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Abstract. After a break of 20 years and with the help of the fundamental book
[2], the study of unilateral, equitransitive tilings of the plane by squares of three
sizes was revived. First D. Schattschneider had found five possible tilings [2, p. 76]
and Martini, Makai and Soltan generally characterized the unilateral tilings and
obtained a new equitransitive arrangement [4]. They also described two other
tilings constructed by B. Griinbaum. The problem to describe all possibilities
remained open.

In this paper we shall derive all the unilateral and equitransitive tilings using the
classification of the fundamental planigons. We prove, that only the eight known
tilings are possible. We have learned that D. Schattschneider parallelly solved this
problem, too. Our method is different from hers.
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1. Introduction

The problem how to tile the Euclidean plane by squares has been studied by many mathe-
matians (see, e.g., [2]). There are many kinds of questions, which restrict the attention to
special conditions.
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Our purpose here is to classify the so-called unilateral and equitransitive tilings of squares
of three different sizes. The notion of unilaterality means that no two congruent tiles have a
common side; on the other hand, we say that a tiling is equitransitive if for any two congruent
tiles S and S’ there is a congruence transform of the plane which maps S onto S’ in such a
manner, that the whole tiling is mapped onto itself.

Our problem had been investigated by D. Schattschneider [2, p. 76] 20 years ago. She
found five different types of these tilings. Now we have to explain what “different” means.

Two tilings (7,T') and (7",T"), with corresponding symmetry groups I' and I", respec-
tively, are combinatorially equivariant if there is a combinatorial tile-to-tile, edge-to-edge,
vertex-to-vertex bijection 1 of T onto 1", preserving all incidences, such that 'y~ =T". In
short, the mapping v carries the action of I' on 7" onto the action of IV on 7" as a conjugacy.
Then the two tilings are said to be equivalent, and we look for the different equivalence classes
(types).

Martini, Makai and Soltan described a new tiling in [4]. They omitted the equitransitivity
and examined the local environments of every class of squares. According to their notation
we shall name the squares by A, Ay and A3, where we assume that the first one is the smallest
and the last one is the greatest. As we shall cite the concept of a vortex, we shortly sketch its
meaning: a tile is said to be a vortex if its sides are locally extendable in 7" to one orientation
of the tile, but none of them is extendable according to the other orientation. As the authors
reported, B. Griinbaum found two further tilings. The problem of describing every possible
tiling they left open.

As my mentor E. Molnar was the lector of their paper [4], he immediately asked them if
they wanted to solve this classification, otherwise he would give it to a doctoral student. In
those days I began to work in this field. After my first steps E. Molnar and me had learned
from Endre Makai that they would not deal with this question, but D. Schattschneider in-
tended. Because of her doubtless priority I gave up the theme. In January D. Schattschneider
kindly informed us about her results, which was in good accordance to mine. Because of the
difference of the methods I intended to let this paper publish. (She worked with the local
environments, the so called coronas of the squares. They are completely enumerated for every
sizes of squares in [4]. She systematically examined all coronas which are in accordance with
the local environment of the neighbours. This leads all the possible tilings if we consider
greater areas.)

Our basic method is to find all the fundamental domains with face-identifications for
any such tilings using the Poincaré angle criteria. Our great help is the classification of the
46 fundamental planigons by Delone and others [1] and by Z. Lué¢i¢ and E. Molnér [3] in a
different way. We say that a polygon P is a planigon if one can tile the plane with their
copies without gaps and overlappings, so that a plane group G acts transitively on their tiles.
In the following we shall show how the machinery works.

The tilings will be denoted by their appearance in [2, p. 76] (from Sch. 1 to 5) and in [4]
(MMS and G. 1, G. 2).
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Figure 1

2. Reduction of the feasible plane groups

At first we make some general remarks.

e Obviously, it is sufficient to examine the L-shaped block in our Figure 2 as containing
a fundamental domain of a plane group. This is a simple consequence of the facts that
A3 = A1 + A holds and the Az-squares are not vortices (see [4], Th. 3, equitransitivity,
and Cor. 1.). So there exists a side where the neighbours have to be A;- and Ap-squares.

e As we intend to extend the L-shaped block to the whole tiling by equitransitivity, we
take first into account the possible transformations, which serve unilateral tilings.

e We show some restrictions:
— for a A;-square the reflection is not allowed, because of the overlapping,
— for a Ag-square the reflection is not allowed, because it would not be a vortex,

— for a As-square the reflection is not allowed. Namely, there are two kinds of
reflection lines. The first one is a diagonal of the A3-square. In this case this
square would have two neighbours of the same type at the corner, in contradiction
to the fact that the neighbours have to be a vortex. The second position of the
mirror line halves the square parallelly with the base (Fig. 3). If we consider the
side M R, then there are two possibilities: either two squares of the same type meet
at the reflection line (right) or there is only one neighbour in symmetric position
at the side (see left). The first case contradicts the unilaterality. If the second
case holds than if the square is not of A3-type, than it would not be a vortex. If
it is of As-type, than the tiling would not be unilateral.
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Figure 2 Figure 3

e We claim that the fourfold rotation is out of question, too. Namely, neither a centre
of a A; nor of a A\, tile can be equipped with this kind of transformation, because this
would cause overlappings at the L-shaped block. The center of a As3-square is not a
fourfold rotation center, since this would contradict the fact that the smaller squares are
vortices. Obviously, the rotation center cannot lie on the boundary. Rotation centers
at corners would cause non-unilateral tilings.

e If we enumerate those plane groups for which the corresponding planigons contain only
permitted transformations, we get only four ones, namely pl, p2, pg and pgg.

3. The eight classes of fundamental domains

As the former examinations show, the automorphisms of a square in any type are only the
twofold rotations and the identity. That means the possible fundamental domains can be of
eight types, containing a half or a whole square from each square-class. We enumerate them
starting with the smallest size and finishing with the largest one. We observe that the group
pg allows only the L-shaped block (1-1-1) as a fundamental domain.

It is important that in every remaining case the fundamental domain has at least five
vertices because of its shape. (It is sufficient to deal only with simply-connected domains.
Now, a side is a common part of two fundamental domains, a vertex is that of at least three
domains.)

This fact causes a great reduction of the number of planigons: for p1 we have only one
domain: Ps7; for p2 remain only two types: Fs 4 and Ps4 1; for pgg four types: Fs 5, Fs2, Psa
and Pspo; and for pg again only two types: Psg, Ps 3, where the notation comes from [1]. In
Fig. 4 we have collected them, with the corresponding face-identifications.
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Pg

________

Figure 4

type 2-2-2
The three rotation centers involve the group p2, and this implies the fourth center lying
on a square boundary. This tiling is the well-known Sch. 1.

type 2-2-1 (Fig. 5)

S

Figure 5

First we assert that the group pgg is out of question. This is true because then we
need glide reflection which would be parallel with UV and would form an angle +7%
with the segment M .J, a contradiction. Similar reasoning will be true for the following
two cases.

It is easy to see that the only possibility would be that shown in Fig. 5, but then the
unilaterality would not hold at a A3-square.

type 2-1-2 (Fig. 6)

A—0—C
E

N,

M

Figure 6
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The only arrangement is shown in Figure 6. We have to pair CE and NM and we are
up against unilaterality at a Ap-square.

e type 1-2-2
This case is almost the same as in the former case.

From now on we face to those fundamental domains which may contain the broken line CEF
mentioned simply as a “creek”. In Figure 7 we have indicated all the permitted pairings of
the creek and the boundary of the entire L-block as well. For Ay # 2); only the first pairings
©1...(13 are possible, but the last ones ¢14. .. 13 imply equality. Every other transformation
either leads to overlappings or contradicts to the unilaterality.
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Figure 7a Figure 7b
@1 B(C

(C)D — F(FE)D, halfturn
wy : C(D)(E)F — Q(N)(M)L, translation
w3 : C(D)(E)F — H(I)(J)K, glide reflection
ws  C(E)F — L(M)Q, glide reflection
w5 : glide reflection along AM
we : glide reflection along F'J
w7 : glide reflection along AC
ws : glide reflection along MJ
w9 : (apart of) AM — (a part of) JF, glide reflection
v10 : (apart of) MJ — (a part of) JF, glide reflection
v11 ¢ (apart of) MJ — (a part of) AM, glide reflection
12 : with dashed line we show the positions of possible halfturns,
where at empty circles the line is discontinuous

(13 : every possible translation

only for Ay = 2\
v1a @ C(D)(E)F — S(A)B, glide reflection
w15 AC — JL, glide reflection
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w16 : (apart of) AC — (a part of) MA, glide reflection
17+ AC — GJ, glide reflection
13+ AB — HJ, glide reflection

The L-shaped block, as fundamental domain, has six vertices (as many as the other truncated
ones). Considering the list above we see that none of the face-pairings would increase this
number except for the halfturn (¢1). In this case we have to permit fundamental pentagons
and hexagons, in the other cases only the hexagons have to be examined. (pg is out of
question, because halfturns do not occur there.)

We have a remark to 5, too. In this case the groups pgg and pg are excluded, because the
translation is not parallel with any square diagonal, the possible direction of glide reflections.
So it is sufficient to check the realizability of the planigon Ps4 of p2 (and for 1-1-1 the Py
of p1).

For ¢3 we mention that P55 and P54, cannot be equipped with this transformation
because the translation would be too long. This is also true for the planigons Fs¢ and Fs3
of pg. It remains only the case of Fy .

For ¢4 we have two possibilities of pgg and two possibilities of pg (for 1-1-1), which is a
consequence of the facts above.

The “creek-transformation” ¢q4 is analogous to 3. Now the only remaining possibility
is Pgo.

So the planigons to be examined are the following.

©®1 Ps 4, Psay and Py, Ps o, Psago, Psp o
©2 P6,4 (and for 1-1-1 P6,7, tOO)
©3, P14 Fs o
D4 P6,5a P(;’Q (and for 1-1-1 P6,6 and P6,3, tOO)

e 1-1-1 (Fig. 7)
We introduce subitems according to the transformations of the creek.

—_—
Let us consider Fig. 7. Now we are going to search the image of AB.

* Q7
Now there remains only Fs2, but we have no good construction with it.

* 13 onto JM
In this case we have a halfturn which is adjacent with a translation, but just
with one of the paired sides. There are only two hexagons that satisfy this
condition, namely, Fs 4 and Fs5. In this cases the other adjacent transforma-
tion of the rotation must be a halfturn, too. In this way F'J is mapped onto
itself and AB is in pair with KJ. We are able to finish the face-identification
only by two halfturns, determining the tiling Sch. 5.

For Ay = 2)\; there are three other possible transformations for AB.
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* P16
The reasoning is similar as in the former case, but now the segment F'.J would
have no pair.

* iy
There would remain four segments with different lengths, and the side-pairings
would not be sufficient to map them onto each other.

* P18
This case leads to the eighth tiling. We have only one way to close the pairing
procedure: ¢,y for MJ and, finally, ¢, for M A. From this we get G. 2.

—
Ps 4 does not lead to a solution. Now we have to deal also with 7 that leads to
the same arrangement as Sch. 1. The tiling has also p2 symmetries as an extension

of p1, but if we tiled with marked squares, the pattern would be different from
Sch. 1.

- ¥3
Ps 5 does not lead to a tiling.

- P4
The only way to pair AC is ;7. The remaining two halfturns are not enough to
make the face-identifications complete. The pg cases are out of question because
we cannot find any other glide reflection parallel to ¢, which would have the same
translation part as ¢y.

— Pua
Our only candidate P2 will not serve a “good” tiling.

e 2-1-1 (Fig. 8)

A C
+G
———
M L J
Figure 8
!
Now we consider the component AC. If we look for the image of it there are few
possibilities.
* ¢

Again, there only remains F; 2, not yielding a good construction.
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*

- P2

P13 into JM

In this case we have a halfturn which is adjacent with a translation, but just
with one of the paired sides. Again, this condition excludes Fs 5, therefore
the other adjacent transformation of the rotation must be a halfturn, too. In
this way GJ is mapped onto itself and AC' is in pair with LJ. We are able
to finish the face-identification only by two halfturns, determining the tiling
Sch. 3.

For Ay = 2)\; there are three other possible transformations for AC.

P16
The reasoning is similar as in the former case, but now the segment GJ would

have no pair.

P17
There is no such planigon, where a halfturn is adjacent at both sides with the

same glide reflection.

$18
The remaining P, will not lead to a solution.

As P 4 is not convenient there is not such a construction.

- ¥3

Ps o will not lead to a solution.

— 4

Again, the situation of the symmetry operations allows only Fs 5, but the remaining
boundary segments cannot map onto each other by a glide reflection and a halfturn.

- Y14
Ps 5 does not yield a tiling.
o 1-2-1
— ¢1 (Fig. 9)
A B C
W[ X
|
M K
Figure 9

The only arrangement which permits the halfturn can be seen in the picture. The
segment XW is mapped into AC. But then we gain four different sides, and the
permitted three transformations are not convenient.
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- P2
The planigon Fs4 serves as fundamental domain and provides us the well-known
tiling Sch. 4.

~ ¢4 (Fig. 10)

Figure 10

The second (horizontal) glide reflection is permitted if and only if the segments F'H
and M R have the same length. The first one is A3+ —(Aa— A1) = 2A1+A3— A9, the
second one is A\3. That means that only the case Ay = 2\ leads to an equitransitive
and unilateral tiling of the plane denoted by MMS.

2

L J

Figure 11

Our only candidate is Fg 2, because the glide reflection and the rotation are adja-
cent here. On the boundary there remain three segments from which we have to
pair QR and JL by a glide reflection. Their lengths are A3 — A; and A3 + A; — Ao,
respectively. It means that we can gain a tiling only for Ay = 2A;. This is G. 1.

e 1-1-2 (Fig. 12)
A B

R

(@)

Figure 12
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- ¥
We see that for the segment AB there is not any pairing except a halfturn (13).
In this way the group must be p2 which induces the fourth rotation center lying
on the boundary. Finally the translation ends the face-identification process, with
the fundamental domain Fs 4 that leads to the tiling Sch. 2.
If Ay = 24, then there are further possibilities.
14 and @15 are out of question because the boundary does not contain both sides
to be paired. For @j6... 18 we have to deal only with Fs5 and 2. Neither the
first one is possible (the two halfturns are not adjacent), nor the second one (the
two glide reflection axes would form an angle of 7).

- $2
This transformation is not allowed, because the boundary does not contain both
the segments to be paired. This is true also for ¢35 and ¢4, respectively.

- P14
It is easy to see that there is no proper glide reflection perpendicular to ¢4, and
so P2 is not realizable.

Now we formulate our result.

Theorem 1. There exist exactly eight types of unilateral and equitransitive tilings of the
plane by squares of three different sizes.

We intend to continue the investigations of the tilings omitting the unilaterality condition.
The feasible constructions obviously will contain the former ones. However, we shall have
some new interesting types, with other plane groups as well.
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