊂ σa(T )∗, and also −σa(T )∗ ⊂ σa(T ), which proves σa(T )∗ = −σa(T ).
Furthermore, it is clear that σp(T )∗ = −σp(T ).

Proof of σs(T )∗ = −σs(T ). Having in mind that σs(T )∗ = σa(T
∗) and for a ∈

σa(T
∗), there exists a sequence {xn} of unit vectors such that (T ∗ − a)xn → 0

as n →∞.

Since, 0 =
m∑

j=0

(
m

j

)
CTm−jC · T j, it holds that 0 =

m∑
j=0

(
m

j

)
T ∗j · CT ∗m−jC.

Then multiplying it by C from both sides, we have

0 =
m∑

j=0

(
m

j

)
CT ∗jC · T ∗m−j.

Hence,

0 =
m∑

j=0

(
m

j

)
CT ∗jC · T ∗m−jxn

= (CT ∗C + a)mxn +
m∑

j=0

(
m

j

)
CT ∗jC · (T ∗m−j − am−j)xn.

Therefore, since lim
n→∞

(CT ∗C + a)mxn = 0, we have −a ∈ σa(CT ∗C) = σa(T
∗)∗ =

σs(T ) and −σs(T )∗ ⊂ σs(T ). So, we have σs(T )∗ ⊂ −σs(T ) and also it holds
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that σs(T ) ⊂ −σs(T )∗. Therefore, σs(T )∗ = −σs(T ) holds. This implies σ(T )∗ =
−σ(T ). �

Theorem 2.2. Let T ∈ B(H) be skew [m, C]-symmetric.

(1) Then T ∗ is skew [m, C]-symmetric.
(2) If there exists T−1, then T−1 is also skew [m, C]-symmetric.
(3) If Tn are skew [m, C]-symmetric and lim

n→∞
Tn = T , then T is skew [m, C]-

symmetric.

Proof. Proof of (1). Since

0 =
( m∑

j=0

(
m

j

)
CTm−jC · T j

)∗
=

m∑
j=0

(
m

j

)
T ∗j · CT ∗m−jC,

0 = C
( m∑

j=0

(
m

j

)
T ∗j · CT ∗m−jC

)
C =

m∑
j=0

(
m

j

)
CT ∗jC · T ∗m−j = ζm(T ∗, C).

It completes (1).
Proof of (2). Multiplying by C from the left side in the equation ζm(T ; C) = 0,

i.e., 0 =
m∑

j=0

(
m

j

)
CTm−jC · T j, we have

0 =
m∑

j=0

(
m

j

)
Tm−jC · T j.

Then again, multiplying by T−m from both sides in the last equation, it follows

that 0 =
m∑

j=0

(
m

j

)
T−jC ·T−m+j. Now, multiplying by C from the left side of this

equation we get

0 =
m∑

j=0

(
m

j

)
CT−jC · T−m+j =

m∑
j=0

(
m

j

)
C(T−1)jC · (T−1)m−j.

Hence (2) has been proved.
Proof of (3). Since, lim

n→∞
T j

n = T j and lim
n→∞

CT j
nC = CT jC for any j ∈ N, we have

0 = ζm(Tn; C) −→ ζm(T ; C), as n →∞. Therefore, we have ζm(T ; C) = 0. �

Theorem 2.3. If Q is m-nilpotent, then Q is skew [2m − 1, C]-symmetric for
any conjugation C.

Proof. It holds

ζ2m−1(Q; C) =
2m−1∑
j=0

(
2m− 1

j

)
CQ2m−1−jC ·Qj.

(1) If j ≥ m, then Qj = 0. (2) If j ≤ m − 1, then since 2m − 1 − j ≥
2m− 1− (m− 1) = m, CQ2m−1−jC = 0. Hence it completes the proof. �
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For the study of the sum T + S, we need the following property.

Definition 2.4. Operators T and S are said to be C-doubly commuting if TS =
ST and CSC · T = T · CSC.

From the equation

(a + x + b + y)m = ((a + b) + (x + y))m =
m∑

j=0

(
m

j

)
(a + b)m−j · (x + y)j,

if T and S are C-doubly commuting, then the following equation holds

ζm(T + S; C) =
m∑

j=0

(
m

j

)
ζm−j(T ; C) · ζj(S; C). (2.1)

Using the equation (2.1), the next Theorem is proved.

Theorem 2.5. Let T be skew [m, C]-symmetric and S be skew [n,C]-symmetric.
If T and S are C-doubly commuting, then T +S is skew [m+n−1, C]-symmetric.

Proof. By (2.1) and similar proof as of Theorem 2.3, the result follows. �

So we have the following corollary. Since the proof is easy, it’s omitted.

Corollary 2.6. Let T be skew [m, C]-symmetric and Q be n-nilpotent. If T and
Q are C-doubly commuting, then T + Q is skew [m + 2n− 2, C]-symmetric.

Remark 2.7. Let H = C2, C

(
x

y

)
:=

(
y

x

)
and, for a non-zero real number a, let

R =

(
i a
0 i

)
. Then, it is easy to see that R is skew [3, C]-symmetric. Now,

let T =

(
0 1
0 0

)
and S =

(
i 1
0 i

)
. Then T and S are skew [3, C]-symmetric.

And we have TS = ST, CSC · T 6= T · CSC and T + S =

(
i 2
0 i

)
. Hence

T +S is skew [3, C]-symmetric and also skew [3+2 ·3−2, C]-symmetric, because
7 > 3. Unfortunately, in this moment, we do not have a nice counterexample for
the necessity of C-doubly commutingness.

For the study of properties of the product TS of operators T and S, we need the
following class of operators.

Definition 2.8. For an operator T and a conjugation C, set

αm(T ; C) =
m∑

j=0

(−1)j

(
m

j

)
CTm−jC · T j.

T is said to be [m, C]-symmetric if αm(T ; C) = 0.

Having in mind that

(ax + by)m = ((a + b)x− b(x− y))m =
m∑

j=0

(−1)j (a + b)m−j · bj · xm−j · (x− y)j,
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if T and S are C-doubly commuting, the following holds

ζm(TS; C) =
m∑

j=0

(−1)jζm−j(T ; C) · T j · CSm−jC · αj(S; C). (2.2)

So the next Theorem holds.

Theorem 2.9. Let T be skew [m, C]-symmetric and S be [n,C]-symmetric. If T
and S are C-doubly commuting, then TS is skew [m + n− 1, C]-symmetric.

Proof. Using (2.2), it holds that

ζm+n−1(TS; C) =
m+n−1∑

j=0

(−1)jζm+n−1−j(T ; C) · T j · CSm+n−1−jC · αj(S; C).

(1) If j ≥ n, then αj(S; C) = 0. (2) If j ≤ n− 1, then ζm+n−1−j(T ; C) = 0.
Therefore the proof is completed. �

Remark 2.10. In general, it does not hold that if T is skew [m,C]-symmetric, then

T 2 is skew [n, C]-symmetric for some n. For example, let T =

(
−1 −2i
−2i 1

)
.

Then for the conjugation C such that C

(
x

y

)
:=

(
y

x

)
, T is skew [1, C]-symmetric.

But since T 2 =

(
−3 0
0 −3

)
, T 2 is symmetric, i.e., it is not skew symmetric.

Finally we study the tensor product T ⊗S according to B. Duggal [3]. Let H⊗H
denote the completion, endowed with a reasonable uniform cross-norm, of the
algebraic tensor product H⊗H of H with H. For T, S ∈ B(H), let T ⊗ S ∈
B(H⊗H) denote the tensor product on the Hilbert space H⊗H, when T ⊗ S is
defined as follows

〈T ⊗ S(ξ1 ⊗ η1), (ξ2 ⊗ η2)〉 = 〈Tξ1, ξ2〉〈Sη1, η2〉.

See the details by S. R. Garcia and M. Putinar p.1312 in [4].

We also have the following result.

Theorem 2.11. Let T be skew [m, C]-symmetric and S be [n,D]-symmetric, then
T ⊗ S is skew [m + n− 1, C ⊗D]-symmetric.

Proof. Let C and D be conjugations, then it is easy to see that C ⊗ D is a
conjugation. Also, it is obvious that, if T is skew [m, C]-symmetric and S is
skew [n, D]-symmetric, then T ⊗ I is skew [m, C ⊗ D]-symmetric and I ⊗ S is
[n, C⊗D]-symmetric, too. Hence, T ⊗ I and I⊗S are C⊗D-doubly commuting
and since (T ⊗ I) · (I ⊗ S) = T ⊗ S, by Theorem 2.9 the result follows. �
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