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Abstract. We give a geometric definition of a regulus in a not necessarily pappian
projective space of arbitrary dimension, such that the geometry of all reguli is a
certain chain geometry.
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The usual definitions of reguli ([5], [9]) and of chains ([1], [8]) only make sense over com-
mutative fields: In a non-pappian projective space reguli do not exist. A chain geometry
Y (K, R) is only defined if the field K is contained in the center of the ring R.

In this paper we generalize both notions to skew fields, i.e., not necessarily commutative
fields.

In Section 1 we collect some preliminary results. Then, in Section 2, we define reguli in
a geometric way that works also for non-pappian spaces, thus generalizing both the usual
definition and a definition due to B. Segre for three-dimensional projective spaces. We
derive some properties of these reguli, using mainly linear algebra.

We want to remark here that H. Havlicek in [6] introduces Segre manifolds over skew
fields, and thus also obtains a notion of reguli. It is not clear so far whether his notion
coincides with ours.

In Section 3 we introduce a chain geometry ¥(K, R) associated to the set of all reguli
in the not necessarily pappian projective space P(K,V). We know that V = U x U for
some left vector space U over K. The ring R is the endomorphism ring of this vector space
U. We prove that our reguli correspond to the chains of (K, R). Thus we generalize a
theorem proved in [2] for the pappian case.

In Section 4 we use the description of the reguli as chains in order to investigate the
intersections of all reguli through three given subspaces.
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1. Preliminaries

The usual definition of a regulus in a projective space of arbitrary dimension is as follows
(see [2], [5], [9]):

1.1. Definition. Let P be a projective space. A set R of at least three pairwise comple-
mentary subspaces of P is called a requlus, if the following two conditions are satisfied:

(R1) Any line of P, transversal to three elements of R, is transversal to every element
of R.

(R2) FEach point on a line transversal to R belongs to an element of R.

Here we call a line L transversal to a subspace W of P, if L meets W in a unique point.
Then we also say that W is transversal to L. Moreover, we call L transversal to a family
of subspaces, if it is transversal to each member of the family. Analogously we use the
formulation that a subspace W is transversal to a family of lines.

Note that a regulus can only exist if P is spanned by two isomorphic complementary
subspaces. Hence P = P(K, V') for some left vector space V over a not necessarily commu-
tative field K, where V 2 U x U for another left vector space U over K. In the case that
V is finite-dimensional this means that dim V' must be even.

Moreover, apart from the trivial situation that dim V' = 2 (where the whole set of points
of the projective line P(K, V) is a regulus), reguli exist only in pappian projective spaces,
i.e., over commutative fields (see [5]):

1.2. Remark. Let dimV > 2. Then the following statements hold:

(i) If K is not commutative, then there are no reguli in P(K, V).
(ii) If K is commutative, then any three pairwise complementary subspaces of P(K, V)
are contained in exactly one regulus.

Let us consider the special case that V is four-dimensional over the commutative field K:
Then the elements of a regulus in P(K, V') are lines. If G, H, L are pairwise complementary
(i.e., pairwise skew) lines, then the unique regulus R containing them consists of all lines
that meet the set R’ of all lines transversal to G, H, L. The set R’ is itself a regulus, called
the regulus opposite to R. In particular, any regulus in the three-dimensional pappian
projective space P(K,V) can be described as the set of all lines that meet three fixed
pairwise skew lines.

This observation was utilized by Segre in [10] in order to define reguli in such a way
that they exist also in non-pappian spaces (see also [3]):

1.3. Definition. (B. Segre) Let P be a three-dimensional projective space with line set G.
Let Ty, T1, Ty € G be pairwise skew. Then the set
R ={G € G | G is transversal to Ty, T1,T>}

1s called a requlus.

Obviously the two definitions of a regulus coincide if the ground field K is commutative.
Segre shows in [10] that only in the commutative case three pairwise skew lines belong to
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exactly one regulus. Otherwise there are many reguli through three given pairwise skew
lines (compare Section 4 below).

In Section 2 we are going to generalize Segre’s definition to higher dimensions. In
Section 3 we shall show that our reguli are the chains of a chain geometry. This was
already shown for the commutative case in [2], [7].

Before stating our definitions, we need some terminology. We recall the following notions
and results from [2]:

Since reguli again shall consist of at least three pairwise complementary subspaces of
P(K,V), we assume that V = U x U for some left vector space U.

We shall always identify a subspace of the vector space V with the associated projective
subspace of P(K,V).

Obviously, U x{0}, {0} xU, and {(u, u) | u € U} are pairwise complementary subspaces.
A subspace W < V is part of a triple of pairwise complementary subspaces exactly if it
belongs to the set

G={W<V |WxV/W(ZU)}.
If dimV = 2n , then G consists of all n-dimensional vector subspaces of V, and thus
corresponds to the set of (n—1)-dimensional projective subspaces of P(K, V). In particular,
if n = 2 these are the lines in P(K, V).

The reguli we are going to define are always subsets of the set G.

Let R = Endg (U) be the ring of K-linear mappings U — U. As usual, by R* we denote
the group of units of R. The projective line over R is the set

P(R) := {R(a,ﬁ) <R’|3,6€R: (?Y‘ f) EGLQ(R)}.

Two elements p = R(a,) and ¢ = R(y,d) of P(R) are called distant, if the matrix
a [

(’Y 5) belongs to GLa(R).
In [2] the following statements are shown:

1.4. Remark.

(i) Each W € G has the form U(®#) := {(u®,u?) | u € U} for a suitable pair (o, 3) €
R? with R(a, B) € P(R).
(ii) The mapping ® : P(R) — G : R(a, 8) +— U(®P) is a well-defined bijection.
(iii) Two points p,q € P(R) are distant exactly if their images p®,¢® € G are comple-
mentary.

In particular, we have U x {0} = U0, {0} x U = UOY | and {(u,u) |u e U} = U®D,
where 1 € R is the identity on U and 0 is the zero mapping.

By definition, the group GL2(R) operates transitively on P(R) and leaves the relation
“distant” invariant. It even acts transitively on the set of triples of pairwise distant points.

The group Autx (V) of all K-linear bijections V' — V is isomorphic to GL2(R); each
linear bijection 9 € Autg (V) has the form (u,w) — (u,w)? = (u® + w",u? + w’), where
(: ’g ) is a uniquely determined matrix in GLa(R).

This leads directly to the following:
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1.5. Remark. The actions of GLy(R) on P(R) and of Autg (V) on G are equivalent via
®. In particular, the group Autg (V) acts transitively on the set of triples of pairwise
complementary subspaces of P(K, V).

In the sequel we shall always identify the element 1) € GL2(R) with the associated linear
bijection in Autg (V). Moreover, by abuse of notation, we shall even denote the projective
collineation of P(K, V') induced by this linear bijection with .

In Section 3 we need that the field K is embedded into the ring R as a subfield. This can
only be done with respect to a fixed given basis. Assume that (b;);er is a basis of U. Then
for k € K we let A\x be the linear mapping U — U defined by bf"“ := kb;. The mapping
k — Mg is an embedding of K into R. Note that things become easier when restricting
to the finite-dimensional case because then one might use (scalar) matrices. However, one
has to keep in mind that also in that case Ag is not the left multiplication u — ku if K is
not commutative.

2. A new definition of a regulus

In this section we generalize Segre’s definition of a regulus to higher dimensions. We give
two definitions, one of them only makes sense in finite-dimensional projective spaces. Later
we shall prove that both definitions coincide in this case.

Our first definition is a rather natural generalization of Segre’s.

2.1. Definition. Let V be of dimension 2n over K. Let Ty, T1,... ,T, be n+ 1 lines in
P(K,V) that are in general position (i.e., any n of them span P(K,V')). Then the set

R :={W € G | W is transversal to Ty, T1,... ,Tp}

is called a regulus of type (1) in P(K,V).

We want to remark here that for commutative K this construction was already used by W.
Burau in [4, IV, §33, 5] in the more general context of Segre manifolds. In case dim V' = 2n
a regulus as defined in 1.1 is a family of generators of a Segre manifold Sy, according
to Burau’s notation.

The following proposition collects some more or less immediate consequences of the
definition.

Recall that a frame in an m-dimensional projective space P is a family of m + 2 points
such that any m + 1 of them span P (and hence are a basis of PP).

2.2. Proposition. Let R be the regulus of type (1) transversal to Ty, ... ,T,.
(i) For W € R and i € {0,... ,n} let Q; := WNT;. Then (Qo,-..,Qn) is a frame of
P(K,W).
(ii) Through each point @ on any of the lines T; there is exactly one W € R.
(iii) Any two (different) elements W, W' of R are complementary.

Proof. (i) is clear because the vector space W is n-dimensional and the T; are in general
position.

(ii): Without loss of generality consider Q@ =: Q¢ € Tp. The subspace spanned by @ and
Ts, ..., T, meets the line 77 in exactly one point, (; say. By induction one obtains points
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Q; € T; (1 <i < n) lying in the subspace spanned by Qo,...,Q;—1 and T;41,... ,T,. The
points Qo,- .. ,Qn_1 span an (n — 1)-dimensional projective subspace W that meets T,
and thus belongs to R. This W € R is uniquely determined by ()¢ because the induction
process does not depend on the order of the lines T;.
(iii) is a consequence of (i) and (ii): Let Q; = T; N W and Q; = T; N W'. By (1) we have
W =@, ,Qi; and W = @], Q;. From (2) we know that T; = Q; ® Q}, and hence
V=0, Ti =D, (Qi® Q) = (D;-, Qi) & (DL, Q) =W e W' O
Now we come to our second definition. It is valid for projective spaces P(K,V) of

arbitrary dimension. Recall that we always assume that V' = U x U for some vector
space U.

2.3. Definition. Let V. =U x U be a left vector space over K. Let (T;);c1 be a minimal
family of lines spanning P(K, V). Moreover, let Hy, Hy be two hyperplanes in P(K,V') such
that each line T; (i € I) meets Hy U Hy in exactly two points (not belonging to Hy N Hy).
We say that a subspace W of P(K,V) is reqular with respect to ((T;)ic1, H1, H2), if

(i) W is transversal to (T;);er and spanned by the points (W NT;);cr, and

(11) Wg Hl or W Q H2 OTWﬂ(HlLJHg) g HlﬂHQ.
The set

R ={W <V | W is regular w.r.t. ((T})ic1, H1,H2)}

is called a regulus of type (2) in P(K,V).
The first two cases of condition 2.3(ii) give two special elements of the regulus R.

2.4. Lemma. Let ((T})icr, H1, H2) and R be as in 2.3. For k € {1,2} we denote the sub-
space of P(K, V') spanned by the points (T; N Hy)icr by Xi. Then the following statements
hold:

(i) The subspaces X1 and Xy belong to the requlus R. They are isomorphic and com-
plementary, hence they belong to the set G as well.

(ii) If a subspace W € R contains one of the points T; N Hy, (i € I, k € {1,2}), then
W = X;.

Proof. (i): Obviously, Xy, is regular w.r.t. ((7;)scr,H1, H2) and so belongs to R. The
assumptions on ((T;);er, H1, Hz) yield that V = X1®X2. Moreover, X; & X, viaT;NH; —
T; N Hsy. So Xl,Xg €qg.

(ii): Assume that @; := T; N Hy belongs to W € R. If W C Hy, then of course W = X.
Otherwise 2.3(ii) implies Q; € H; N Hy, which is not allowed for a point of T;. d

We also have some direct consequences of the second definition that are analogous to
those of 2.2 above.

2.5. Proposition. Let R the regulus of type (2) regular w.r.t. ((T;)icr, H1, H2).

(i) For W e R andi €I let Q; := W NT;. Then (Q;)ics s a basis of W.
(ii) Through each point Q on any of the lines T; there is exactly one W € R.
(iii) Any two elements W, W' of R are complementary. Moreover, they are isomorphic
and thus belong to G.
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Proof. (i) follows directly from the definition.

(ii): Consider a point @ € T; for a fixed ¢ € I. By 2.4(ii) the only W € R through T; N Hj,
is Xi (k € {1,2}). So without loss of generality we may assume that () does not belong
to Hy U Hy. Hence H := (Hy N Hy) & @ is a hyperplane in V, different from H; and
H,. Each line Tj, j € I, meets H in a unique point, because otherwise T; would intersect
H, U H, in at most one point of H; N Hy, which is not allowed by 2.3. Let Q; :=T; N H
(in particular, @; = @). The subspace W := GajeI Q; belongs to R because W C H and
HnN Hk = Hl N H2 (fOI' k= 1, 2), which implies W N (Hl U Hz) g Hl N HQ.

It remains to prove that W € R is uniquely determined by this construction. Assume
that W’ € R contains Q. Let Q} :== W' NT;. Since W' = Der @}, we have to show that
Q; = Q; = HNT; holds for every j € I. Suppose that this is not the case. Then there is a
j € I with Q; ¢ H, and thus V = H ® Q; = (Hy N Ha) ® Q © Q}. In particular, the line
L := QGBQ;- meets each of the hyperplanes Hq, Hy in a point not contained in H; N Hs. On
the other hand, L is entirely contained in W', a contradiction to W/N(H,UHy) C HiNH,
(which holds since @ € W'\ (Hy U Hy)).

(iii) can be shown similarly to 2.2(iii). O

Note that so far it is not clear that the reguli defined above coincide with those of 1.1 in
the commutative case. This will be shown at the end of this section.

By 2.2 and 2.5 any two elements of a regulus of type (1) and of type (2), respectively,
are complementary. Moreover, we know that each regulus is a subset of G and consists of
at least three elements.

Now we consider three arbitrary pairwise complementary subspaces Wi, Wy, W3 in
P(K,V). We want to show that there exist reguli of type (1) (if dimV < oo) and of
type (2) containing Wy, Wy, W.

The direct decompositions V. = Wy @ Wy = W7 & W3 = Wy @ W3 give rise to a
linear bijection 7 : W7 — Wj, uniquely determined by W3, namely w; = wsy + wz —
wy. We denote this linear mapping and also the induced projectivity with center W3 by
(W1, Wa, W3). It will be used in the subsequent propositions in order to describe the
reguli through Wy, Ws, W3.

2.6. Proposition. Let dimV = 2n, and let W1, Wy, W3 € G be pairwise complementary.
Then there is at least one regulus of type (1) containing Wi, Wa, W3.

Every regulus of type (1) through Wy, Wa, W3 can be obtained as follows:

Let (Py, Py, ..., P,) be a frame in W1, and let 7 = w(Wy, Wo, W3). Then (PJ, PT,...,PT)
is a frame in Wa, and the lines To = Py ® Py, ..., T, = P, @ P} are in general position.
The requlus R with transversals Ty, ... , T, contains Wi, Wy, W3.

Proof. Let (Py, P1,...,P,) be a frame in Wy such that P, = Kb;, b; = ¢; +d; € Wy,
c; € Wa,d; € W3 (for i € {0,...,n}). Then T; meets Wy in the point Kc¢; = P and W3
in the point Kd;. So the construction yields a regulus through Wy, Wy, Wj.

Every regulus of type (1) through Wi, Wy, W3 can be obtained in this way, because for
given transversals Tp,...,T, the points P, = Wy NT; (i € {0,...,n}) build a frame of
W1, and P; = Wy N T; equals P since T; is contained in the subspace spanned by P; and
the center W3 of x. O
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A similar statement holds for the reguli of type (2). Before stating it we need the definition
of a fundamental figure of a projective space P. This is a pair ((F;);er, H) consisting of a
basis (F;)ier of P and hyperplane H in P such that no point P; (i € I) belongs to H.

The notion of a fundamental figure in a projective space is due to H. Brauner [3].
It serves as a substitute for the notion of a frame (called fundamental set by Brauner)
in the infinite-dimensional case. In particular, the group of projective collineations of a
projective space P acts transitively on the set of fundamental figures in P, and it acts
sharply transitively exactly if P is pappian (see [3, Satz 4.6]).

2.7. Proposition. Let Wy, Wy, W3 € G be pairwise complementary. Then there is at
least one regulus of type (2) containing Wy, Wy, Wi.

Every requlus of type (2) through Wy, Wy, W3 satisfying W, C Hy, Wy C Hy (with
Hy, Hy as in 2.8) can be obtained as follows:

Let ((P;)icr, H) be a fundamental figure in Wy, and let m = w(Wy, Wa, Ws). Then
((PF)ier, H™) is a fundamental figure in Wy. The family (T; = P; @ P[);cr is a minimal
family of lines spanning P(K,V'), and the union of the two hyperplanes Hi = W1 & H™,
Hy = H & Wy is met by each line T; in exactly two points. The requlus reqular w.r.t.
((T3)ier, H1, Ha) contains Wi, Wo, W3 and satisfies W, C Hy, Wy C H,.

Proof. Let ((P;)ier, H) be a fundamental figure in W3. As in the proof of 2.6 one can see
that every line T; = P; @ P meets Wy, (k € {1,2,3}). The points of intersection span
Wy since (P;);er is a basis of Wi. Moreover, we have W; C H; and Wy C H,. Next we
show that also W3 satisfies 2.3(ii): Consider a point Kws in W3 N Hy with wz = wq + ws
for unique w; € Wi, we € Wy, wy # 0 # wy. By definition of 7 we have —wy = wfT.
From wy — w] = ws € Hy = W1 @ H™ we conclude wT € H™, hence we have w; € H
and w3 € H@® H™ = H; N Hy. Similarly, a point in W3 N Hy must belong to H; N Hs.
So W3 N (Hy U Hy) C Hy N Hy. Altogether, the regulus regular w.r.t. ((7;):er, H1, Ha)
contains Wy, Wy, W3 and satisfies W7 C H,, Wy C Ho.

Every regulus R of type (2) through Wy, Wy, W3 with Wy, C H;,Wo C Hjy can be
obtained in this way: Let R be regular w.r.t. ((T;);cr, H1, Ha). Then ((P;)iecr, H) with
P, =W NT;, H=W;NHy is a fundamental figure in W;: First of all, by definition of the
regulus, (P;);cr is a basis of W;. Moreover, no P; belongs to H because P; € Hy\(H1NH>).
This also implies that H is a hyperplane in W;. As in the proof of 2.6 one sees that
T; = P, @ P[. In addition, the hyperplane H @ Wy = (W1 N Hy) @ (Wa N Hy) of V is
contained in the hyperplane Hs, so H @ Wy = Hs. Analogously, Hi = W; & H™. So R
equals the regulus obtained from the fundamental figure ((P;);ecr, H). O

Our next aim is to show that the reguli of type (1) and type (2) coincide in the finite-
dimensional case. In order to make calculations easier, we want to consider reguli contain-
ing the three pairwise complementary subspaces U0 = U x {0}, UV = {0} x U, and
UMY = {(u,u) | ue U}

This is possible without loss of generality because of the next lemma.

2.8. Lemma. Let Ry and Rs be the sets of all requli of type (1) and (2), respectively, in
P(K,V). Then the following statements hold:
(i) Ewvery collineation of P(K, V') acts on the sets Ry and R,, i.e., maps requli to requli
(of the same type).
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(ii) The group Autg (V) acts transitively on both sets Ry and Ry, i.e., any requlus can
be mapped to any other regulus (of the same type) by a projective collineation.

Proof. (i) is clear by the definitions of the reguli.

(ii): By 2.6 and 2.7 each regulus is determined by three pairwise complementary subspaces
W1, Ws, W3 and a frame (or a fundamental figure) in W;. By 1.5, the group Autx (V) acts
transitively on the set of triples of pairwise complementary subspaces. So without loss of
generality we may assume Wy = ULO, Wy = UOY, and W3 = UMY, Now let F, F'
be two frames (or two fundamental figures) in W;. Then there is a projective collineation
of the projective space P(K,W;) mapping F to F', and hence there is a linear bijection

a € R = Endg(U) such that ((3 2) € GLy(R) = Autg (V) maps F to F' (and fixes

W17W27W3)' O

We need two more lemmas in order to arrive at our desired result that fR; = Ry in the
finite-dimensional case.

2.9. Lemma. Let (by,...,b,) be a basis of U, and let T; = K(b;,0) & K(0,b;) for
ie{l,...,n}. Then W € G is transversal to (T1,...,T,) exactly if

= {(Z zikibi, > zilibi) | T1,... 1y € K} for fized pairs (k;,1;) € K2\ {(0,0)}.
i=1 i=1

Proof. This is clear because the intersection point of W with T; is some K (k;b;,1;b;) with
(ki,l;) # (0,0). The linearly independent vectors (k1b1,l1b1),..., (knbn,lnby) span the
n-dimensional vector space W. O

In the formulation of the next lemma we make use of the embedding k£ +— Ar of K into
R = Endg (U) introduced at the end of Section 1.

2.10. Lemma. Let (by,...,b,) be a basis of U, let T; = K(b;,0) & K(0,b;) fori €
{1,...,n}, and let W € G be transversal to (T1,...,T,). Moreover, let by = > ., b,
To = K(bo,0) ® K(0,b9), and H = {>_ x;ib; | ©1,... ,2, € K, >, z; =0}, H . =U x H,
=1 =1

Hy = H x U. Then the following statements are equivalent:

() W=U®9 or W =UCD = {(u*,u) |u € U} for somek € K.
(ii) W is transversal to Tp.
(lll) Wg Hl or W g H2 OTWﬂ(HlLJHQ) g Hlﬂﬂz.

Proof. One can easily check that (i) implies (ii) and (iii).
Now we consider the implications (ii) = (i) and (iii) = (i). Since W is transversal to

(T1,...,Tp), we know from 2.9 that W = {( xkbz,zleb)|x1,...,xn€K}for

fixed pairs (k;, ;) € K2\{(0,0)}. What we have to show is that the equations k; = ... =k,
and /; =...=1, hold.

First let (ii) be satisfied. Then W contains a point K (kbg,lbg) with suitable (k,l) #
(0,0). Since ((k1b1,11b1),- .. , (knby,lnby)) is a basis of W, we conclude k = k; = ... =k,

andl =1, =...=1,, as desired.
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Now assume that (iii) holds. If W C Hj, then W = U x {0}. Next we show that
otherwise I; # 0 holds for each ¢ € {1,... ,n}: If [; = 0, then the point K (k;b;,1;b;) =
K (k;b;,0) belongs to Hy = U x H, and from (iii) and b; ¢ H we conclude that k; =0, a
contradiction.

So without loss of generality we may assume Iy = ... =1, = 1. Fori,j € {1,... ,n}
with ¢ # j we consider the point K (k;b; — k;jbj, b; — b;) in W, which again belongs to Hi,
and thus we have k;b; — k;b; € H by (3), which means k; = k;. d
Using the notation from above, we now consider the points P;= K (b;,0) (fori € {0,...,n})

and the hyperplane H x {0} in U x {0}. Obviously (P1,...,P,) is a basis of the projective
space corresponding to U x {0}. Moreover, (Py,...,P,) is a frame and ((Py,...,P,), H X
{0}) is a fundamental figure. Hence Propositions 2.6 and 2.7 together with Lemmas 2.8
and 2.10 imply the following:

2.11. Corollary. Let V be finite-dimensional. Then each requlus of type (1) in P(K,V)
is also a requlus of type (2) and vice versa.

So we do not have to distinguish between both types of reguli any more (note that if
dimV = oo we only had one type of reguli from the beginning). In the sequel we shall
simply speak of reguli.

We know already (from 2.6, 2.7) that through any three pairwise complementary sub-
spaces W1, Wy, W3 there is at least one regulus. Our next aim is to show that this regulus
is uniquely determined exactly if the ground field K is commutative. In order to prove
this, we need again several lemmas.

According to Proposition 2.7 one can construct a (unique) regulus from the given
data (Wy, Wy, W3) and F, where F is a fundamental figure in W; (note that Wj is
involved because it gives rise to the projectivity «(Wy, Wa, W3)). We call this regulus
R(Wq, Wy, W3, F). It is clear that R(Wy, Wa, W3, F) contains Wy, Wy, W3. It is not yet
clear, however, that all reguli containing W1, Wy, W35 look like this (with a suitable fun-
damental figure F). We shall show that in fact this is true (no matter whether K is
commutative or not).

2.12. Lemma. Let R = R(Wy, Wa, W35, F) and let m = w(W1, Wy, W3). Then

R = R(W27W17W37}'7r) = R(W17W37W27}.)'

Proof. We use the notation of 2.7. So R ={W € G | W is regular w.r.t. ((T})icr1,H1, H2)}.
The first equation of our assertion is clear, because obviously R(W,, W1, W3, F™) consists
of all W € G that are regular w.r.t. ((T;)ier, H2, H1).

It remains to show that R = R(Wy, W3, Wy, F). Let ® = w(Wy, W3, W3). Let H, =
W, @ HT and fIZ = H @ W3. An easy calculation (using that each w; € W; has the form
w; = wi + wf) shows that lfll = H; and ﬂl N ﬂz = H; N H,.

We know that the regulus R = R(Wy, W3, Wy, F) consists of all W € G regular w.r.t.
((Ti)iel,Hl,ﬁg). Of course, W1, Wy, W3 belong to R. In particular, the subspace X
spanned by all points T; N H, (i € I) equals W1, and, analogously, X, equals Wj.
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Consider W € R, W # Wi,W2,W3. We have to show that W is regular w.r.t.
((E)ieI,Hl,ﬁg) The only thing that is not yet clear is that W N H2 C HyN Hy. The
subspace W/ = W N Hj is a hyperplane in W (since otherwise W = X2 W3 by 2.4(ii)
because all T; meet W). Moreover, W' contains W"” = W N Hy; N Hy, = W N Hy N Hy,
which equals W N Hy because W is regular w.r.t. ((T;)icr, H1, Hz). But W’ = W N H,
also is a hyperplane in W and hence must coincide with W'. O

2.13. Lemma. Let R = R(Wyi, Wa, Ws, F), and let R = R(W1, Wa, Ws, F). More-
over, let m = w(Wy, Wo, W3) and ® = w(W1, W, Wg) Then the following statements are
equivalent:
(i) 77 = 7,
(i) R =R,
(iil) W3 € R.

Proof. (i) = (ii) is clear because W3 and Wi are only needed in the construction of the
reguli in order to determine F” and F7™, respectively.

(ii) = (iii) is trivial.

(iii) = (i): Assume that W3 € R, and let F = ((Pi)ier, H). Since every T; = P; @ Pf
meets W5 we have Pr = P’r Consider h € H. We show that A" € H™. Then HT is a
hyperplane in W contalned in the hyperplane H™ and hence equal to H™. By definition
of 7 there is a w € W3 with w = h — h™. So w € W3 n (H @ Wz) W5 N H,, which,
by assumption, is contained in H; N Hy = H @ H™. This implies A™ € H™, because h™ is

unique in Ws. l:l

Now we come to the announced statement that the reguli through Wy, W5, W5 only depend
on the choice of a fundamental figure F in Wj.

2.14. Theorem. Let R be a regulus containing the pairwise complementary subspaces
Wi, Wa, W3 € G. Then R = R(W1,Wa, W3, F) for a suitable fundamental figure F in W1.

Proof. We know that R = R(W/{, W3, Wi, F') for W{, W3, W} € R and a fundamental
figure 7' in W/{. First we want to substitute W{ by W; and F’ by a fundamental figure
F in W;. We assume that Wy # W{, W3, Wi (otherwise an application of 2.12 leads to
the desired result). Because of Wi € R we know from 2.13 that R = R(W{, W3, Wy, F').
Applying 2.12 yields R = R(W;, W, W4, F) for a suitable F. A similar procedure then
substitutes W4 by Wa and W4 by Ws. O

Now we turn to the commutative case. Recall that a projective collineation of a projective
space P(K, W) is uniquely determined by its action on a fundamental figure exactly if K
is commutative.

2.15. Theorem. Let W1, Wy, W3 € G be pairwise complementary. Then the equation
R(W1,Wa, W3, F) = R(W1, Wq, W5, F') holds for any two fundamental figures F,F' of
Wi if, and only if, K is commutative.

Proof. Let W € G be a subspace complementary to W7 and Ws. Moreover, let m =
71'(W1, Wz, Wg) and ’ﬁ':ﬂ'(Wl, W2, W) By 2.13 we know that W € R:R(Wl, Wz, Wg, f)
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is equivalent to F" = FT. Analogously, W € R' = R(W1, Wa, W3, F') is equivalent to
F'™ = F'™. Now the condition F™ = F7™ implies 7 = 7, and hence also F'" = F'" for
every F', exactly if K is commutative. This yields the assertion. O

So in the commutative case a regulus only depends on three of its elements. It also is a
regulus in the usual sense (of Definition 1.1):

2.16. Corollary. Let K be commutative, and let W1, Wy, W3 € G be pairwise comple-
mentary. Then there is exactly one regulus containing W1, Wo, Ws. This requlus coincides
with the unique requlus in the sense of Definition 1.1 that contains W1, Wy, Wis.

Proof. The first statement is clear because of the preceding theorems.

By 2.5(iii) any two elements of a regulus are complementary. It remains to show that
the regulus R through Wi, Wy, W3 satisfies conditions (R1) and (R2) of 1.1.

Since R is independent of the choice of the fundamental figure in Wy, according to 2.7
any line 7' meeting W7, W5, W3 can be chosen as one of the transversals T; that determine
R. So (R1) is satisfied, and, moreover, 2.5(ii) yields (R2). O

3. Reguli and chains

In this section we are going to interpret the reguli from above as so-called chains. First we
recall what a chain geometry is. Note that our definition here is broader than the usual
one that can be found, e.g., in [1] or [8].

As mentioned in Section 1, the set G of all subspaces of P(K, V') that possess an isomor-
phic complement can be identified with the projective line P(R) over the ring R = End g (U)
via @ : R(a, §) —» U@A),

Moreover, after fixing a basis (b;);cr of U, one obtains an embedding k — Ai of the
field K into R. Hence the projective line over K may be embedded into P(R) as well, via
K(k,l) = R(Xg, Ap).

The image of P(K) under this embedding will be denoted by Co. It is our standard
chain. All the other chains in P(R) are images of Cy under the group GL2(R). So the
chain set €(K, R) is the orbit CS72®) = (€] | v € GLy(R)}.

The incidence structure (K, R) := (P(R),€(K, R)) is called the chain geometry over
(K, R). One can easily see that two points of P(R) are joined by a chain exactly if they
are distant (in the sense of Section 1).

Up to now, chain geometries (K, R) have mainly been investigated in the case that R
is a K-algebra, i.e., the field K is contained in the center of R. Of course then K has to be
commutative. In that case the chain geometry X (K, R) satisfies the extra condition that
any three pairwise distant points are joined by a unique chain. See [1] and [8] for more
results in this case.

In [2, Thm. 2.8] it is shown that if the ground field K of the projective space P(K,V)
is commutative, then the incidence structure (G,9R), where R is the set of all reguli (in
the sense of Definition 1.1), is isomorphic to the chain geometry (K, R) over the ring
R = Endg (U), which in this case is a K-algebra. The isomorphism ¥(K, R) — (G,R) is
our bijection ®.
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We want to show now that this result can be carried over to the non-commutative case,
using our new definition of a regulus.

Let 2R be the set of all reguli (according to Definitions 2.1 and 2.3) in P(K, V'), where K
need not be commutative. As before, we assume V = U x U. For the rest of this section,
we fix a basis (b;);cr of U and embed K into R = Endg (U) with respect to this basis.

In order to show that the incidences structure (G, fR) is isomorphic to ¥(K, R), we shall
proceed as follows: Our crucial result will say that the image of the standard chain Cy under
® is a standard regulus Ry = ’R(U(l’o), U1, U(l’l),}'o), with respect to some standard
fundamental figure Fy. The announced isomorphism theorem then follows easily by using
1.5 and 2.8.

We begin with the definition of the standard fundamental figure in U9 = U x {0}.
We assume that the index set I of our basis (b;);c; of U contains the element 0. For
i € Iy := I\ {0} we define a; := b; — bp. Then (a;);cys, is a basis of a hyperplane H in
U, such that no b; (i € I) belongs to H. For i € I let P, := K(b;,0). Moreover, let
Hy := H x {0}. Then Fy := ((P;);er, Ho) is a fundamental figure in U x {0}.

The next statement is our decisive theorem. In the finite-dimensional case it is an
immediate consequence of 2.10.

3.1. Theorem. The image C¥ of the standard chain Cy is a regulus, namely CE = Ro :=
RUO, O Tl F).

Proof. We recall that the regulus Ry = R(UMO, TN y1), F,) consists of all subspaces
Weg regular w.r.t. ((Ti)ieI,Hl,H2), where Tz = K(bz,O) ) K(O,bz), Hi=UxH and
H2 =HxU.

First we show that ® maps each element of Cy into Rg. This is clear for R(1,0) and
R(0,1), because their images are U (1.0) and U1, respectively. So it remains to consider
R(Ax, 1) for k € K* = K \ {0}. Its image is UMV = {(u*,u) | u € U}. This subspace
satisfies condition 2.3(i) because it contains exactly one point of each line T;, namely,
K (kb;, b;) = K(bf"“,bi), and it is spanned by these points. Moreover, U**:1) satisfies
2.3(ii): We have UV N H; = {(h**,h) | h € H}. Since H is invariant under Ay by
construction, this means U Ce)NHy C Hx H= HyN H,. Analogously one sees that
URe:Y) N Hy C Hy N Hs, because UQe1) = gAY,

Now we consider an arbitrary W € Ry \ {U9}. Then W = U = R(a,B)® for
some R(a, 8) € P(R). By 2.5(iii) we know that W is complementary to U™ and so we
may assume that § = 1. Hence we have to prove that a = A\ for some k € K.

Since W = U(®Y is transversal to (T})scr, for each i € I there are elements u; € U\ {0}
and (k;,1;) € K2\ {(0,0)} such that u® = k;b; and u; = [;b;. Because of u; # 0 we may
even assume that all [; are equal to 1. So we have b = k;b; (¢ € I), which determines «
uniquely.

It remains to show that k; = k; holds for all pairs (4, j) € I x I. This will be done by
using the fact that W fulfils 2.3(ii). The subspaces X; and X5 of 2.4 are U x {0} and
{0} x U, respectively. So obviously W # X;, and if W = X, our assertion is shown.
Otherwise 2.3(ii) means (by 2.4) that the intersection W N (Hy U Hy) = {(u*,u) |u € H
or u* € H} is contained in Hy N Hy = H x H. This implies H* C H. Now let i € I,.
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Then a; = b; — by € H, and hence af = k;b; — kobg € H. Since (a;);e1, is a basis of H and
(b;)icr is a basis of U, this means k; = ko, as desired. d

Now we know that the chain Cy is mapped to a regulus. This can easily be carried over to
the other chains.

3.2. Corollary. Let C € €(K,R). Then C® is a regulus.

Proof. By definition C = CJ for some v € GLy(R) = Autg (V). Thus by 3.1 we have
C® =C)® =" = R), where v € Autg (V) by 2.8(i) maps reguli to reguli. This yields
the assertion. O

By 3.1 we also know that the standard regulus Ry = R(U®, D gl i) is the
image of a chain. This holds for every other regulus as well, because of the action of
Autg (V) = GLy(R) on the set R.

3.3. Corollary. Let R € R be any requlus. Then R = C® for some C € ¢(K,R). Hence
¢(K,R)® =R

Proof. By 2.8(ii) there is a v € Autg (V) = GLy(R) mapping the standard regulus Ry to
R. So by 3.1 we have R = RJ = C5" = CJ®, where C is a chain. O

Altogether, we now have completed the proof of the isomorphism theorem generalizing [2,
Thm. 2.8]:

3.4. Main Theorem. The incidence structure (G,R) of all reguli in P(K,V) is isomor-
phic to the chain geometry Y.(K, R).

After having established Theorem 3.4 we can make use of the algebraic description of
(G,MR) as the chain geometry X(K, R) for our investigation of the geometric properties of
the reguli in P(K, V).

The first result of 2.16, e.g., now follows directly from the fact that in a chain geometry
Y(K, R) over a K-algebra R any three pairwise distant points are joined by a unique chain
(note that of course R = Endg (U) is a K-algebra if K is commutative). Moreover, also
the second part of 2.16 now is immediately clear, namely, that in the commutative case
the old and the new reguli coincide, because in [2] we showed the same theorem as 3.4 for
the old reguli (and we used the same isomorphism ®).

4. Intersections of reguli

In this section we want to determine the intersection Z = Z(W1y, Wy, W3) of all reguli
containing three given pairwise complementary subspaces Wi, Wa, W3 of P(K,V). If K
is commutative this is the unique regulus through Wy, Wy, W3. Otherwise the center
Z = Z(K) of the field K comes into play.

By 2.14 we know that Z = (\{R(W1, Wy, W3, F) | F fundamental figure in W;}. We
could use this description and some linear algebra for the explicit determination of Z.
However, we prefer taking the chain-geometric point of view.

But before, we consider Segre’s case of the reguli in the three-dimensional projective
space P(K, K*). Here both the transversals and the elements of a regulus are lines. One can
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easily see that in this case our intersection Z = Z(W;, Wy, W3) is the lineset Z={L € G | L
transversal to 7%}, where R is the regulus determined by the transversal lines Wy, Wy, W3.
Segre proves in [10] that this set Z is a regulus over the center Z = Z(K).

In order to make this more explicit, we introduce some terminology that will also be
used later for stating our generalization of Segre’s result.

Let V' be a vector space (of arbitrary dimension) over K, and let Z = Z(K). We call
v € V a Z-vector with respect to the basis (c¢;)jes of V if all coordinates of v (w.r.t. this
basis) belong to Z. A subspace W < V is a Z-subspace w.r.t. (c;j);je if it possesses a basis
of Z-vectors w.r.t. (c;)jes. The lattice of all Z-subspaces of V' w.r.t. some fixed basis
gives rise to a projective space over Z, contained in P(K, V') and with the same dimension
as P(K, V). Such a projective space will be called a projective Z-subspace of P(K, V).

So Segre’s result reads as follows: The intersection Z is a regulus in some projective
Z-subspace of P(K, K*) (with respect to a suitable basis of the vector space K*%).

We want to show that a similar result holds in higher dimensions. We use the notation
of the preceding sections. Instead of Z we first consider the corresponding intersection of
chains.

4.1. Lemma. Let Iy be the intersection of all chains containing the points R(1,0), R(0,1),
R(1,1). Then Zy = {R(X;,1) | z € Z} U{R(1,0)}, i.e., Iy is the projective line P(Z)
embedded into P(R) with respect to k — A.

Proof. Since the standard chain Cy is one of the chains under consideration, each element
of Zo\ {R(1,0), R(0,1)} has the form R()\y, 1) for some k € K*. Let C = CJ (v € GLy(R))
be another chain through R(1,0), R(0,1), R(1,1). We may assume that - fixes these three
points (because the subgroup GLy(K) of GLy(R) acts triply transitively on Cp). So v =
<(g 2) for some o € R*. A point p = R(Mg, 1) € Cy (with k& € K*) also belongs to
C = Cy exactly if p = R(\;,1)Y = R(\, ) for an element [ € K*. So p belongs to the
intersection 7 if, and only if, for all & € R* there is an [ € K* such that aly = \a.

In case k € Z this condition is fulfilled because then Ag is the mapping v — ku and
hence commutes with all a € R.

In order to show that on the other hand the condition above implies & € Z we consider
special mappings a: For s € K let a, € R* be defined by b* = b; (i € Ip), bg® = bo + sb;,
where j € I is some fixed index. Let a;A\ = Ajas be satisfied for some [ € K*. Then for
1 € Iy we have kb; = bf‘s’\’“ = b;\’as = Ib;, and so | = k. Moreover, kby + skb; = bgs)"“ =
by! ™ = byk** = kby + ksbj, and hence sk = ks holds. Since s € K was chosen arbitrarily,
this means k € Z. O

The result of this lemma now can be carried over (using the action of GL3(R)) to the
intersection of the chains through any other three pairwise distant points.

Our formulation of the subsequent proposition uses the chain geometry ¥(Z, R), i.e.,
the incidence structure (P(R),&(Z, R)). By 4.1 the elements of €(Z, R) are the images of
7o under GLy(R).

4.2. Proposition. Let R = Endg(U) and Z = Z(K). Let p,q,r € P(R) be pairwise
distant. Then the intersection T = Z(p,q,r) of all chains through p,q,r is a chain of the
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chain geometry ¥(Z, R).

Of course this means that Z(p, ¢, r) is the unique chain in ¥(Z, R) containing p, ¢, 7. Recall
that this chain is uniquely determined because Z is contained in the center of R (after
identifying z € Z with A, € R) and hence R is a Z-algebra.

Intersections of chains as above are considered by Benz in [1] for chain geometries
Y(K, L) where both K and L are skew fields. Benz calls them traces (“Fiahrten”); he
proves a theorem similar to 4.2 for these traces ([1, IV 2.3.3]).

Using 3.4 one can now derive from 4.1 the following generalization of Segre’s result:

4.3. Proposition. Let W1, Wy, W3 € G be pairwise complementary. Then the intersection
T = I(W1,Wo,W3) of all reguli containing W1, Wo, W3 is a requlus in a projective Z -
subspace of P(K, V).

Proof. We may assume that Wy = UL, Wy, = UOD, Wy = UMY, because the group
GL2(R) = Autg (V) maps Z-subspaces to Z-subspaces (as it permutes the bases of V).
By 3.4 the intersection Z; of all reguli through these three subspaces is igb , with Ty defined
as in 4.1. So by 4.1 we have T, = {U®=D | z € Z} U {UMO}. Obviously (compare 3.1)
this is the standard regulus in the projective Z-subspace of P(K, V) with respect to the
basis ((bz, 0))1'617 ((O, bi))iel of V=UxU. O
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