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1. Introduction

The notation of a table algebra in its new formulation is defined in [2]. Most of related notions
and properties of C-algebras and table algebras are defined and proved in [4]. Of particular
importance is the classification of homogeneous integral table algebras of small degrees. The
homogeneous integral table algebras of degree 1 are (CG,G) where G is a finite abelian
group [6]. The homogeneous integral table algebras of degree 2 which contain a faithful
element are classified in [5]. Also the homogeneous integral table algebras of degree 3 which
contain a faithful real element are classified in [7]. In [3] one can also find the classification
of homogeneous integral table algebras of degree 4 which contain a faithful element. In [1]
there exists an open problem asking for the classification of homogeneous standard integral
table algebras of degree 5 with a faithful element.

The main purpose of this paper is to state classification theorems about some of the
homogeneous standard integral table algebras of degree 5. This work solves part of the
stated open problem.
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In what follows we remind some basic definitions from [2] and [4]. Note that throughout this
paper C denotes the field of complex numbers and R* the positive reals.

Definition 1.1. Let B = {by,by,...,b,} be a basis of a finite-dimensional associative and
commutative algebra A over the complez field C with identity element by = 1,. Then (A, B) is
called a table algebra (and B is said to be a table basis) if and only if the following conditions
hold:

(i) For alli,j,m, bibj =" Aijmbm with Aijm € R* U {0}.
m=1
(ii) There is an algebra automorphism (denoted by ) of A whose order divides 2, such that
b; € B implies that b; € B (then i is defined by by = b;, and b; € B is called real if

b; = b or equivalently i = i).
(iii) For alli,j, Aiji # 0 if and only if j = i.

By [1, Lemma 2.9], there is an algebra homomorphism f : A — C such that f(b;) =
f(b;) € RT for all i and such a map f is uniquely determined. The positive real numbers
f(b;),1 < i < n, are called the degrees of (A, B).

In this paper when we refer to a table algebra (A, B) we assume f : A — C is the
unique linear character associated to (A, B).

Definition 1.2. An integral table algebra (abbreviated ITA) is a table algebra (A, B) such
that all the structure constants \ijm are non-negative integers and all the degrees f(b;) are
rational integers.

For example any finite group G yields two examples of ITA’s; Z(CG,Cla(G)), the center
of the group algebra of a finite group G' with the table algebra basis the set of sums C of
G-conjugacy classes C of G, with automorphism = extended linearly from inversion in G,
and with degrees f(C) = |C| for all C' € Cla(G), and (Ch(G), Irr(G)), the ring of complex
valued class functions on G, with table basis the set of irreducible characters of GG, with
automorphism extended linearly from complex conjugation of characters, and with degrees

f(x) = x(1) for all x € Irr(G).

Definition 1.3. [2] Let (A, B) be a table algebra. For a € A we define

Supp,,(a) = {b; | a = Z)‘ibi where b; € B and \; # 0}.
i=1
Let (4, B) be a table algebra. A nonempty subset N C B is called a table subset (or a
C-subset) of B iff Supp, (b;b;) C N for all b;,b; € N.

Any table subset is stable under ~ and contains 1, by [1, Proposition 2.7]. For any ¢ € B,
the set B, defined by

B, = USupp(c")
n=1
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is easily seen to be a table subset of B, called the table subset generated by c. Any element
c of B is called faithful iff B, = B.

Definition 1.4. [5, Definition 1.3] A table algebra (A, B) is called homogeneous (of degree
A) iff |B| > 2 and, for some fized A € RY, f(b) = A for all b € B — {1}.

For any table algebra (A, B), there is a positive definite Hermitian form ( , ) on A with the
following properties [4, Proposition 2.4]: B is an orthogonal set with respect to ( , ); for all
b € RB (the real span of B ) and all a,c € A,

(ab, c) = (a, bc);
and for all b; € B, and A7 the constants in Definition 1.1,
(i, bi) = A
It follows that, for all a,b,c € B,
¢ € Supp,, (ab) <= a € Supp, (bc).

Definition 1.5. Let (A, B) be a table algebra and b € B. Then b is called standard iff
(b,b) = f(b). Furthermore, B is called standard iff every element of B is standard.

Any table algebra may be rescaled (replacing each table basis element by a positive scalar
multiple) to one which is homogeneous, and any ITA can be rescaled to a homogeneous
ITA ([6, Theorem 1]). Therefore a classification theorem for all homogeneous integral table
algebras (HITA) is an impossible mission.

Definition 1.6. [5] Two table algebras (A, B) and (C, D) are called isomorphic (denoted by
B = D) if there exists an algebra isomorphism ¢ : A — C such that ¢(B) is a rescaling
of D; and the algebras are called exactly isomorphic (denoted by B =, D) if ¢(B) = D. So
B =2, D means that B and D yield the same structure constants.

2. Main results

If (A, B) is a homogeneous standard integral table algebra degree of 5 which contains a
faithful element of width 2, then [6, Theorem 3] implies the complete classification of (A, B).
The main purpose of this section is to state a classification theorem about homogeneous
standard ITA of degree 5 with the additional hypothesis that the basis B contains a faithful
element of width 3. The notion of width is defined in [6] as follows:

Definition 2.1. Let (A, B) be a table algebra and b € B. The width of b is defined to be
|Supp,, (bb)|.

It is easy to check that if B contains an element b of width 3 then one of the following
possibilities hold: ~
If b is a real element, i.e., b = b, then
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(i) ¥=514+3b+d, d=d,

(i) b =51+3c+b c=rc,

(iii) ¥ =514+3c+d, c=¢ d=d,
(iv) b =5.142c+ 2¢,

(v ¥ =51+2c+2d, c=¢ d=d,
(vi) #*=51+2b+2d, d=d,

and if b is a nonreal element, then
(vii) bb=5.1+42c+2d, c=¢ d
(viii) bb = 5.1+ 2b + 2b,

(ix)  bb=5.1+2c+ 2,

(x) bb=51+3c+d, c=¢ d=d,
for some distinct elements b, ¢, d of B.

Il
al

As far as one can see considering all the above cases is a very difficult task and we classify
the cases (i),(ii),(iii) and (x) in this paper. Therefore in all of our statement we assume that
(A, B) is a HITA of degree 5 where B is standard, i.e., f(b) = (b,b)=5 for all b € B — {1}.

Proposition 2.2. Let (A, B) be a homogeneous standard integral table algebra of degree 5.
If B contains a real faithful element b such that b* = 5.1 + 3b + d then (A, B) is one of the
following:

B={1,b,c,d}, ¥*=51+3b+d, ¢*=5.14+2b+ 2d,

d>=514+3c+b, bc=3d+2c, dc=3b+ 2c
or

B={1,b,d}, b¥*=51+3b+d, d>=5.1+4b, bd=0b+4d.

Proof. Let b € B such that b®> = 5.1 +3b+ d for some d € B and d = d, d # b. Since
f(bd) = 25 and (bd,b) = (b*,d) = 5 we have one of the following cases:

—

bd = b+e +e+e+e b, eq,es are distinct elements of B,

\V]

bd = b+3e; +ey, e =€, ey =€y, b, eq,ey are distinct elements of B,

(1)

(2)
bd = b+ 2e+2e, b,e are distinct elements of B, (3)
bd = b+4e, e=c¢€, b, e are distinct elements of B, (4)
bd = b+4+e+ey+es3+eq, b e, e, es, ey are distinct real elements of B, (5)
bd = b+e+ey+e3+es e =e1,e3 =26 b, e,eq, e3 are distinct elements of B, (6)
bd = b+ 2e; +ey+e3, b,eq, ey, ez are distinct real elements of B, (7)
bd = b+ 2e +ey+e3,e1 =€, b,eq, ey are distinct elements of B, (8)
bd = b+ 2e; +2ey, b,eq,ey are distinct real elements of B. 9)

If (1) holds then by the equality b(bd) = b*d we obtain

d? + 4d + 3ey + 31 + 3ey + 33 = 5.1 + bey + bey + bey + bey. (%)
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Now we claim that e; does not appear in the decomposition of be;. If (bei,e;) # 0 then it
is easy that (bej,e;) = 5,10 or 15. We deal with these cases separately. First we assume
(bei,e;) = 5 and consider the following cases:

case (1) bey =d+ ey +x1 + xo + z3, where z1, x5, x3 are distinct real elements of B,

case (ii) be; = d + ey + 2x1 + w9, where x1, o are distinct real elements of B,
case (iii) be; = d + e; + 3z, where x is real elements of B.

In the case (i) we have:
25 = (bey, bey) = (b%, e1e7) = (5.1 +3b+d, 5.1 +b+---) > 40,

which is a contradiction.
In the case (ii) we have

35 = (bey, ber) = (b%, e1e7) = (5.1 +3b+d,5.1+b+---) > 40,

again a contradiction.
Let case (iii) hold, and e;e; = 5.1 + ab—+ d + - - - for some non-negative integers «, 5. Hence

55 = (bey, ber) = (b%, ere1) = 25 + 15a + 5.

Thus 3a + = 6. This implies that a =1, =3 ora=2,3=0.
Ifa=1,8=3then ejeg =5.1+3d+b. So

(del, 61) = (ela, d) = 1b5.

This shows that e; appears thrice in the decomposition of de;. On the other hand, d and b
don’t appear in the decompositon of d*> by (*). This implies that (d?, e;e;) = 25. Therefore
by (dei, de;) > 45, we have a contradiction.

If « =2 and 3 =0, then e;e; = 5.1 +2b+ ---. Hence (bey,e;) = (b,e17) = 10. This
implies that e; does appear twice in the decomposition of be;, that is a contradiction. This
proves that e; does not appear once in the decomposition of be;.

Now if e; appears twice in the decomposition of be;, then we have be; = d + 2e; + - - -.
Hence (be;,be;) < 45 and

(v, ere1) = (5.1+3b+d, 5.1 +2b+---) > 55.

Since (bey,be;) = (b% e1€1), we obtain a contradiction. Now if e; appears thrice in the
decomposition of be;, then be; = d + 3e; + - - -. Hence (bey, be;) = 55 and

(v, erer) = (5.1+3b+d,5.1+3b+---) > 170.

Since (bey,be;) = (b%, ejer) we have a contradiction.
Therefore e; does not appear in the decomposition of be;. Similarly we can prove that e,
does not appear in the decomposition of be,.
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Now we can write be; = d + ey + [e; + ver + - - - for some non-negative integers «, 3, .
Hence

(bd,be1) = (b+e1+ €1 +ex+e,d+ aey+ fPes+yer+---) =5(a+ S+ 7).

Also, (b%,de;) = (5.1 +3b+d,b+ 6d + ---) = 15 + 56. Since (bey, bd) = (b%,de;), we have
a—+ B+~ =344. Now we show that every elements €7, e5 and e; appear at least once in the
decomposition of be;.

Otherwise, if be; = d + 2e5 + - - -, then bes = d + 2e; + --- and ejes = 2b + ---. Since
(bey,bes) = (d + 2eq + -+, d +2e; +--+) < 25 and (b, e1ep) = (5.1 +3b+d,2b+ ---) > 30,
we have a contradiction, by the equality (bey, bey) = (b, €1ez).

If be; = d+ 2e; + - - - then be; = d + 2e; + --- and €2 = 2b + - - -. Since

(bey,ber) = (d+2e1+---,d+2e; + - --) < 25,

and (b%,€?) = (5.1 + 3b+ d,2b+ ---) > 30, by the equality (be;,be;) = (b%,e7) we have a
contradiction.

If be; = d+ 2e5 + --- then bes = d + 2e; + - -+, and e;eg = 2b + - --. Since (bey, bey) =
(d+2e3+---,d+2e;+---) <25 and (b?,e1e3) = (5.1+3b+d,2b+---) > 30, by the equality
(b%, e1e2) = (bey, be;) we obtain a contradiction.

Hence we must have the following possibilities by (x)

bey, = d+e+e+e;+x,
bey = d+e+ e+ 4,
ber = d+e3+ex+e+7,
bea = d+e+ex+e+7,

for some x,y € B — {1} such that = ¢ {d, e1,es,€} and y ¢ {d, e, e1,€3}. Now by the above
and equality (x) we obtain d> = 5.1 + 2+ T +y + 7. Since (b?, d?) = (bd, bd) = 25, we have
Supp, (b°) N Supp, (d*) = {1}. It follows that x # b,d. Now, by the equality b(be;) = b’e; we
have

e1+3r+dey=2+y+y+b+bzx.

If r =% =y, then d? = 5.14+4x and e; +de; = b+bx. Hence bz = e; +ey+e;+e;+k and
de, = b+e;+ey+ey+k where k =k, k € B—{1,b,d, z, ey, ey, €1, €3}. Since b’z = b(bz), we can
see that 4d+bk = x+3k+dzx. It follows that there is a basis element s such that bk = s+z+3k
and dz = s + 4d. If s # k then (bk,bk) < 65, (b?, k%) = (5.1 +3b+d,5.1+3b+---) > 70.
Since (bk,bk) = (b%, k?), we get a contradiction. If s = k, then bk = x + 4k and dx = 4d + k.
Let x appear « times in z2. Since (dz,dz) = 85, (d?,z%) = (5.1 + 4x,5.1 + ax +---), we get
that 2> = 5.1 + 3z + [ for some [ € B. But d(dz) = 20.1 + 16x + dk, d*z = 5x + 422, so we
have dk = x + 4l. Hence (dk, dk) = 85, (d?, k?) = 25, because b # x. Since (dk, dk) = (d?, k?),
we obtain a contradiction.

fx=7 x+#vy,y, thene, +2x +de; =b+y+7y+ bx. Hence bx = e; +&1 +ax + - -+,
where o > 2 is an integer number. If o = 2, then (bx,bx) = 35 and (b?,2%) > 55. Since
(bx,bx) = (b*,2?), we get a contradiction. If o = 3, then (bx,bx) = 55 and (b?,2?) > T70.
Since (bx, bx) = (b?, z?), we have a contradiction.
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Ifx=vy,x#7,y#7, then e; +2x+de; = 2T+ b+ bx implies that bz = e; +ex+x+-- -,
where § > 2. We obtain a contradiction by the equality (bz,bx) = (b%, z2).

Ifx =9y, #7,y #vy, then e;+2x+de; = 2y+b+bzx. Hence we have bx = e;+es+yz+-- -,
for some v > 2. It is easy to check that this case cannot hold.

If z is different from 7,7, x, then ey + 3z +de; =T+ Y+ y + b+ bz. Hence bx = e; + 4z
or br = e; + 3z + 2. If bxr = e, + 4z, then de; =T+ 7 +y + b+ . Since b(bx) = b2z, we can
see that dx = e; + es + €1 + €3 + d. Also, since d(bz) = 4dx + dey, (bd)x = d(bx), we have

dr + el + ez + ez + ez + ez =b+y+z+7Y+4de; + 4dey + 4y + de; + 4d.

Since the intersection parameters of table algebras are non-negative, x appears at least 4
times on the left-hand side in the above equality. But = appears exactly once on the right-
hand side in the above equality, which is a contradiction. If bx = 3z + e; + z, for some
z € B—{b,y,7,y}. This implies that b appears thrice in the decompositoion of zZ. Also we
have

(bz,bz) = (e + 37 + z,€; + 3x + 2) = 55, (b*,27) = (5.1 +3b+d,5.1 +3b+---) > 70.

But since (b%, 27) = (bz, bz) we get a contradiction. This proves that case (1) cannot occur.

If (2) holds then bd = b+3e;+es where e; = €7 and e; = €5. Since (b, de1) = (e1,bd) = 15,b
appears thrice in the decomposition of de;. Let d?> = 5.1 + ab + 3d + -- -, for some non-
negative integers a, 8. Hence (b%,d?) = 25 + 15a + 543. By the equality (b?,d?) = (bd, bd) =
(b + 3e; + e9,b + 3e; + €2) = 55, we have 3a + = 6. This implies that « = 2,5 = 0 or
a=1,8=23.

If « =2,8=0then d> =5.1+2b+---. Thus 10 = (d?b) = (d, bd) that is d appears
twice in the decomposition of bd, a contradiction. If « = 1, 3 = 3 then d? = 5.1+3d+b. Since
5= (d?,b) = (bd, d) we have e; = d, i.e., bd = 3e; + b+ d. By the equality b(bd) = b*>d we have
be; = 3d + 2e; and by the equality (bd)d = bd*> we obtain that de; = 3b + 2¢;. This shows
that b appears twice in the decomposition of €? and so does d. Therefore €2 = 5.1 + 2b + 2d,
and By = {1,b,d, e;}. Since b is a faithful element we obtain that B = {1,b,d, e, }.

If (3) holds then bd = b+ 2e + 2€ such that b # e. We have (bd,bd) = 45. Let d* =
5.1 + ab+ Bd + - - -, for some non-negative integers «, 3. Since (b?,d?) = (5.1 +3b+d, 5.1 +
ab+ Bd+---) = 25+ 15a + 58 and (bd, bd) = (b*,d?), we have 3a + 3 = 4. This implies
thata =1, f=1lora=0, =4 Ifa=1, 3=1then d® =51+b+d+---. Thus
(bd,d) = (d?,b) = 5 which implies that d appears once in the decomposition of bd which is a
contradiction to the form of bd. If @« = 0, 8 = 4 then d? = 5.1 + 4d. Thus bd? = 5b + 4bd and
(bd)d = bd + 2de + 2de, therefore by the equality bd? = (bd)d we obtain

5b + 3bd = 2de + 2de.

Hence by the above equality there are two cases as follow:
de =2b+ 3e, de=2b+ 3e ()
de =2b+3e, de=2b+ 3e (k)
If (xx) holds then (de,de) = 65 and (ee, d) = (de,€) = 15 implies that d appears thrice

in the decomposition of ee. Since 65 = (de, de) = (d?, e€) and

(d?,e€) = (5.1 +4d,5.1 +3d +---) = 80,
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we have a contradiction.

If (*+%) holds then (d?,e?) = (de,de) = 20 and (e?,d) = (de,e) = 15 implies that d
appears thrice in the decomposition of €?. Since (e?,d?) = 60 we have a contradiction. This
proves that case (3) cannot occur.

If (4) holds then bd = b + 4e, such that e is a real element. Thus (bd,bd) = 85. On
the other hand, let d> = 5.1 + ab + 3d + - - -, for some non-negative integers «, 3. Then
(b*,d%) = (51 +3b+d,5.1+ab+ fd+---) = 25+ 5(3a + 3). Since f(d?) = 25 and
(bd, bd) = (b?,d*) we have

3a+p3=12, a+p<A4.

Therefore o = 4, 3 = 0, i.e., d* = 5.1 + 4b. Moreover, (bd,d) = (d?,b) = 20. Hence d appears
4 times in the decomposition of bd, i.e., bd = b + 4d. This shows that B, = {1,b,d}. Since b
is faithful, B = {1, b, d}.

If (5) holds, then by the equality b(bd) = b*d we obtain

5.1 + d + bey + bes + bes + bey = 5d + 3e; + 3eq + 3es + 3eq + d2.

Since (b?,d?) = (bd, bd) = 25, we have Supp, (d*)NSupp, (b*) = {1}. Now we claim that e,
does not appear in the decomposition of be;. If (bej,e;) # 0, then (bey,e;) = 5,10,15 or
20. We assume (be;,e1) = 5. Hence ey, e3 or e4 may appear in the decomposition of be;. For
example, let e; appear o times in be; for some « € Z*. Thus be; = d+e;+aey+---. Ifa =1,
then 35 > (bey, be;) = (b%,€?) = (5.1 +3b+d, 5.1+ b+ ---) > 40 which is a contradiction. If
o = 2, then be; = d+e;+2ea+- - - and 35 > (bey, bey) = (b?,e?) = (5.14+3b+d,5.1+b+--) >
40 which is a contradiction. If o = 3, then be; = d + e; + 3ey and bes = d + 3e; + - --. Thus
35 > (bey, bey) = (b, e1ez) > 45, which is a contradiction. Hence, we have (bei, e;) # 5. By
the same way the other cases are proved and so e; cannot occur in the decomposition of be; .
Similarly, we can prove that e; cannot occur in the decomposition of be;, for i = 2, 3, 4. Now,
it is easy to check that
b€1 =d+€2+63+64+l’,

b62=d+61+€3+64+y,
bes =d+e +e+eq+ 2,
be, =d+ e +ey+e3 +w,

where d?> = 5.1 +x+y+ z+w. Since b(bey) = bd + bey + bes + bey + bz, b?e; = bey + 3be; + dey
and b(be;) = b?ey, we have e; +3x+de; = b+y+2z+w+bx. The obvious analogue of the proof
of case (1) shows that bx = e; +3x+k and de;y = b+y+z+w+k where k € B—{1,e1,z}.
Hence 2? = 5.1 + 3b + - - - which implies that

55 = (bz,bz) = (b*,2%) = (5.1 +3b+d,5.1+3b+---) > 70,

that is contradiction. Therefore the case (5) cannot hold.
If (6) holds, then we can prove that

bey =d+e+e3+es+x, =7

b€2=d+61+€3+6_3+y, y:y
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b63:d+61+62+a+2,
b€4:d+€1+€2+€3+z,

where z,y, z are elements (not necessarily distinct) of B—{1} and > =5.1+z+y+2+Z.
Since b(be1) = b?ey, b(be1) = bd + bey + bey + bes + bes + bx and be; = bey + 3be; + dey, we
have

e1+3r+dey=b+y+z+z+bx

The obvious analogue of the proof of case (1) shows bz = e;+3z+k and de; = b+y+2+Z2+k
such that k # ey, z. It follows that 55 = (bz, bz) = (b*, 2*) = (5.1+3b+d,5.1+3b+---) > 70
which is a contradiction. Therefore the case (6) cannot occur.

Now, we consider the case (7). Let b,d appear a,( times in d? respectively. Since
35 = (bd, bd) = (b*,d?), we obtain a = 0,3 = 2, and so d?> = 5.1 + 2d + = + y, for some (not
necessarily distinct) elements z,y € B — {1,d}. Since b(bd) = b* + 2be; + bey + bes, b*d =
5d + 3bd + d* and b(bd) = b*d> we obtain

2bey + bey + beg = 6e1 + 3ex + 3es + 6d + = + . (I)

The obvious analogue of (5) shows that e; does not appear in the decomposition of be;.
Now, from (I) e; appears at least thrice in be,. In fact, if e; appears 4 times in bey, then we
have bes = d + 4e;. Hence we have (bej,eq) = (beg,e1) = 20, (bey,d) = 10. It follows that
|Supp,, (be1)| > 6 which is a contradiction. Thus e; appears thrice in the decomposition of
bes. It implies that bes = d + 3e; + --- and bes = d + 3e; + ---. Hence ey, e3 both appear
thrice in be; which is a contradiction. Therefore the case (7) cannot occur.

We can observe exactly in the same way that the cases (8) and (9) cannot occur. Now
the proof of proposition is complete. Il

Proposition 2.3. Let (A, B) be a homogeneous standard integral table algebra of degree 5
such that B contains a real faithful element b so that b*> = 5.1 + 3¢+ b. Then B = {1,b,c}
and

A =51+2b+2c, bc=3b+2c, b*=51+3c+b.

Proof. Let b € B such that b = 5.1 + 3¢+ b and b, ¢ are two real elements. Since (bc,b) =
(b%,¢) = 15, b appears thrice in the decomposition of be. Thus be = 3b + e; + eo, for some
e1,eo € B—{1,b}. Let ¢® = 5.1 + yc+ 6b+ - - -, for some non-negative integers d,y. Hence
we have 6 + v < 4 by the equality f(c?) = 25. Moreover,

(*,¢®) = (5.143c+b,5.1+yc+6b+---) = 25+ 157 + 5d. (1)

If e; = ey = d then bc = 3b+2d and so (bc, be) = 65. Since (be, be) = (¢2,b?), we have 3y+6 = 8
and therefore v = 2 = 4. This shows that ¢ = 5.1 + 2¢ + 2b and so (bc,¢) = (¢?,b) = 10.
Hence ¢ appears twice in the decomposition of be. Thus be = 3b+ 2¢. Therefore B, = {1, b, c}.
Since b is faithful, we obtain B = {1, b, c}.

If €1 7é €9, then by (1)

(be,be) = (%, ¢?) = (5.1 + 3¢+ b,5.1 4+ yc+6b+ - - -).
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Hence 25 + 15y + 56 = 55. This shows that vy =1, d =3 or y =2, § = 0.
If y=2, § =0 then ¢ =5.1+2c+ z+y for some z,y € B—{1,b,c} and bc = 3b+ e; + e,.
First we assume that x # y. Since (bc)c = bc? we have

bei + bes = e1 + es + 2¢ + 3z + 3y. (2)

Hence we have
(be1, c) = (be,e1) =5 and (beg, ¢) = (be, e2) = 5. (3)

This implies that ¢ appears once in the decomposition of be; and also bey. Moreover from (2)
we know that only one of e; or ey appears in bey. Let ejes = o’c + 3'b- - - for some positive
integers o/, #'. Thus

(bei, bey) = (b, e1e3) = 5(3a’ + 3). (4)

Now from (2) we must have one of the following cases:

(%) ber =c+e+ax+ By, (I
bes =c+ey+ay+ Bz. (1)

() beyr =c+e+ar+ Py, (I
bey =c+e +ay+pz, (1)

such that o + g = 3.
Moreover, from (4) and the above eqalities we have

3+ ' =1+2ap. (5)

Assume that x,y ¢ {e, ex}. If the case (%) holds, then from (5) we have one of the following
cases:

a=0, =3and /' =0, f' =1, (i)
a=1,=2andd =1, ff=20ra =0, §' =5, (ii)
a=2 f=landd =1, f/=20ra =0, ' =5, (iii)
a=3, f=0and o' =0, ' =1. (iv)

If the case (i) holds, then ejes = b+ ---. So (bes, e1) = (e1€2,b) = 5. But this shows that
e1 appears in the decomposition of bey, a contradiction .

If the case (ii) holds, then be; = ¢+ e; + 2y + z, bes = ¢+ €2 + 2z + y and eje; =
c+2b+---. So (bey,e;) = (e1€2,b) = 10. Thus e; appears twice in the decomposition of
bes, a contradiction. Also if (ii) holds for case o/ = 0, §' = 5 then e;e; = 5b. This shows
that (bes,e1) = (b,e1e3) = 25, that is, e; appears 5 times in the decomposition of bey, a
contradiction.

If (iii) holds, for case o/ =1, ' =2 then

eieg=c+2b+---, bei=c+e+2x+y, beyg=c+ey+x+2y.

Hence (bey, e1) = (ei1€z,b) = 10. This shows that e; appears in the decomposition of bey, a
contradiction. Also, if (iii) holds for case o/ = 0, §' = 5, then e;e; = 5b. This shows that
(beg, e1) = (b, e183) = 25, that is, e; appears 5 times in bey, a contradiction.
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If the case (iv) holds, it is easy to check that e; appears in the decomposition of be, that
is a contradiction. This proves that the case () cannot occur.

Now we assume that the case (*x) holds. Since (ejez,b) = (ber,ea) = 5, b appears
once in e;&,. Assume that ¢ appears o/ times in e;e;. Thus e;e; = b+ a’c + --- and so
(b, e163) = (5.1 +3c+b,b+a'c+---) =5+ 15, Since

(b, e1e3) = (bey, bey) = 5 + 1003,

we have 2af = 3a/. Hence one of the following cases hold:
a=0, =3 and o/ =0, (v)
a=3, =0 and o/ =0. (vi)

If the case (v) holds then be; = e; + ¢+ 3y and bey = €5 + ¢+ 3x by (*x). Since b(be;) = b%e;
we have
by+b+$:€16+y+€1. (6)

Obviously by = 3e; +y+ z and e;c = b+x + 2+ 2e; for some z € B—{1,e;}, by (6) and the
decomposition of be;. Since (ye1,b) = (by,e;) = 15, b appears thrice in the decomposition
of ge;. Therefore (e;y,bc) > 45. Also (by,e;c) = (3e; +y + 2,0+ 2e; + = + z) < 40. Since
(gei, bc) = (by, e1c) we have a contradiction.

If the case (vi) holds, then be; = e; + ¢ + 3z and bey = e; + ¢ + 3y. Since b(be;) = b?e;
we have bx +b+ y = e; + x + e;c. Hence

br = x + z + 3ey, eic=b+2e; +y+ 2z,

for some z € B — {1,e,}. Thus (bz,e1c) = (x + 2+ 3e1, b+ 2e; + y + z) < 40. On the other
hand, (bc, €1z) = (bzx, e1c) leading to contradiction.
If e; = z then ¢® = 5.1+ 2c+ e; +y and bec = 3b + e; + e5. Since b(bc) = b%c, we have

bei + bey = 2¢ + 4ey + 3y + es. (7)
Hence
bei =c+ey+ae; + By and bey =c+ dle; + By, (8)

such that o/ + a« =4, '+ 3 = 3, or we must have
bey = c+ey+a'e; + [B'y and be; = c+ ae; + By, (9)

such that o +a=4,5 + 3 = 3.
If (8) holds, then we have

beiy =c+3e; +e; and bey = c+ e + 3. (8.1)
If (9) holds, then we have
be; =c+4e; and bey = c+ ey + 3y. (9.1)
First assume that (8.1) holds. Then

(be1, ber) = (c+ 3er + €2, ¢+ 3e1 + €2) = 55.
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Also, (%, e1e1) = (5.1 + 3¢+ b,5.1 +3b+ Ac+ --+) = 40 + 15). Since (b?, e1e1) = (bey, bey),
we must have A = 1, that is, e;e; = 5.1 + 3b + c¢. By the equality b(be;) = b?e; we have
eic =b+ c+ ey + es + y. Moreover

(c®,erer) = (5.14+2c+e; +y,5.1+3b+c) = 35,

and that (ejc, e;c) = 25. Since (ejc, e;c) = (%, e;€1) we have a contradiction.
Next if the case (9.1) holds then (bey, be;) = 85. Moreover, (b%,e1e7) = (5.1+3c+b,5.1+
4b) = 45. Now by the equality (%, e;e1) = (bey, be;) we have a contradiction.

Similary if e; = y we will obtain a contradiction and so this cases cannot occure.

Now if {e1,ea} = {z,y} then without loss of generality we can assume that z = e; and
y = ey. Hence ¢ = 5.1 + 2c + e; + e, and be = 3b + e; + ey. By the equality b(bc) = b*c we
must have

be; + beg = 2¢ + 4eq + 4es.

Hence we have one of the following cases:

be; = c+ eq + 3eo, bes = ¢+ 3eq + es (2.1)
bey = bey = ¢+ 2e; + 2eq, (2.2)
be; = c+ 3eq + eg, bes = ¢+ 3ey + €5. (2.3)

If the case (2.1) holds then by the equality (bey,bes) = (b?, e €r), since (bey, bes) = 35 and
(b%, ege7) = (5.1 +3b+c,3b+---) > 45, we have a contradiction. If the case (2.2) holds, then
(be1,ber) = (c+2e1+2ey, c+2e1 +2e9) = 45, and (b, e1€7) = (5.1+3b+c¢,5.1+2b+...) > 55.
Since (bey, bey) = (b, e;e1) we have a contradiction.

By similar considerations we see that the case (2.3) cannot hold. Therefore we have
proved that {z,y} N {ei,e2} = 0.

Now we assume that z = y. Then ¢2 = 5.14+2c¢+2z,b*> = 5.1+ 3c+b and bc = 3b+e; +e.
By the equality b*c = b(bc) we have

bety =c+ ey +3x and bey =c+ e + 3x.

Hence 15 = (bey, ) = (bx,e;) and 15 = (bes, ) = (bx, €2). This shows that e; and ey appear
thrice in bx. But f(bx) = 25 and f(3e; + 3ez) = 30, that is a contradiction. Similarly if
v =1,6 = 3 we will obtain a contradiction. The proposition is proved now. ]

Proposition 2.4. There is no homogeneous standard integral table algebra of degree 5 such
that its table basis contains a real faithful element, say b, where

¥ =51+3c+d, d#c, d=d, c="C.

Proof. Let b € B such that > = 5.1 4+ 3¢ + d, and ¢, d be two distinct real elements of B.
Since 15 = (b%,¢) = (be,b) and f(bc) = 25, one of the following cases holds:

bc =3b+2e, e € B—{b}, e=F, (1)

bc=3b+ e, +eq, e1,e0 € B—{b}, e1 # es. (2)
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If the case (1) holds, then bc = 3b + 2¢,e = €. Hence
(be, be) = (3b + 2e, 3b + 2¢) = 65.

Let ¢ = 5.1 + ac + (d--- for some non-negative integers «, 8. Since f(c?) = 25, we have
a + 3 < 4. Moreover

(b, c*)=(5.1+3c+d, 5.1+ ac+ Bd+--) =25+ 15a + 5.

By the equality (6%, ¢?) = (bc,bc) we have 3o+ 8 = 8 and o + 8 < 4. This shows that
a = 2 = (3. Hence ¢ = 5.1 + 2¢ + 2d. Since 10 = (¢?,d) = (dc,c), c appears twice in the
decomposition of dc. Now by the equality b(bc) = b%*c we must have
2be = 2c+ 3d + dc (1.1)
Obviously, from (1.1) d must appear in the decomposition of dc. Let d appear A times in dc,
so dc = 2c+ Ad+ ---. By (1.1) we have be = 2¢ + vd + - - - such that 2y = 3 + A. Hence
A=1,y=2o0r A=3,7v=3.
If A\=1,v =2 then dc = 2c + d + 2z and be = 2¢ + 2d + x for some z € B — {¢,d} by
(1.1). Hence
(de,dc) = (2¢+ d + 2z, 2¢ + d + 2x) = 45.

Let d> = 5.1 +dd + ¢+ - - -, for some non-negative integers 6. We have
(d®,c*)=(B1+c+dd+--+,5.1+2c+2d) =25+ 10(1 + J).

Since (dc, dc) = (d?,c?), we have § = 1 and so d*> = 5.1+c+d+---. Since (bd, bd) = (b?,d?) =
45, f(bd) = 25, 10 = (be,d) = (e, bd) and 5 = (b?,d) = (bd, b), we have bd = b + 2e + 2¢; for
some e; € B — {1,b,e}. Hence d*> = 5.1 + ¢+ d + v + w for some v,w € B — {1, ¢, d}. Since
b(bd) = b*d we must have be; = 2z+2d+v and d? = 5.14+c+d+2v. Let ec = 2b+dc+ee;+- - -
for some non-negative integers ¢, ¢ by the equality bc = 2c+ 2d+ x. Hence (bd, ec) = (b+2e+
2e1,2b+de+cer+- - ) = 10+10(5+¢). Since (bd, ec) = (dc, be) = (2¢+2zx+d, 2c+2d+x) = 40,
we have § + ¢ = 3. Moreover,

40 = (627 be) = (bC, €C) = (3b + 26, 2b + de + ge; + - )
Hence § =1 and € = 2. Therefore we have
ec = 2b+ 2e; +e.

On the other hand 45 = (ec,ec) = (e%,¢?) = (5.1 + ¢+ -+, 5.1 +2¢ + 2d). So we must have
€2 = 5.1+ c+d+---. This shows that e? = d?, by the equality (bc)? = b?c?. Furthermore,
(bc)e = 3be + 2¢* and (ec)b = 2b* + be + 2be; which imply that e =5.1+c+d+ v+, by
the equality (bc)e = (ec)b. This implies that v = x. Hence

(d%,€?) = (5.1 +c+d+2z,5.1 + ¢+ d + 2z) = 55.

But (de,de) < 45. Since (d?,€?) = (de, de) we have a contradiction.
Now we assume that A =y = 3. Hence be = dc = 2¢+ 3d. We have 15 = (dc, d) = (d?, ¢),
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this implies that ¢ appears thrice in the decomposition of d?>. Also 15 = (be,d) = (bd, e)
implies that e appears thrice in the decomposition of bd. Hence we have d? = 5.1+3c+g, bd =
3e + b+ h, for some h,g € B — {1, b, c}. Therefore (bd,bd) = 55 and

75 if g =d,

2 oy _ -
(b,d)—(5.1+3c+d,5.1+3c+g)—{ 0 if g #d.

Since (b?,d?) = (bd, bd) we have a contradiction.

If the case (2) holds, then bc = 3b+e;+es, €1 # ey. Let ¢2 = 5.1+ Ac+7yd+- - -, for some
non-negative integers A, y. We have (b2, ¢?) = (5.1+3c+d, 5.1+ Ae+yd+---) = 25+5(3\+7),
and (bc,bc) = 55. Since (b%,¢*) = (be, be), we have 6 = 3\ + v, such that A + < 4 by
f(c*) =25. Hence, A\ =1,y =3 or A =2,7 = 0.

If \ = 1,y = 3 then ¢ = 5.1+3d+c. This shows that c appears thrice in the decomposition
of dc. Since b*c = b(bc), we must have be; + bey + ¢ = 6d + dc. Hence be; = o/d + - - - and
bes = f'd+-- -, where o + ' = 6. Since 5o/ = (be1,d) = (bd, e1) and 54" = (bey, d) = (bd, e3),
we have that e;, e, appear o and ' times in the decomposition of bd respectively. But by
the equalities f(bd) = 25 and f(d'e; + f'es) = 5(e + ') = 30 that is a contradiction.

If A\ =2,7=0, then bc = 3b+e;+ey and ¢ = 5.1+2c+z+y for some z,y € B—{1,c,d}
By the equality b(bc) = b?c we have

be, + beg + 3d = dec + 2¢ + 3z + 3y.

By the above equality we can see that d appears ¢ times in the decomposition of dc such that
3<6<h.
If § = 3 then dc = 3d + - - -. Hence d? = 5.1 + 3¢ + x. Therefore

o oo [ T5 ifx=d,
(bd,bd)—(bad)—{m if z # d.

On the other hand (bd, b) = (b*,d) = 5. So bd = b+ - - -. This implies that (bd, bd) cannot be
equal to 70 or 75, a contradiction.

If 6 = 4 then dc = 4d + x, for some z € B — {1,d}. Hence 20 = (dc,d) = (d?, ¢), and so
d?> = 5.1+4c. Therefore (d?, ¢?) = (5.1+4c,5.1+c+3d) = 65, and (dc, dc) = (4d+z,4d+x) =
85. Since (d?, ¢?) = (dc, dc) we have a contradiction.

If § = 5 then dc = 5d. Hence 25 = (dc,d) = (d?,c), i.e., c appears 5 times in the
decomposition of d2. Since f(d?) = 25 we have a contradiction. This completes the proof of
the proposition. O

Proposition 2.5. There is no homogeneous standard integral table algebra (A, B) of degree
5 such that B contains a faithful element b where

bb=51+3c+d, c=¢ d=.d.

Proof. Let b € B such that_bg_: 5.1 +3c+d, for some ¢, d € B— {1,b} and ¢ = ¢,d = d.
Hence (bb, bb) = 75. Since (bb, bb) = (b?, b?), we have (b*,b*) = 75. But this is a contradiction,
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because b? has one of the following cases:

( 5c, then (b?,0%) = 125.

dc +d, then (b%,b%) = 85.

3c+ 2d, then (b?,b%) = 65.

b =< 3c+d+e, then (b%,b%) = 55.
2c+2d + e, then (b?,b%) = 45.

2c+d+e+yg, then (b%,b%) = 35.

 c+d+e+g+h, then(b2 b?) = 25.

This completes the proof of the proposition. O
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