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Abstract. Let X be a smooth projective variety and let L be a very ample
divisor of X embedding it in PV. In this paper we use the Koszul groups of X
to get information about the k-normality of X (i.e. the surjectivity of the map
HO(PN, Opn(k)) — H°(X, kL) via an upper bound for the degree of the generators
of @50 H(X,tL). The above idea is applied to some scrolls over curves and surfaces
and to some other varieties, by using also results due to Green and Butler.
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1. Introduction

It is well-known that “there are fewer ways to compute Koszul cohomology groups than
reasons to compute them” (see [4]). In this paper we want to give another reason to compute
them: almost every work on Koszul cohomology of a smooth projective subvariety X of PV
considers only the case in which X is projectively normal, (p.n.) (see [6], [7], [8], [13]) in
which case Koszul groups give immediately a free resolution of the ideal sheaf Jx of X in PV
which is the main interest of the above papers. We know only Birkenhake’s works [10] and
[11] treating the case in which X is not linearly normal. When X is not p.n. Koszul groups
give only an upper bound for the degree of the generators of the ring R(X) = @;50H(X, tL)
where L is the very ample line bundle of X giving the embedding of X in PV. Note that R(X)
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is the coordinate ring of X if X is projectively normal. In some cases, e.g. for some scrolls,
the information given by Koszul groups on R(X) is sufficient to establish the k-normality
of X.

More precisely in this paper we prove that for a scroll X over a smooth curve, whose
dimension is at least three, the ring R(X) is generated in degree 2 if a condition weaker
than Butler’s one (see [9]) is satisfied. The same fact is true for varieties, 4-dimensional at
least, which are fibered in hypersurfaces of degree 2 and 3 over a smooth curve. Hence these
varieties are projectively normal if and only if they are 2-normal, moreover, this fact is true
for scrolls over a genus 2 curve without any other assumptions.

As a consequence of a suitable use of corollary 1.d.4 of [4], we get that for a regular surface
(X, L) such that there exists a smooth curve in |L — Kx|, R(X) is generated in degree 2 and
3. We also obtain some conditions assuring the projective normality of scrolls on surfaces.

The paper is organized as follows: In Section 2 we fix notation and recall some facts about
Koszul cohomology; in Section 3 we use Butler’s work to compute some Koszul vanishings
for scrolls and varieties which are fibered in hypersurfaces; in Section 4 we show some other
vanishings for Koszul cohomology of scrolls; in Section 5 we consider another method to
compute vanishings and we apply it to regular surfaces and to scrolls over surfaces.

2. Notation and background material

PN N-dimensional projective space over C
Clzg,x1,. .. ,zy] the coordinate ring of PV
S(a) the graded ring S twisted by the integer a
X smooth n-dimensional projective subvariety of P
Kx canonical divisor of X
L very ample line bundle embedding X in PV via H°(X, L)
Ix the homogeneous ideal of X in the ring S
Ix the ideal sheaf of X in PV
Ox the structural sheaf of X
Qx cotangent bundle of X
R(X) the graded ring @;>0H°(X,tL) which is an S-module
C smooth algebraic curve of genus g
E rank r vector bundle over a smooth variety X
E* its dual
w(E) slope of £
p(E) minimal slope of a quotient vector bundle of E over C
pt(E) maximal slope of a subbundle of E over C

P(E) projectivized of F

p natural projection from P(E) to X

T tautological line bundle of P(F)

F numerical class of a fibre in P(E) or generic fibre of p
~ linear equivalence among divisors

= numerical equivalence among divisors
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Let (X,L) be as above, i.e. a smooth, linearly normal subvariety of PV, embedded by
H°(X, L), where N=h%(X,L) — 1. Ry=H%(X,tL), Ry=H%(X,Ox), then R(X)=;>0R; is
a graded S-module having a minimal free resolution - -- = E, 1 = E,—---— E — Ey— R—0
in which Ey = @4>0(Bog @ S(—¢q)), E1 = ®g>0(B1,4 ® S(—¢)) and so on, where B, , are C
vector spaces whose dimensions b, , keep track of how many S(—¢) appear in E,; the b, , do
not depend on the choice of the minimal free resolution, (see [6]). We will write b, , instead
of b, ,(X), R instead of R(X), when any confusion is impossible.

Note that S = @;50H(X, Opn (1)), so we have a natural graded map p : S — R and
the S-module structure on R is given by sr = p(s)r. X is p.n. if every graded piece of p is
surjective.

Ey is the free S-module corresponding to the generators of R, by, is the number of
generators of R whose degree is q. Let us be careful: every R, is also a C vector space of
finite dimension, but we are considering R as an S-module: there is only one generator of
degree 0, the multiplicative identity 1 of the ring R, which is also the generator of the C
vector space Ry. There are no generators in degree 1 because, as X is linearly normal, every
element of R; comes from S by p, so it is the product of an element of S and the generator
1, hence bO,l =0.

If X is p.n., for the same reason we have no other generators for R as an S-module, so
that FEj is isomorphic to S and the kernel of the map Fy — R is precisely Iy, in this case
---—> E, > --- = E} — Ix — 0 is a free resolution for Ix; this is the point of view of [6],
[7], [8], [13], but what can we say when X is not p.n.? Let us examine Fj firstly. We have
the following

Proposition 2.1. Let X be as above, then:
— boo=1,
— bp1 =0,
— X s 2-normal if and only if byo = 0,
— for g >3, if X is g-normal then by, = 0 (but not vice versa),
— X is p.n. if and only if by = 0 for any q > 2.

Proof. 'The values of by and by; were discussed above. As X is linearly normal, the 2-
normality of X is equivalent to the vanishing of by o: in fact if X is 2-normal then byo=0
because any element of Ry is a multiple of 1 by an element of S. If there are no degree 2
generators in R, as S-module, every element of R, must be an S-linear combination of the
generators of R of degree 0 or 1, i.e. it must be a multiple of 1 and then it comes from S by
p- In any case if we consider the C-linear map between H°(PY, Op~(2)) and Ry, by is the
C-dimension of the cokernel of this map.

For ¢ > 3 we have that if X is g-normal then by, = 0 for the above reason, but not
vice versa because by, is always the number of the degree ¢ generators of R, but when we
consider the C-linear map between H°(PY, Opn(g)) and Ry, by 4 is only less than or equal the
C-dimension of the cokernel of this map because in the cokernel there can be also elements
which are S-linear combinations of generators of R whose degree is less than q.

If X is p.n., R is generated over S by 1, hence by, = 0 for all ¢ > 2, the vice versa is
obvious. Il
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Let us consider Ey, i.e. the free S-module of the primitive syzygies among the generators of
R, where primitive means, according to Green [4], that every considered degree g syzygy is
not an S-linear combination of syzygies whose degree is less than ¢. Then b, , is the number
of the degree g generators of this S-module. We have the following

Proposition 2.2. Let X be as above, then:
— bip=0b11 =0,
— bo = h'(PY,Ix(2)),
— ifbig=0 forq>k+1 then bpy =0 for g > k.

Proof. The first vanishings are obvious. b; 5 is the number of the generators of the S-module
of degree 2 syzygies (in this degree every syzygy is primitive). As a degree ¢ syzygy can
involve only generators of R whose degree is less than or equal to ¢ — 1, a degree 2 syzygy is
always of the following type: s1 = 0 with s € S, because there are no degree 1 generators in
R. Moreover, the number of the generators of the S-module of the degree 2 syzygies coincides
with the dimension of this S-module viewed as a C vector space. Note that if ¢ > 3 this
is not longer true: the submodule of the primitive degree ¢ syzygies of type s1 = 0 always
corresponds to degree q C-independent hypersurfaces of PV containing X, but we have only
that b, is greater than or equal to the C-dimension of the C-vector space of irreducible
hypersurfaces of degree ¢ containing X (which is less than or equal to h°(P",Jx(q)): there
can be primitive degree ¢ syzygies which have no links with the hypersurfaces containing X.

Now let us assume that £ is the maximal degree for the primitive syzygies among the
generators of R: 1,xy,%9,...,%, and, by contradiction, let us assume that one of these
generators, say xp, belongs to R, with ¢ > k, and thus there are no primitive syzygies
involving x,. However, it is easy to see that any generator is involved by a syzygy, so we
have apl + a1x1 + - -+ + apzp, = 0 where o; € S, deg(c;) > 1, and this is not a primitive
syzygy. Hence it must be an S-linear combination of primitive syzygies, but this is not
possible because no primitive syzygy involves xj,. O

Let us consider the exact sequence 0 - M — V ® Ox — L — 0 of vector bundles over X,
where M is the kernel of the evaluation map V ® Ox — L and V = H°(X, L). Let ¢ > 2; to
estimate b , we have

Proposition 2.3. Let X, L, M be as above, then by, =0 if H (X, A*M ® L?2%) = 0.

Proof. By [7], we have that b 4 is the dimension of the C-vector space which is the homology
at the middle level in the following piece of the Koszul complex:

o A2(V)®@Ryo > VR Ry — Ry -+ .

Let us call oy : A>(V)® Ry—o > V® Ry—y and B, : V ® R,_1 — R,. From it we get:
0= A°M =+ A(V)®0x -V ®L — S?(L) = L ® L — 0 which splits as

0->MQ®L—->VQ®L—-L®L—0 and 0—A’M - A*(V)®@0x > M®L — 0.

Hence we have, for any m € Z: 0 - A>M @ L™ — A*(V)® L™ — M @ L™ — 0 and
0 MQL™ -V ®L™— L™ — 0. By choosing m = ¢ — 2 in the first case we get the
following exact sequence:

0— H(X,A’M ® LI2) 5 A*(V) ® Ry_s— HO(X, M ® LI ) H' (X, A’ M ® L) — - -
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By choosing m = ¢ — 1 in the second case we get this exact sequence:
0 H (X, ML) V®R;, 1 = R;— .

If we call v, : A2(V)® Ry—g = HY(X,M @ L), 6, : HY(X,M ® L* ') - V ® R,_; and
gq:V ®R,_1 = Ry, we have that 3, = ¢, and oy = 6, 0,

Hence if H'(X,A’M ® L7 ?) = 0 we get that v, is surjective, kern(3,) = Im(a,) and
therefore b, , = 0. O
Remark 2.4. Note that, in the same way, it is possible to get that by, = 0 if
HY(X,M ® L™') = 0, i.e. the condition H'(X, M ® L9™') = 0 for ¢ > 2 implies that
X is p.n.; in this form this condition is used by many authors (see [9], [14], [15] for instance).
When X is p.n. and HY(X,A2M ® L%72) = 0 for ¢ > 3 then Iy is generated in degree 2,
when X is not p.n. the condition yields only some information about the generators of R.

3. Syzygies of scrolls

In this section we consider the vanishing of H'(X,A’M ® L97?), ¢ > 2, for r-dimensional
scrolls X = P(E) over smooth curves C, r > 2, where E is a very ample rank r vector bundle
over C. In this case L is the tautological bundle 7', p,T' = E and we have the exact sequence
0— Mp — H°(C,E)® Oc — E — 0, where H%(C, E) ® O¢ — E is the natural evaluation
map. Our strategy will be to calculate h' (X, A2M ® T7972) by using h'(C, p.(A2M ® T97?)).
It is well-known that the two numbers are equal if R'p,(A’M ® T972) =0, Vi > 1 (see [12],
p.253) and this is true if A7 (F, (A*M @ T??)p) = 0, Vj > 1. We have the following
Lemma 3.1. With the above notations h?(F, (A*M @ T??)y) =0, Vj > 1.
Proof. Recall that FF = P! (T97?)p = Op(q — 2), so that hi(F,(A’M ® T97?)p) =

Now let us consider 0 — Ox(T' = F) — Ox(T) — Op(Tir) — 0 and the long exact
sequence 0 - H*(X,T—F) - H*(X,T) — H*(F,0r(1)) - HY(X,T—F) = ---. Asp.T =
F is generated by global sections we have that H*(X,T) = H(X,T — F) & H°(X, Or(1)).

By considering the restriction to F of 0 - M — H°(X,T) ® Ox — T — 0 we get
0— M|F — HO(X,T) ® Op — OF(l) — 0.

By using the Euler sequence for F' we get the following commutative diagram:

0 0

HY(X, T — F) ® Op HY(X, T — F)® Op

0 — Mp — H(X,T-F)®H(X,0£(1)®0r — Op(1) — 0
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The left column splits so that M = H*(X,T — F) ® Op & Qp(1),

N Mp)=072)@Qr(1) H'(X, T - F)® Op & A*(H*(X,T — F)) ® O, and

A (Mip)®0F(g—2) = Q%(q)dQr(¢—1)@HYX, T—F)@0p®A*(H*(X,T—F))®0r(q—2),
now it is very easy to see that h’(F, (A*M @ T*"?)p) =0, Vj > 1. O

Now we can prove

Theorem 3.2. Let (X,T) be a scroll as above over a genus g curve, v > 3, q > 4, then
HY (X, N°M QL) =0ifu (Mg)+p (E)>g—1.

Proof. By Lemma 3.1 we have to show that hA'(C,p,(A’M @ T72)) = 0. As p.(M @ M ®
T972) = p,[A2MQT 1 ?|®p.[S?MRT??] it suffices to show that h'(C, p,(M@MQTI"%)) = 0.
This is true if g~ [p.(M @ M ® T97?)] > 29 — 2, (see [9]).

We can use Prop. 4.2 of [9], in fact p,T = FE is generated by global sections, T is 0 p-regular
and M®T??%is -1 p-regular, hence we have that p~ [p.(MQMQT12)] > u~(Mg)+p [ps(M®
T%-2)]; (note that, in this case, the inequality given by Prop. 4.2 of [9] is very simple because
for 1 = r — 2 we have that R'p,(T~*) = 0, so that min{u~(Mg) + p~ [p.(M ® T?72)], 00} =
™ (Mg) + p~[pe (M @ T772)]; see [9] for the notion of k p-regular vector bundles).

Now we can use the same proposition for u~[p,(M ® T97?)], in fact T is 0 p-regular and
T% 2 is -1 p-regular. By the same previous reason we get: p [p.(M @ TT %] > u (Mg) +
po[ST2(E)] and p~[ST*(E)] = (¢ = 2)pu (E).

Hence we have u [p,(M @ M ® T??)] > 2u (Mg) + (¢ — 2)u (E), but as T is very
ample, this inequality is satisfied for ¢ > 4 if it is true for ¢ = 4, so that the condition is
simply p~(Mg) + p~(E) > g — 1. O

Remark 3.3. Assume that E is semistable, ¢ > 2 and u(E) < 2g, then we have
w (Mg) > r(p~ (E) — 2g9) — 2 + 2h' (E) (see [9], Prop. 1.5), so the condition in Theorem 3.2
becomes: (2 + r)u(E) + 2h' (E) > (2r + 1)g + 1.

Remark 3.4. Although Theorem 3.2 is stated for F very ample, exactly the same proof
works also when E is ample and generated by global sections.

For the rest of this section we are concerned with the vanishing of H' (X, A>M ® L1 %), ¢ > 2,
when X is a divisor of W = P(E) where F is an ample, globally generated vector bundle over
a smooth, genus g, curve C. We assume that L, the restriction to X of the tautological divisor
T of W, is very ample. X is fibered over C' and the generic fibre is a smooth hypersurface of
P"~! whose degree is fixed. We can prove the following

Proposition 3.5. Let (X, L) be as above, assume that X = aT + bF with a > 2, then
HY (X, N°M QL) =0ifr>4,q>4, p=(Mg)+pu (E) > g—1 except, possibly, for q = a
and g =a + 1.

Proof. As FE is generated by global sections we can consider the usual exact sequence
0— My — H' W, T)® O — T — 0.

By restricting it to X we get: 0 = (Mg)x = H'W,T)®@ Ox - L — 0 as L = Tjx. On
the other hand we have 0 — M — H%(X,L) ® Ox — L — 0, but it is easy to see that
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H'(W,T)® Ox = H*(X,L) ® Ox so that (My)x = M. Hence we can tensorize the exact
sequence 0 — O (=X) = O — Ox — 0 with A2M7y ® T2 and in cohomology we have

v s HY (W, N Mp@T72) - H' (X, N’MQLI™%) — H*(W, A*Mr @ Ow (=X +(q—2)T) — - - -

as H'(X,A°M ® L ?) = H'(X,A\*(Mr)x ® (I'x)??). By arguing as in 3.2 and by re-
calling that E ample implies p~(E) > 0, we have H' (W, A2Mr ® T?2) = 0. To deal with
H2(W, A’Mr ® O (—X + (¢ —2)T)) recalling Remark 3.4, we proceed as in the proof of 3.2.
Thus that group vanishes if h? (F, (A*Mr @ Ow (=X + (¢ — 2)T))r) =0, Vj > 1.

As in the proof of 3.1 we have that (A*My ® Ow (=X + (¢ — 2)T))|F is the direct sum
of some copies of 0% (q — a), NL(¢g —a — 1) and Op(¢ — a — 2) so that we get the vanishing
for ¢ > a+ 2. If ¢ < a—1 (if necessary, recall that « > 1 in any case) we can consider
H™2(W,[A2Mr @ Ow (—X + (¢—2)T)]* ® Ky) and we can proceed analogously as r —2 > 2.

O
Remark 3.6. If a = 2 or a = 3 (i.e. the fibres are hypersurfaces of degree 2 or 3) Proposition
3.5 shows that under the same assumptions of 3.2 for P(E), with r > 4, by ,(X) =0if ¢ >3
and therefore X is p.n. if and only if it is 2-normal. If r = 3 the previous proof works only
for ¢ > a + 2.

Proposition 3.7. Let (X, L) as above, with the same assumptions of 3.5, then by o(X) =0
ifb>1.

Proof. We have only to show that H?(W,A?Mr ® Ow(—X + (a — 2)T)) = 0. By using
0 = A’My — A2(H'(W,T)) @ Ow — H'W,T)®T — S*(T) =T ® T — 0 tensorized by
Ow (=X + (a — 2)T) we see that

H*(W,A’Mr ® Oy (=X + (a — 2)T)) = H\(W, My ® Ow (=X + (a — 1)T))

as Mr ® T is the kernel of H'(W,T)® T - TQT.

Let B be a degree b divisor on C such that X = o7 + p*B, then —X + (a — 1)T =
—T + p*(—=B) and H*(W, Mt ® Ow (=T + p*(—B)) = H°(C, —B) by using Leray’s spectral
sequence as usual. If b > 1 we have the required vanishing. U

Remark 3.8. By arguing as in the previous proof we can show that
H*(W,N°M; ® Ow (—X + (a — 1)T)) = H'(C, Mg ® B)

which does not vanish for b > 1, so that it is not possible to get conditions under which
b1,0+1(X) = b1,4(X) = 0 by using this method.

4. Koszul groups for X = P(E)

For any smooth n-dimensional X, embedded in P¥ by a very ample line bundle L and for
any vector bundle € over X we can consider the Koszul C-vector spaces K, (X, &, L) (see
[4]). Let k, 4(X, €, L) be the dimension of K, ,(X, &, L). It is ky o(X,Ox, L) = by 4, for any
P, q, so that the computation of these Koszul groups is related to the minimal resolutions
of R.

For the convenience of the reader we recall the following basic results, due to M. Green,
which will be used in the sequel:
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Theorem 4.1. ([4], Th.3.a.1) K, ,(X,€&,L) =0 if h°(X, € ® LI) < p.

Theorem 4.2. ([4], Th.2.c.6)
Kpo X, 8, L) 2 Ky pnt1 o X, 8*®Kx, L) if BH(X,EQ L) =0 and h*(X,EQLI"1)=0
fori=1,2,... . n—1.

In this section E is a rank r vector bundle over a smooth genus g curve C, r > 2, X = P(F)
is embedded in PV by a very ample line bundle L ~ aT + p*B, where B is a divisor of C,
deg(B) = b. X is linearly normal, N = h°(L) — 1, n =71, L = aT + bF, 6 = ¢;(F). We want
to compute k,, by using 4.1 and 4.2 when € = Ox.

First of all we consider h*(X, L7 %) fori =1,2,...,7r —1 and ¢ > 2. Recall that L% ~
(¢—1i)aT 4+ p*[(¢—i)B] and that a > 1 and ap~ (E) +b > 0 as L is very ample; moreover, by
using Leray’s spectral sequence and Kodaira’s vanishing we have that all cohomology groups
vanish but for ¢ = 1, in this case we have h'(X, L9™') = h}(C, SV (E)® (¢ — 1)B) = 0 if
(g—1)(ap (E)+b) > 29 —2.

Now we consider h*(X,LI™"!) for 4 = 1,2,...,7r — 1 and ¢ > 3. Reasoning as in the
previous case we get that all groups vanish if (¢ — 2)(ap=(F) + b) > 2¢g — 2. Note that if
q = 2,1 =1 the corresponding group does not vanish unless g = 0.

We have proved the following

Lemma 4.3. With the notation as in this section let ¢ > 3, g > 1, then K, ,(X,0x, L)* =
KN—r—p,r+1—q(X7 KXa L) Zf (q - 2)(0’/1’_(E) + b) > 29 —2.

Lemma 4.3 and Theorem 4.2 tell us that, under some conditions, for our varieties
kpo(X,0x,L) = 0if N—r —p < 0 and k,,(X,0x,L) = 0if N—r—p > 0 and
W(X,Kx +(r+1—¢q)L) < N—r —p. If g > 1itis well-known that N > 2r, hence
N —r—p>r—p,so that for p = 0,1,...,r to get k,,(X,0x,L) = 0 it suffices that
R(X,Kx +(r+1—¢q)L)=0.

We have Kx + (r+1—q¢)L=[(r+1—-qa—r]T +[d+ 29— 2+ (r+1— q)b|F,
and such a line bundle has no sections if (r +1 — ¢)a —r < 0 or (see [9], Lemma 1.12) if
(r+1—qa—rjpt(E)+d6+29—24+(r+1—qgb<0and (r+1—¢g)a—r > 0. Then we
have proved the following:

Lemma 4.4. With the notation as in this section let ¢ > 3, r > p > 0, g > 1, then
K, (X,0x,L)=0if (¢—2)(ap™ (E)+b)>2¢9—2 and (r+1—q)a—r <0 orif (r+1—q)a—r>0
and [(r+1—qa—rjpt(E)+6+29g—2+(r+1—-¢q)b<0.

Corollary 4.5. Let X = P(E) as above with r = 2, g > 1, then by (X) = 0 for ¢ > 3 if
ap~ (E)+b>2g9—2.

Corollary 4.6. Let X = P(F) be a scroll over a curve of genus g > 1 (hencea=1,b=0)
then by 4(X) =0 forq > 3 if u=(E) > 29 —2, therefore X is p.n. if and only if it is 2-normal.

Corollary 4.7. Let X = P(FE) be a scroll over a curve of genus g = 2 then X is p.n. if and
only if it is 2-normal; in fact in this case p=(E) > 3, (see [2]); moreover, by ,1q(X) = 0 for
g=>3,r>p=>0.
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Corollary 4.8. Let X = P(E) be a scroll over a curve of genus g > 1 with u~(E) > 2g,
then X is projectively normal (see [9]) and Ix is generated in degree two.

Remark 4.9. The previous results hold also if X is embedded by a linear subspace W of
H°(X, L), i.e. if X is not linearly normal. To see this it is enough to use Green’s Theorems
4.1 and 4.2, being careful to use N' = dim W instead of IV in the previous formulas.

5. Long exact sequences for Koszul groups and applications

Let X be a smooth variety in PV as usual and let Y be a smooth, one codimensional subvariety
of X. Let L be a very ample divisor of X. Then from the natural exact sequence given by Y:
0— O0x(-Y)—=0x = Oy = 0weget 0 — H*X,¢L-Y) = H(X,qL) - H*(Y,qLy) - - -
for any ¢ > 0.

Assume that the previous sequence is exact for any ¢ > 0, then if we put

A =BpoH (X, qL —Y), B =@g0H"(X,qL) and € = @,50H(Y, qLyy)

we get an exact sequence 0 - A — B — € — 0 of S-modules from which we deduce some
long exact sequences for Koszul groups (see [4], Cor.1.d.4):

B Kp,q(B) - Kp,q(e) - Kp—l,q+1 (A) - Kp—l,q+1 (B) e,

where K ¢(A)=Kpo(X,0x(=Y), L), Kpq(B)=Kpq(X,0x, L), Kpq(€C)=Kpy(Y, Oy, Ly).
In [3] the authors considered the projective normality of (X, L) in the case in which L is
interesting from the point of view of adjunction theory, i.e. when L = aKx + bA where A is
a suitable divisor of X and a,b are integers. Notice that it is the same point of view of [§]
and [14], [15], [16]. Here, by using the previous ideas we can prove the following proposition:

Proposition 5.1. Let X be a regular surface and let L be a very ample line bundle on X.
Assume that there exists a smooth curve in |L — Kx|. Then by 4(X) =0 for ¢ > 4.

Proof. Firstly notice that the proposition is true for (X, L) = (P?, Op2(1)). Let now (X, L) #
(P2, Op2(1)) and let Y be a smooth curve in |L — Kx|. From the exact sequence

0— Kx — L— Ly — 0, as X is regular it is easy to see that h'(X, L) = h*(X,L) =0 and
that Y is linearly normal in the embedding given by L. Now let

A =Bp0H (X, gL —Y), B = BgoH"(X,qL), €= BesoH"(Y,qLy).

The regularity of X and Kodaira’s vanishing theorem give an exact sequence of S-modules
0—+A— B — € — 0, which in turn gives the exact sequences

coo = Ko g(A) = Kog(B) = Ko 4(C) =0

for any ¢ > 0.

Ko4(€) = 0 for ¢ > 2 because Y is p.n. in P¥~! as it is canonically embedded by
Ly = Ky, hence it suffices to show that by 4(A) = Ko4(X,Ox(-Y),L) =0 for ¢ > 4. Note
that here € is considered as an S-module, not a Clzg, 1, - .. , zx_1]-module, however, YV is
p.n. in PV too, so that by ,(€) = ko4(€) =0, Vg > 2.
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We can use Theorem 4.2 as h' (X, —Y + (¢—1)L) = h*(X,-Y + (¢—2)L) = 0 for ¢ > 4,
so we have to consider Ky_33_,(X,0x(Y + Kx), L). Now we can use Theorem 4.1 because
h°(X,(4—q)L) < h°(X, L) — 3 for ¢ > 4. O

The previous ideas can be applied in other cases, for instance when X = P(F) is the projec-
tivized of a rank r vector bundle E over a surface ¥. In this case let 7" be the tautological
bundle and p : X — ¥ the natural projection as usual. Let C' be a smooth curve on %,
C' = 771(C) and let us consider, for any j > 0, the exact sequences:

0— Ox(jT —p*C) — Ox(]T) — OC’(jﬂC’) — 0.

If we assume that H'(X, jT — p*C) = 0, Vj > 0, Ko 4(X,O0x(—p*C),T) = 0, Vg > 2, and
Ticr embeds C' p.n. in PV-! then we have that X is p.n. In fact by these assumptions
there is an exact sequence 0 - A — B — € — 0 of S-modules, and from the sequences
e — K(),q(.A) — Ko’q(B) — Ko,q(e) — ... we have that bo’q(B) = 0, Vq > 2, (1e X is
pn.) as byy(A) = byy(€) = 0, Vg > 2, by assumptions. Note that here € is considered
as an S-module, not a C[zg, 1, ..., Ty 1]-module, however, C’ is p.n. in PV too, so that
bo4(€C) =0, Vg > 2.

Now we translate our assumptions into conditions on Y. The first one is simply
HY(X,89(E) ® 05(=C)) = 0, Vj > 1, the third one is satisfied if we assume that
© (Eic) > 2g(C) by Butler’s results [9]; for the second one we use Green’s Theorems 4.1
and 4.2. Let us consider h*(X, (¢ — i)T + p*(—=C)) for i = 1,... ,n — 1 = r, by standard
calculations they vanish if h*(2, S97(F) ® Ox(—C)) =0 fori = 1,...,r and g > i, so we
have only to assume further that h%(2, S972(F) ® Ox(—C)) = 0 for ¢ > 2. In order to have
h(X,(g—i—1)T+p*(—C))=0fori=1,...,r, it suffices to ask that h'(Z, Og(—C)) =0
by similar arguments. Hence we can apply Theorem 4.2 and we consider, for ¢ > 2,
KN nni1-¢(X,0x(p*C+ Kx),T). This group vanishes if h°(X,p*C + Kx+ (n+1—¢)T) <
N —n, ie. h%(Z,C +det(E) + Ks) < h°(E) — r — 2, by Theorem 4.1.

Thus we have proved the following

Theorem 5.2. Let E be a very ample, rank r, vector bundle over a smooth surface X, let
X =P(E) and let T be the tautological bundle. Moreover, let C' be a smooth genus g curve
on S. Then (X,T) is p.n. if

1) h'(%,57(E) ® 0s(=C)) =0 for j > 0,

2) h(Z, 87 (E) ® 0x(-C)) =0 for j > 0,

3) KO(Z,C + det(F) + Ks) < h%(E) —r — 2,
) 1= (Eic) > 2g.

=~

Remark 5.3. If C is a rational curve 4) is satisfied; if C' is an ample divisor 1) and 2) are
satisfied for j = 0; if — Ky, is effective 3) is more easily satisfied.

Now we want to give some examples in which Theorem 5.2 can be applied.

Example 5.4. Let 7 : ¥ — P2 be the blowing up of P? of k points in general position with
1 < k <5, let L be the generator of Pic(IP?), let Ey, ..., Ex be the exceptional divisors. ¥ is
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a well-known Del Pezzo surface and it is known that, in this range, — Ky is very ample. Let
E be —K5x & —Ks and let C be E;. Then Theorem 5.2 proves that (X, T) is p.n.

In fact by looking at the exact sequence 0 — Ox(—E;) — Ox — Op1 — 0 we get
that 1) and 2) are true for j = 0. 4) is true as E; is a rational curve. By recalling that
hO(%, —Kyx) = 10—k we have that h%(E)—r—2 = 16—2k. Moreover, h°(Z, C+det(E)+Kyx) =
hO(%Z, —Ks+E;) = h%(X,3n*L—E,, ... ,—E;) = 11—k as the k points are in general position,
hence 3) is satisfied. Now let us consider 1) and 2) for j > 1. It suffices to show that
hi{(¥,—tKy —E;) =0fort > 1,7 =1,2. For i = 2 we can use Serre duality. For i = 1 we
can use Kodaira vanishing because —tKY —E; = Ky — (t + 1)Ky — E; and —(t + 1)Ky — E;
is ample by Nakai-Moishezon criterion: (—(¢+ 1)Ky —E;)? > 0 and for any curve I' on ¥ we
have:

(=(t+1)Ky —E)) ' =—(t+1)KsI' — E;T' = —tKsl' — KsI' — E;T' > —tKsI' >0
because @ _g, embeds E; as a line so that
— Kyl = deg [®) g, (T)] > @, (E1)®|_g,, (T) = EiT.

Remark 5.5. Obviously, in the previous example, when k£ = 1 Butler’s criterion can be used
(see [9], Theorem 5.1A), to get the projective normality of (X, T).

Example 5.6. Let ¥ be P2, let C be a line, let E be a rank 2 very ample vector bundle on
P?, let 6L and c be, respectively, the first and second Chern classes of E (L is the generator
of Pic(P?) as above), let p : P(E) — P? be the natural projection. Under which assumptions
can we apply Theorem 5.27

First of all 4) is true as C' is a rational curve. 1) and 2) are true for j = 0 as C' is
ample. h°(X, C + det(E) + Kyx) = h®(P?, Op2(§ — 2)) = 6(6 — 1)/2, so condition 3) becomes:
h®(E) > 4+6(6—1)/2. Now let us consider 1) and 2) for j > 1. Let Y be a smooth element of
IT|, so that Y is isomorphic to the blowing up of P? at c points. Let 7 be the blowing up and let
Ei, ..., Ec be the exceptional divisors as before. We consider 0 - Ox(=Y) - Ox — Oy — 0
tensorized with 77— p*L and we have:

0= O0x((j —1)T -p'L) = Ox (4T —p*L) = Oy (T — p*L);y — 0.

We can proceed by induction on j > 1 as h*(X,—p*L) = 0 for 7 = 1,2, so we have only to
consider h*(Y, (T — p*L)jy) = 0 for i = 1,2. Recall that T}y = dn*L — E; --- — Ec. Now if
1 = 2 we can use Serre duality, if i = 1 we can use Kodaira vanishing as in Example 5.4 when
d>4and 0<c<6(ord>2and 0<c<2).

Hence, by using Theorem 5.2, with the previously introduced notation, we get the pro-
jective normality of (X, T) if

RO(E)>4+6(6—-1)/2,6§>4and 0 <c<6.

Example 5.7. Let ¥ be any surface, let C' be any rational curve on X, choose ' = L, a
very ample line bundle L. When r = 1 Theorem 5.2 is true too, moreover, condition 2) is
unnecessary. So we get that (X, L) is p.n. if:
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h'(Z,jL — C) =0 for j > 0,

R(Z,C + (3—q)L + Kx) < h%(L) — 3.
Such conditions are satisfied, for example, in many cases when X is the blowing up of P? in
k points in general position and C' = E;.
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