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Abstract. By using the notion of the fixed point set of multi-valued mappings,
we introduce an equivalence relation on the set of all closed and bounded valued
multifunction on a metric space. By using the notion we provide some related
results.

2010 Mathematics Subject Classification: 34A08, 34B16.

Keywords: Fixed point set, Equivalence relation, multi-valued mapping.

1. Introduction

In 1966, Sam Bernard Jr. Nadler finished his Ph.D. thesis on differential analysis
in university of Georgia ([2]). Later, he published some works about results of his
thesis ([3], [4] and [6]). He interested fixed point theory by starting basic notions of
fixed points and contractive mappings ([5], [7] and [8]). In 1969, he started study
of fixed points of multivalued contractive mappings ([9]). In 1970, he published his
most famous work in this area ([10]). Hereafter, many researchers reviewed common
fixed points of different types of multivalued contractions (see for example, [11], [12]
and [13]). In this paper, we introduce an equivalence relation on the set of all closed
and bounded valued multifunction on a metric space. Also by using the notion, we
provide some related results.

Let X be a nonempty set, P(X) the set of all nonempty subsets of X, T a
multi-valued mapping on X into P(X) and FT the fixed point set of T , that is,
FT = {x ∈ X : x ∈ Tx}. For a topological space (Y, τ), we denote the set of all
nonempty closed subsets of Y by Pcl(Y ) and the set of all nonempty closed and
bounded subsets of Y by Pb,cl(Y ) whenever Y is a metric space.

Let (X, d) be a metric space, x ∈ X and A,B ⊆ X. It is well-known that
D(x,A) = infy∈A d(x, y), H(A,B) = max{supx∈AD(x,B), supy∈B D(y,A)} and
δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}. Then, H is a metric on closed bounded
subsets of X which is called the Hausdorff metric.
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2. Main results

Let (X, d) be a metric space. Denote by F the set of all multi-valued mappings
on X into Pb,cl(X). Define the relation ∼ on F by F ∼ G whenever FF = FG for
all F,G ∈ F . One can check that ∼ is an equivalence relation on F . Denote by
F̃ the equivalence classes of F , that is, F̃ = F

∼ = {F̃ : F ∈ F}. Also, define d̃ :

F̃×F̃ → [0,∞) by d̃(F̃ , G̃) = H(FF ,FG). It is easy to see that (F̃ , d̃) is metric space.
Note that, there is a connection between common fixed points of two multivalued
mappings S and T whenever S ∈ T̃ .

Lemma 2.1. Let (X, d) be a metric space, m ≥ 1 c > 1 and S, T : X → Pb,cl(X)
two multi-valued mappings such that FS 6= ∅. Suppose that for each x ∈ X and
y ∈ Sx (or y ∈ Tx) there exists z ∈ Ty (respectively z ∈ Sy) such that

d3m(x, y)− 3

4 3
√

4
c2d2m(y, z)d(x, y)− c3

8
d3m(y, z) ≥ 0. (1)

Then FT 6= ∅ and S̃ = T̃ .

Proof. Let u ∈ FS and z ∈ Tu. By using the relation (1), we get

d3(u, u)− 3

4 3
√

4
c2d2(u, z)d(u, u)− c3

8
d3(u, z) ≥ 0.

Hence, − c3

8 d
3(u, z) ≥ 0 and so d(u, z) = 0. This implies that z = u and so u ∈ Tu.

Thus, FT 6= ∅ and FS ⊂ FT . A similar proof shows that FT ⊂ FS . Therefore,
S̃ = T̃ .

Let (X, d) be a metric space and V : X → Pb,cl(X) a multi-valued map. We say
that T has the property (M) whenever for each convergent sequence {xn}n≥0 with
xn → x and x2n−1 ∈ Tx2n−2 for all n (or x2n ∈ TV x2n−1 for all n) we have x ∈ Tx.

Theorem 2.2. Let (X, d) be a complete metric space, S, T : X → Pb,cl(X) two
multi-valued mappings, m ≥ 1 and c > 1. Suppose that for each x ∈ X and y ∈ Sx
(or y ∈ Tx) there exists z ∈ Ty (respectively z ∈ Sy) such that

d3m(x, y)− 3

4 3
√

4
c2d2m(y, z)d(x, y)− c3

8
d3m(y, z) ≥ 0.

If one of the multi-valued mappings S and T have the property (M), then S̃ = T̃ .

Proof. Let x0 ∈ X be an arbitrary element and x1 ∈ Sx0. Choose x2 ∈ Tx1
such that d3m(x0, x1)− 3

4 3√4
c2d2m(x1, x2)d(x0, x1)− c3

8 d
3m(x1, x2) ≥ 0. There exists
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x3 ∈ Sx2 such that d3md(x1, x2)− 3
4 3√4

c2d2m(x2, x3)d(x1, x2)− c3

8 d
3m(x2, x3) ≥ 0. By

continuing this process we obtain a sequence {xn}n≥0 in X such that x2n−1 ∈ Sx2n−1
and x2n ∈ Tx2n−1 for all n and

d3m(xn, xn−1)−
3

4 3
√

4
c2d2m(xn, xn+1)d(xn, xn−1)−

c3

8
d3m(xn, xn+1) ≥ 0 (2)

for all n. Note that, the inequality (2) is a third degree polynomial in the variable
dm(xn, xn−1) with the discriminant

∆ = 4(
−3

4 3
√

4
c2d2m(xn, xn+1))

3 + 27(
−c3

8
d3m(xn, xn+1))

2.

Thus, dm(xn, xn−1) ≥ −2 3

√
c3

8 d
3m(xn, xn+1) = cdm(xn, xn+1). If km = 1

c , then

we obtain k < 1 and 0 ≤ dm(xn, xn+1) < kmdm(xn, xn−1). This implies that
d(xn, xn+1) ≤ kd(xn−1, xn) for all n. Hence, d(xn, xn+1) ≤ knd(x0, x1) for all n. It
is easy to see that d(xn, xn+p) ≤ kn

1−kd(x0, x1) for all n and p. Thus, {xn}n≥0 is a
Cauchy sequence in X. Choose u ∈ X such that xn → u. Since x2n−1 ∈ Sx2n−1
and x2n ∈ Tx2n−1 for all n and one of the multi-valued mappings S and T have the
property (M), we conclude that u ∈ Su or u ∈ Tu. By using Lemma 2.1, we get
S̃ = T̃ .

We need the followings for our last result.

Lemma 2.3. [13] Let (X, d) be a metric space, A and B two bounded subsets of
X and k > 1. Then for each a ∈ A there exists b ∈ B such that d(a, b) ≤ kH(A,B).

This implies easily next Lemma.

Lemma 2.4. [13] Let (X, d) be a metric space, k > 1 and S, T : X → Pcl,b(X)
two multi-valued mappings. Then for each y ∈ Sx (or y ∈ Tx) there exists z ∈ Ty
(respectively z ∈ Sy) such that d(y, z) ≤ kH(Sx, Ty).

Theorem 2.5. Let (X, d) be a complete metric space, T1, T2 : X → Pb,cl(X) two
multi-valued mappings, m ≥ 1 and c > 1. Suppose that for each x, y ∈ X with
c2δ2m(y, T2y) + 6cδm(y, T2y)δm(x, T1x) + 8δ2m(x, T1x) 6= 0 we have

Hm(T1x, T2y) ≤ 8d3m(x, T1x)

c2δ2m(y, T2y) + 6cδm(y, T2y)δm(x, T1x) + 8δ2m(x, T1x)
. (3)

Then T̃1 = T̃2.
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Proof. By using the inequality (3), we obtain

Hm(T1x, T2y)(c2δ2m(y, T2y)+6cδm(y, T2y)δm(x, T1x)+8δ2m(x, T1x)) ≤ 8d3m(x, T1x)

for all x ∈ X and y ∈ T1x. Let 1 < c < km, x ∈ X and y ∈ T1x. By using Lemma
2.4, there exists z ∈ T2y such that d(y, z) ≤ kH(T1x, T2y). Hence,

cdm(y, z)(c2d2m(y, z) +
6cdm

3
√

4
dm(y, z)d(x, y) ≤ 8d3m(x, y).

Thus for each x ∈ X and y ∈ T1x there exists z ∈ T2y such that

d3m(x, y)− 3

4 3
√

4
cdm(y, z)dm(x, y)− c3

8
d3(y, z) ≥ 0.

Now, we show that T1 has the property (M). Let (xn)n≥0 be a convergent sequence
in X with xn → x, x2n−1 ∈ T1x2n−2 and x2n ∈ T2x2n−1 for all n. Then, we have

d(T1x, x2n) ≤ H(T1x, T2x2n−1)

for all n. Hence,

cdm(T1x, x2n)(c2d2m(x2n−1, x2n) + 6cdm(x2n−1, x2n)dm(x2n, T1x) + 8d(x2n, T1x))

≤ 8d3m(x2n, T1x)

for all n and so d(x, T1x) ≤ 1
cd(x, T1x), that is, d(T1x, x) = 0. Since T1x is a closed

subset of X, we conclude that x ∈ T1x. Now by using Lemma 2.1 and Theorem 2.2,
we get FT1 = FT2 and T̃1 = T̃2.

References

[1] R. Bala, B. Ram, Trigonometric series with semi-convex coefficients, Tamang
J. Math. 18, 1 (1987), 75-84.

[2] Sam Bernard Jr. Nadler, Some results in differential analysis, Ph.D. Thesis
University of Georgia, Ann Arbor, MI (1966).

[3] Sam Bernard Jr. Nadler, A characterization of the differentiable sub-manifolds
of Rn, Proc. Amer. Math. Soc. 17 (1966), 1350-1352.

[4] Sam Bernard Jr. Nadler, Coverings by closed sets, Portugal Math. 26 (1967),
51-61.

[5] Sam Bernard Jr. Nadler, Horizontally- and vertically-fixed points, J. Natur. Sci.
and Math. 7 (1967), 181-189.

42
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