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ABSTRACT. By using the notion of the fixed point set of multi-valued mappings,
we introduce an equivalence relation on the set of all closed and bounded valued
multifunction on a metric space. By using the notion we provide some related
results.
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1. INTRODUCTION

In 1966, Sam Bernard Jr. Nadler finished his Ph.D. thesis on differential analysis
in university of Georgia ([2]). Later, he published some works about results of his
thesis ([3], [4] and [6]). He interested fixed point theory by starting basic notions of
fixed points and contractive mappings ([5], [7] and [8]). In 1969, he started study
of fixed points of multivalued contractive mappings ([9]). In 1970, he published his
most famous work in this area ([10]). Hereafter, many researchers reviewed common
fixed points of different types of multivalued contractions (see for example, [11], [12]
and [13]). In this paper, we introduce an equivalence relation on the set of all closed
and bounded valued multifunction on a metric space. Also by using the notion, we
provide some related results.

Let X be a nonempty set, P(X) the set of all nonempty subsets of X, T a
multi-valued mapping on X into P(X) and §r the fixed point set of T', that is,
§r ={x € X : x € Tz}. For a topological space (Y,7), we denote the set of all
nonempty closed subsets of Y by P,(Y) and the set of all nonempty closed and
bounded subsets of Y by P, (Y") whenever Y is a metric space.

Let (X,d) be a metric space, x € X and A, B C X. It is well-known that
D(x,A) = infyead(z,y), H(A, B) = max{sup,cq D(x, B),sup,cp D(y, A)} and
d(A,B) = sup{d(a,b) : a € A,b € B}. Then, H is a metric on closed bounded
subsets of X which is called the Hausdorff metric.
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2. MAIN RESULTS

Let (X,d) be a metric space. Denote by F the set of all multi-valued mappings
on X into P, (X). Define the relation ~ on F by F' ~ G whenever §r = §g for
all F;G € F. One can check that ~ is an equivalence relation on F. Denote by
F the equivalence classes of F, that is, F = £ = {F : F € F}. Also, define d :
FxF —1[0,00) by d(F,G) = H(Fr,5q). Itis easy to see that (F,d) is metric space.
Note that, there is a connection between common fixed points of two multivalued
mappings S and T whenever S € T.

Lemma 2.1. Let (X,d) be a metric space, m > 1c¢>1and 5,7 : X — P, 4(X)
two multi-valued mappings such that §s # 0. Suppose that for each z € X and
y € Sz (or y € Tx) there exists z € Ty (respectively z € Sy) such that

& (z,y) —

3 m 3 m
4%C2d2 (y7 Z)d(l’,y) - gdg (y’ Z) > 0. (1)

Then §r # 0 and S =T.

Proof. Let u € §g and z € Tu. By using the relation (1), we get

3
Ad? (u, 2)d(u, u) — %d?’(u, z) > 0.

3
d3(u,u) —
(w,w) 44

Hence, —gd‘g’(u z) > 0 and so d(u,z) = 0. This implies that z = v and so u € Tu.
T~‘h115,~ Sr # 0 and Fs C Fr. A similar proof shows that Fr C Fs. Therefore,

S=T.

Let (X, d) be a metric space and V : X — P, 4(X) a multi-valued map. We say
that T has the property (M) whenever for each convergent sequence {z,},>0 with
Tp — x and o, € Txo,—o for all n (or x9, € TVrg,_1 for all n) we have x € Tx.

Theorem 2.2. Let (X,d) be a complete metric space, S,T : X — P, 4(X) two
multi-valued mappings, m > 1 and ¢ > 1. Suppose that for each x € X and y € Sx
(or y € Tz) there exists z € T'y (respectively z € Sy) such that

3
&z, y) — —~*d*™(y, 2)d(z,y) — %dgm(% z) > 0.

3
44
If one of the multi-valued mappings S and T have the property (M), then S=T.

Proof. Let g € X be an arbitrary element and x; € Sxy. Choose xo2 € Tz

such that d®™(xq, 1) — 43/162(12"1(:61, x9)d(xg, 1) — %d?’m(a:l, x9) > 0. There exists
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x3 € Sz such that d3md(:):1,xg)—ﬁc2d2m(x2,$3)d(x1, wg)—gdgm(@, z3) > 0. By

continuing this process we obtain a sequence {x,, } >0 in X such that xo,—1 € Sxa,_1
and w9, € Tx9,—1 for all n and

3
P (w01, 20t) — G @ 201) 20 (2)

3
4V/4

for all n. Note that, the inequality (2) is a third degree polynomial in the variable
d™(xy, xp—1) with the discriminant

d3m(75n7 -rnfl) -

-3
44

Thus, d™(zp,xp-1) > —2€/§d3m(:rn,:cn+1) = cd™(xp, Tpy1). If E™ = %, then
we obtain k < 1 and 0 < d"™(zp,xp+1) < k™d"™(xn,Tn—1). This implies that
d(xp, Tnt1) < kd(xp—1,x,) for all n. Hence, d(xy, zp+1) < k™d(x0,x1) for all n. It
is easy to see that d(xy,zp4p) < %d(mo,ml) for all n and p. Thus, {2, }n>0 is a
Cauchy sequence in X. Choose u € X such that x,, — u. Since x9,_1 € STo,_1
and xo, € Txo,_1 for all n and one of the multi-valued mappings .S and 7" have the

property (M), we conclude that u € Su or u € Tu. By using Lemma 2.1, we get
S=T.

3

A=14
( 8

62d2m(517n7 J:n-‘rl))g + 27( dgm(xn’ $n+1))2'

We need the followings for our last result.

Lemma 2.3. [13] Let (X,d) be a metric space, A and B two bounded subsets of
X and k > 1. Then for each a € A there exists b € B such that d(a,b) < kH(A, B).

This implies easily next Lemma.

Lemma 2.4. [13] Let (X,d) be a metric space, k > 1 and S,T : X — Py (X)
two multi-valued mappings. Then for each y € Sz (or y € Tz) there exists z € Ty
(respectively z € Sy) such that d(y,z) < kH(Sz,Ty).

Theorem 2.5. Let (X, d) be a complete metric space, T1,T> : X — P, 4(X) two
multi-valued mappings, m > 1 and ¢ > 1. Suppose that for each z,y € X with
252 (y, Toy) + 6™ (y, Toy)6™ (z, Thx) + 852 (z, Tix) # 0 we have

8d3™ (x, Ty w)

H™(Tyx. T < .
(T Toy) < oty o) + 6e0 (g, Toy)o (a, Tr) + 867 (z, Tha)

(3)

Then Tl = TQ.
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Proof. By using the inequality (3), we obtain
H™(Tyz, Toy) (26 ™ (y, Tay)+6c6™ (y, Toy)6™ (z, Trz)+86%™ (x, Tyx)) < 8d*™(z, Tyx)

forallz € X and y € Thz. Let 1 <c < k™, x € X and y € Thz. By using Lemma

2.4, there exists z € Toy such that d(y, z) < kH(Tyz, Tay). Hence,

6ed™
V4

Thus for each x € X and y € Tiz there exists z € Thy such that

cd™(y, 2)(d*™(y, 2) + d™(y, z)d(z,y) < 8d°™(z,y).

3
m m c
cd (y7 Z)d (xay) - §d3(yuz) > 0.

" (z,y) —

3
44
Now, we show that 77 has the property (M). Let (z,,)n>0 be a convergent sequence
in X with z,, = =, 2,1 € T122,_2 and x9, € Thxs,_1 for all n. Then, we have

d(Thz, z2,) < H(Thz, Toxon—1)
for all n. Hence,
Cdm (Tlx, mgn)(62d2m(l’2n_1, xzn) + chm (JIQn_l, mgn)dm (:Uzn, Tll’) + 8d($2n, Tll’))

S 8d3m (wzn, Tlx)

for all n and so d(z, Tiz) < Ld(z, Tiz), that is, d(T1z,z) = 0. Since T1z is a closed
subset of X, we conclude that x € Tyz. Now by using Lemma 2.1 and Theorem 2.2,
we get §1, = ST, and 11 = Tb.
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