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RICCI FLOW ON SOME TYPE OF DIFFERENTIABLE
MANIFOLDS

1 Srabani Debnath and Arindam Bhattacharyya

Abstract. In the present paper we study first the behavior of Ricci flow on
Riemannian manifold satisfying certain condition on the Ricci tensor. Then we
study the uniform boundedness of R(x, t) and |∇f(x, t)| and using maximum prin-
ciple we obtain uniform boundedness of f(x, t), where f(x, t) = −logφ(x, t) and the
metric g(x, t) = φ(x, t)gE , gE being the standard Euclidean metric on <n. Then
we study the behavior of scalar curvature, Riemannian curvature tensor and Weyl
tensor on η-Einstein manifolds under Ricci flow. Next we study the volume form
of different type of manifolds under Ricci flow. We have also obtained the value of
k on N(k)-contact η-Einstein manifold (k 6= 0) using critical points under gradient
Ricci soliton. Finally we study the eigenvalues of symmetric endomorphism Q on
a special type of trans-Sasakian manifold and on LP-Sasakian manifold satisfying
certain condition under gradient Ricci soliton.
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1. Introduction

Ricci flow on a smooth, compact and without boundary Riemannian manifold
M , equipped with a Riemannian metric g, means the process by which the metric
g is allowed to evolve under the parabolic PDE [21]

∂g

∂t
= −2Ric(g) (1)

where Ric(g) is Ricci curvature tensor which depends upon g.
The behaviour of the flow depends on the topology of the underlying manifolds.
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It is introduced by R.S.Hamilton [8] in the year 1982 and proved its existence.
Later much simpler proof has been given by DeTurck [21]. This concept was devel-
oped to answer Thurston’s geometric conjecture which says that each closed three-
manifold admits a geometric decomposition.
Hamilton himself and many other researchers like Cao [4], Yau [25], B.Chow, P.Lu,
L.Ni [5], G.Perelman[16], [17], J.W.Morgan and G.Tian [14] developed the theory of
Ricci flow.
In this paper we study Ricci flow on some type of differentiable manifolds. Ricci
tensor plays an important role in differential geometry.
In 2006 De and Matsuyama studied quasi conformally flat manifolds [7] satisfying

Ric(g) = Rη ⊗ η. (2)

Later in [6], authors studied pseudo-projectively flat manifolds satisfying the condi-
tion (2). So firstly we study Ricci flow where the Ricci tensor satisfies (2), where R
is the scalar curvature, η is a non-zero 1-form and we study the behavior of Ricci
flow on a closed Riemannian manifold satisfying the equation (2).
In 2009 J.Isenberg and M.Javaheri studied convergence of Ricci flow on <2 to flat
space in [10] and obtained some interesting results. In 2010 Li Ma and L.Cheng in
[11] studied some conditions to control curvature tensors of Ricci flow. Motivated by
their papers we have studied unifom boundedness of scalar curvature and we have
also studied behavior of scalar curvature, Weyl curvature tensor and Riemannian
curvature tensor on η-Einstein manifold under some conditions. Next we recall that
in any dimension n ≥ 3, the Riemannian curvature tensor admits an orthogonal
decomposition [11]

Rm = − R

2(n− 1)(n− 2)
g

⊙
g +

1
n− 2

Ric
⊙

g + W (3)

where W is the Weyl tensor and
⊙

denotes the Kulkarni-Nomizu product [1].
A Ricci soliton is a generalisation of an Einstein metric. In a Riemannian manifold
(M, g), g is called a Ricci soliton [9] if

£Xg + 2 Ric + 2λg = 0 (4)

where £ is the Lie derivative, X is a complete vector field on M and λ is a constant.
If the vector field X is the gradient of a potential function −f , then g is called a
gradient Ricci soliton and equation (4) assumes the form

∇2f = Ric + λg (5)
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An odd-dimensional differentiable manifold M2n+1 is said to be an almost contact
manifold [22] if it admits a (1,1) tensor field φ, a vector field ξ and a 1-form η,
satisfying

η(ξ) = 1 and φ2 = −I + η ⊗ ξ (6)

One can deduce from (6) that

φξ = 0, η ◦ φ = 0 (7)

If an almost contact manifold M2n+1 admits a Riemannian metric g such that

g(φX, φY ) = g(X, Y )− η(X)η(Y ) (8)

for vector fields X, Y , then M2n+1 is said to have an almost contact metric structure
and g is called compatible metric.
From (8) we have

g(φX, Y ) = −g(X, φY ), g(X, ξ) = η(X) (9)

An almost contact manifold M is said to be η−Einstein if its non-zero Ricci tensor
Ric is of the form

Ric(g) = ag + bη ⊗ η (10)

for vector fields X, Y on M , and a, b are smooth functions on M .
An almost contact metric structure becomes a contact metric structure if

g(φX, Y ) = dη(X, Y ) (11)

for all X, Y ε TM. In a contact metric manifold M , the (1,1)-tensor field h defined
by 2h = £ξφ, is symmetric and satisfies

hξ = 0, hφ + φh = 0 (12)

∇ξ = −φ− φh (13)

where ∇ is the Levi-Civita connection.
Let M be a (2n+1)-dimensional almost contact manifold with almost contact struc-
ture (φ, ξ, η). We define a linear map J on the product manifold M ×< by

J(X, f d
dt) = (φX − fξ, η(X) d

dt)

then J2 = −I. Thus J induces an almost complex structure on M × <. The
almost complex structure J is said to be integrable if its Nijenhuis tensor NJ van-
ishes, that is
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NJ(X, Y ) = J2[X, Y ] + [JX, JY ]− J [JX, Y ]− J [X, JY ] = 0

If the almost complex structure J on M × < is integrable, we say the almost com-
plex structur (φ, ξ, η) is normal. A contact manifold with a normal contact metric
structure is said to be a Sasakian manifold.
In [3], Blair, Koufogiorgos and Papantoniou introduced a class of contact metric
manifold M , which satisfies

Rm(X, Y )ξ = (kI + µh)(η(Y )X − η(X)Y ), X, Y εTM (14)

where k, µ are real constants. A contact metric manifold belonging to this class is
called a (k, µ)-manifold. When µ = 0, the manifold is called a N(k)-contact metric
manifold and the Ricci operator Q satisfies

Qξ = 2nkξ (15)

where dim M = 2n + 1.
If a N(k)−contact metric manifold is η−Einstein, then we call it a N(k) η−Einstein
manifold.
We denote the Ricci curvature by

Ric(X, Y ) = trRm(X, ., Y, .).

An almost contact manifold M is called trans-Sasakian manifold of type (α, β) ([12],
[15], [18]) if it admits a (1,1) tensor field φ, a contravariant vector field ξ, a 1-form
η and a Riemannian metric g satisfying (6), (7), (8) and (9) such that

(∇Xφ)Y = α(g(X, Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX) (16)

for some smooth functions α and β on M . From (16) it follows that

∇Xξ = −αφX + β(X − η(X)ξ). (17)

From [18] we have

Rm(ξ,X)ξ = (α2 − β2 − ξβ)(η(X)ξ −X), (18)
Ric(X, ξ) = (2n(α2 − β2)− ξβ)η(X)− (2n− 1)Xβ − (φX)α (19)

When φ(grad α) = (2n− 1)grad β, then (19) reduces to

Ric(X, ξ) = 2n(α2 − β2)η(X), (20)
Qξ = 2n(α2 − β2)ξ (21)
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where Ric denotes the Ricci curvature tensor.
A differentiable manifold M of dimension n is called LP-Sasakian [13], if it admits
an (1,1) tensor field φ, a contravariant vector field ξ, a covariant vector field η and
a Lorentzian metric g such that

η(ξ) = −1, (22)
φ2 = I + η ⊗ ξ, (23)

g(φX, φY ) = g(X, Y ) + η(X)η(Y ), (24)
g(X, ξ) = η(X), ∇Xξ = φX, (25)

(∇Xφ)Y = [g(X, Y ) + η(X)η(Y )]ξ + [X + η(X)ξ]η(Y ), (26)

where∇ denotes the operator of covariant differentiation with respect to the Lorentzian
metric g.
It can be easily seen that in an LP-Sasakian manifold the following relations hold:

φξ = 0, η(φX) = 0, rank φ = n− 1.

Let M2n+1 be an almost contact metric manifold with (φ, ξ, η, g) structure. The
vector field ξ is called the killing vector field with respect to g if

(£ξg)(X, Y ) = 0

Let M be a (2n + 1)-dimensional almost contact metric manifold. If the vector
field ξ is a killing vector field, then M is said to be a K-contact Riemannian mani-
fold. Here we recall the following significant results.

Theorem 1.1 Every three-dimensional K-contact manifold is Sasakian.

Theorem 1.2 If a K-contact manifold M Ricci-symmetric, then the manifold
is Einstein.

Theorem 1.3 If a Sasakian manifold of dimension n(= 2m + 1) is a (m ≥ 1)
Einstein manifold, then its scalar curvature is R = n(n− 1).

The conharmonic curvature tensor H of type (1,3) on a Riemannian manifold
(M, g) of dimension n is defined by [2]

H(X, Y )Z = Rm(X, Y )Z − 1
n− 2

[Ric(Y, Z)X −Ric(X, Z)Y

+ g(Y, Z)QX − g(X, Z)QY ] (27)
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for all vector fields X, Y, Z on M and g(QX,Y ) = Ric(X, Y ). If H vanishes identi-
cally on M , then we say that the manifold is conharmonically flat.

A Riemannian manifold M of dimension n is conformally flat if and only if the
Weyl conformal curvature tensor C defined by [7]

C(X, Y )Z = Rm(X, Y )Z − 1
n− 2

[Ric(Y, Z)X −Ric(X, Z)Y

+ g(Y, Z)QX − g(X, Z)QY ]

+
R

(n− 1)(n− 2)
[g(Y, Z)X − g(X, Z)Y ] (28)

where R is the scalar curvature of the manifold.

In this paper we have also discussed about the volume form of K-contact man-
ifold which is Ricci symmetric, volume form of a LP-Sasakian manifold satisfying
Rm(X, Y ).C = 0. In last three sections we have studied the behavior of gradient
Ricci soliton for a N(k)-contact η-Einstein manifold on a special type of conhar-
monically flat trans-Sasakian manifold and LP-Sasakian manifold.
Finally we state the weak maximum principle for scalars [5].

Theorem 1.4 Suppose g(t) is a family of metrics on a closed manifold Mn and
uεMn × [0, T ) → < satisfies

∂u

∂t
≤ 4g(t)u + g(X(t),∇u) + F (u) (29)

where X(t) is a time-dependent vector field and F is a Lipschitz function. If u ≤ p
at t = 0 for some pε<, then u(x, t) ≤ ϕ(t) for all xε Mn and tε[0, T ], 0 < T < ∞,
where ϕ(t) is the solution to the ODE

dϕ(t)
dt

= F (ϕ(t)) with ϕ(0) = p (30)

All these results will be required in next sections.
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2.The behavior of Ricci flow satisfying (2).

Theorem 2.1 Suppose g(t), tε[0, T ] is a Ricci flow, satisfying (2), on a closed
Riemannian manifold M . If R ≥ αε< at time t = 0, then for all times tε[0, T ],

g(t) ≤ nη ⊗ ηlogc(
2αt

n
− 1), tε[0, T ] (31)

where c is a constant. When t = (c+1)n
2cα , then g(t) will collapse.

Proof. Let g(t) be a Ricci flow on a closed Riemannian manifold Mn where
tε [0, T ]. From [21] we have, if R ≥ αε< at time t = 0, then for all times tε[0, T ],

R ≥ α
1−( 2α

n
)t

.

We consider the Ricci flow satisfying (2). Then we have from (1), if R ≥ αε<
at t = 0, then

∂g
∂t = −2Rη ⊗ η

≤ 2α
( 2α

n
)t−1

η ⊗ η

Hence

g(t) ≤ nη ⊗ ηlogc(2αt
n − 1), tε[0, T ]

where c is a constant.

Corollary 2.1 Suppose g(t), tε(0, T ] is a Ricci flow, satisfying (2), on a closed
Riemannian manifold M . Then for all tε(0, T ],

gij ≤ nη ⊗ ηlogct, tε(0, T ] (32)

where c is a constant. When t = 1
c , then g(t) will collapse.

Proof. From [21] we have, for a Ricci flow g(t), tε(0, T ] on a closed manifold M ,
the scalar curvature R ≥ − n

2t . So if the Ricci flow satisfies (2), then from (1)

∂g
∂t = −2Rη ⊗ η

≤ n
t η ⊗ η
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Hence

gij ≤ nη ⊗ ηlogct, tε(0, T ]

where c is a constant.

3.The uniform boundedness of scalar curvature

Theorem 3.1 Let g(t) = φ(x, t)gE be the Ricci flow starting at g(0) = g0 and
f(x, t) = −logφ(x, t). Then f(x, t) is uniformly bounded for all (x, t)ε <n × [0,∞).

Proof. Consider the metric of the form

g(x, t) = φ(x, t)gE

where gE is the standard Euclidean metric on <n. We assume here that g0 = φ0gE

has bounded scalar curvature |R0| < k0 and that φ0(x) = φ(x, 0) is bounded. Then
it follows from standard elliptic gradient estimates that |∇u0| is bounded on <n.
Let g(t) = φ(x, t)gE be the Ricci flow starting at g(0) = g0. The long-term existence
of the flow follows from [24]. Replacing the quantity u(x, t) for the moment by

f(x, t) = −logφ(x, t)

we have the following initial-value problem

∂
∂tf = 4g(t)f = Rg(t), f(x, 0) = f0(x).

Applying theorem 2.4 from [24] to this flow we obtain a uniform bound on R(x, t)
as well as a uniform bound on |∇f(x, t)|. Hence by theorem 1.4, f(x, t) is uniformly
bounded for all (x, t)ε <n × [0,∞).

4.The behavior of scalar curvature, Weyl tensor and Riemannian
curvature tensor on η-Einstein manifold under Ricci flow.

In [23] Wang has shown that if Ric(g) is uniformly bounded from below on [0, T ),
where T < ∞ with the bound of R

||R||α = (
∫ T
0

∫
M |R|αdµdt)

1
α , α ≥ n+2

2
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then ||Rm|| is uniformly bounded. With the help of this result Li Ma and Liang
Cheng in [11] have shown that the uniform bounds about ||R||n+2

2
and ||W ||n+2

2
are

enough to control ||Rm||. So in this section we apply these results on η-Einstein
manifold.

Theorem 4.1 Let (Mn, g(t)), tε[0, T ), where T < ∞, be a solution to the Ricci
flow (1) on a closed η-Einstein manifold, then supM×[0,T ) |Rm| < ∞.

Proof. Here |R| = (an + b). So,
∫ T
0

∫
M |R|

n+2
2 dµdt = (an + b)

n+2
2 V T. Hence

||R||n+2
2

= [(an + b)
n+2

2 V T ]
2

n+2 (33)

Again |W | = |Rm|+ 4n
n−2(|a|+ |b|) + 2Rn

(n−1)(n−2) = An,say.

So,
∫ T
0

∫
M |W |

n+2
2 dµdt = (An)

n+2
2 V T

and hence

||W ||n+2
2

= (
∫ T

0

∫
M
|W |

n+2
2 dµdt)

2
n+2 = [(An)

n+2
2 V T ]

2
n+2 (34)

Since ||R||n+2
2

< ∞ and ||W ||n+2
2

< ∞, so from [11] (see theorem 1.1) we have the
required result.

Corollary 4.1 Let (Mn, g(t)), tε[0, T ), where T may be infinite, be a solution to
the Ricci flow (1) on a complete η-Einstein manifold with bounded sectional curva-
ture at t = 0, then supM×[0,T ) |Rm| < ∞.

Proof. Since supM×[0,T ) |R| < ∞ and supM×[0,T ) |W | < ∞, then from [11] (see
theorem 1.2) we get the required result.

5.The volume form of different type of manifolds under Ricci flow

Theorem 5.1 Let M be a three-dimensional K-contact manifold which is Ricci-
symmetric, then the volume form is given by

V = V0 + ce−6t (35)

.
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Proof. From [21] we have

∂
∂tdV = 1

2(tr h)dV

where V (t) = V ol((M, g(t))) and h = ∂g
∂t .

So for a Ricci flow, h = −2Ric(g).

Hence tr h = −2R. So we have under Ricci flow

∂
∂tdV = −RdV

Hence
dV

dt
= −

∫
RdV. (36)

Now let M be a three-dimensional K-contact manifold which is Ricci-symmetric.
Then using theorem 1.1, theorem 1.2 and theorem 1.3 we have the value of scalar
curvature is 6. Then using (36) the volume form is given by

V = V0 + ce−6t

where V0 is the initial volume and c is the constant of integration.

Theorem 5.2 Let M be a LP-Sasakian manifold satisfying Rm(X, Y ).C = 0,
then the volume form is given by

V = V0 + ce−n(n−1)t. (37)

Proof. If we consider a LP-Sasakian manifold satisfying Rm(X, Y ).C = 0 where
Rm(X, Y ) is considered as a derivation of the tensor algebra at each point of the
manifold for tangent vectors X, Y , then from [19] the manifold is conformally flat.
Again the scalar curvature of a conformally flat LP-Sasakian manifold is R = n(n−1)
[19]. So using (36) the volume form is given by

V = V0 + ce−n(n−1)t.

where V0 is the initial volume and c is the constant of integration.
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6.The behavior of gradient Ricci soliton for an N(k)-contact
η-Einstein manifold (k 6= 0) at critical points

Theorem 6.1 Let (Mn, g(t)) be a N(k)-contact η-Einstein manifold with k 6= 0
and g a gradient Ricci soliton. Then the value of k is given by, k = − λ

2n

Proof. Let M be a (2n + 1)-dimensional N(k) η-Einstein manifold and g a
gradient Ricci soliton. Then the equation (5) can be written as

∇XDf = QX + λX (38)

for all vector fields X on M , where D denotes the gradient operator of g.
From (38) it follows that

Rm(X, Y )Df = (∇XQ)Y − (∇Y Q)X, X, Y εTM. (39)

Since g is a metric connection, so it follows that

ξη(Df) = (2nk + λ) (40)

where (15) has been used. So

g(Rm(ξ, Y )Df, ξ) = g(k(Df − (2nk + λ)), Y ), Y εTM (41)

where (14) and (40) are used.
Also in a N(k) η−Einstein manifold

g(Rm(ξ, Y )Df, ξ) = 0, Y εTM. (42)

From (41) and (42) we get

k(Df − (2nk + λ)) = 0

that is, either k = 0 or
Df = 2nk + λ. (43)

Here we suppose k 6= 0. Now at critical point p, (Df)(p) = 0.
So, using (43) we have k = − λ

2n .
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7.Gradient Ricci soliton on a special type of conharmonically flat
trans-Sasakian manifold

Theorem 7.1 Let M be a conharmonically flat trans-Sasakian manifold of type
(α, β) satisfying

φ(grad α) = (2n− 1)grad β (44)

and
α2 − β2 6= ξβ (45)

together with Rm(X, Y ).Ric = 0 and g a gradient Ricci soliton. Then

λ = −2n(α2 − β2) or 4n(α2 − β2)

where λ is given by (4).

Proof. Let (M, g) be a trans-Sasakian manifold of type (α, β) satisfying (44) and
(45) and g a gradient Ricci soliton. Then the equation (5) can be written as

∇XDf = QX + λX (46)

for all vector fields X on M , where D denotes the gradient operator of g.
From (46) it follows that

Rm(X, Y )Df = (∇XQ)Y − (∇Y Q)X, X, Y εTM. (47)

Since g is a metric connection, so it follows that

ξη(Df) = (2n(α2 − β2) + λ) (48)

where (21) has been used. So with the help of (18) and (48) we have

g(Rm(ξ, Y )Df, ξ) = g((α2−β2−ξβ)(Df−(2n(α2−β2)+λ)), Y ), Y εTM. (49)

Also in a trans-Sasakian manifold

g(Rm(ξ, Y )Df, ξ) = 0, Y εTM. (50)

From (49) and (50) we get

(α2 − β2 − ξβ)(Df − (2n(α2 − β2) + λ)) = 0

that is, either α2 − β2 − ξβ = 0 or

Df = 2n(α2 − β2) + λ. (51)
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By the hypothesis (45) we have (51) holds true. Hence

g(∇XDf, Y ) = 0, X, Y εTM. (52)

Let µ be the eigenvalue of the endomorphism Q corresponding to an eigenvector X.
Then

QX = µX. (53)

Using (53) in (46) and taking Y = ξ we have from (52), λ = −µ, since η is a non-zero
1-form.
Now from [20] we have if, moreover, the manifold is conharmonically flat together
with Rm(X, Y ).Ric = 0, then there are two values of µ, namely, 2n(α2 − β2) or
−4n(α2 − β2).

8.Gradient Ricci soliton on conharmonically flat LP-Sasakian
manifold

Theorem 8.1 Let Mn (n ≥ 3) be a conharmonically flat LP-Sasakian manifold
satisfying Rm(X, Y ).Ric = 0 and g a gradient Ricci soliton. Then

λ = −(n− 1) or 2(n− 1)

where λ is given by (4).

Proof. For a conharmonically flat LP-Sasakian manifold [2]

QX = −X − nη(X)ξ. (54)

Then taking X = ξ and using (22) we have

Qξ = (n− 1)ξ. (55)

Let g be a gradient Ricci soliton. Then the equation (5) can be written as

∇XDf = QX + λX (56)

for all vector fields X on M , where D denotes the gradient operator of g.
From (56) it follows that

Rm(X, Y )Df = (∇XQ)Y − (∇Y Q)X, X, Y εTM. (57)

Since g is a metric connection, so it follows that

ξη(Df) = ((n− 1) + λ) (58)
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where (55) has been used. So

g(Rm(ξ, Y )Df, ξ) = g(−(Df + ((n− 1) + λ)), Y ), Y εTM (59)

where (57) and (58) are used.
Also in a LP-Sasakian manifold

g(Rm(ξ, Y )Df, ξ) = 0, Y εTM. (60)

From (59) and (60) we get

Df + ((n− 1) + λ) = 0

that is
Df = −((n− 1) + λ). (61)

Hence
g(∇XDf, Y ) = 0, X, Y εTM. (62)

Let µ be the eigenvalue of the endomorphism Q corresponding to an eigenvector X.
Then

QX = µX. (63)

Using (63) in (56) and taking Y = ξ we have from (62), λ = −µ, since η is a non-zero
1-form.
Now from [2] we have if, moreover, the manifold satisfies Rm(X, Y ).Ric = 0, then
there are two values of µ, namely, −2(n− 1) and (n− 1).
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