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Abstract. Explicit inequalities are proved that relate the Hausdorff metric for
convex bodies with the symmetric difference metric and a corresponding surface
area deviation measure.

Let K™ denote the class of all nonempty compact convex subsets of the euclidean n-
dimensional space R™. The members of K™ will be referred to as convex bodies or, more
specifically, as convex bodies in R™. One of the indispensable tools in the theory of convex
sets is the concept of a ‘distance’ or a ‘deviation’ between two convex bodies. In this note
we concern ourselves with the following three notions of this kind.

(a) The Hausdorff Metric. To define it denote for any M € K™ its support function by
har(u), that is, hasr(u) = sup{u -z : £ € M}, where the dot denotes the inner product.
Then the Hausdorff distance between two bodies K, L € K" is defined by

§(K, L) = sup{|hr(u) — hg(u)| : u € S* 1},

where S™~! denotes the unit sphere in R™ (centered at the origin of R™). This is the most
often used distance concept for convex bodies.

(b) The symmetric difference metric. This is defined by assigning to K,L € K" the
distance
Ay(K,L)y=v(KUL)—-v(KnNL),

where v denotes the volume in R™. Equivalently, it can be written in the occasionally
more convenient form A, (K, L) = (v(K) —v(KNL))+ (v(L) —v(KNL)).

(c) The symmetric surface area deviation. This is defined similarly as the symmetric
difference metric but with the volume v replaced by the surface area s. Thus, we write

Ay(K,L)=s(KUL)— s(KNL),
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which can also be expressed as As(K, L) = (s(K)—s(KNL))+(s(L)—s(KNL)). As does
not, in general, define a metric since it does not satisfy the triangle inequality. Nevertheless
it is an interesting deviation measure. See Florian [2] for further comments regarding this
and closely related deviation measures.

There exist many other metrics and deviation measures that have been investigated.
In particular, we mention the L,-metric. For any p > 1 it is defined by

)= ([ ) = haetw) (o) ”

where o(u) refers to the surface area on S"~!. Note that if n = 2 and K C L then
01(K,L) = As(K,L). For further discussions of metrics and deviation measures on K"
see Gruber [3]. It is often necessary or desirable to make a transition from one metric to
another. For this purpose one needs conversion formulas which, in their most practical
forms, can be expressed as inequalities between these metrics. For example, Vitale [6]
proved inequalities of this kind relating the L,-metric to the Hausdorff metric. It is the
aim of the present article to establish similar relations for the Hausdorff metric on the
one hand, and the symmetric difference metric and surface area deviation on the other
hand. In this connection we also mention the work of Shephard and Webster [5] where the
topological equivalence between the Hausdorff metric and the symmetric difference metric
is proved. Our objective, however, is to establish explicit inequalities.

The following theorem contains our principal result. In this theorem &, denotes
the volume, and o,, the surface area of the n-dimensional unit ball; diam X denotes the
diameter and int X the interior of any X C R".

Theorem. Assume that K,L € K", and let D = max {diam K,diam L}. Furthermore, if
int (KN L)#0 let r denote the inradius of K N L. Then the following statements hold.

(i) For alln > 2
Au(Ka L) S c15(I{7 L)v (1)

_ 2k Dyn—1
where ¢1 = 57775 (5) .

(ii) Ifint (K N L) # 0, then for all n > 2

J(Ka L) S C2AU(K7 L)l/n (2)
1/n n—1)/n
with C2=( o ) ( v/
(iii) Ifint (K NL)# hen for alln > 2

As(K, L) < c36(K, L), (3)

where cg = oy, (g)n_2 (%)n_l. (If n = 2 one may choose cg = 4wD/r.)
(iv) Ifint (KN L) # 0, then for alln >3

§(K,L) < ey Ay (K, L)/ (1) (4)
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2Kp—1 T

1/(n—1) n—2)/(n—
with cq = (@) (2)( 2/ 1), and if KNL# 0 and n = 2, then
§(K,L) < cs A(K,L)Y?, (5)

1/2
where ¢5 = (@D) .

These five inequalities cannot be improved in the sense that the exponents of A, (K, L)
in (2) and Ag(K, L) in (4) and (5) cannot be replaced by any larger numbers (for any choice
of ca, ca, c5 depending on n, D, and r only). Similarly, in (1) and (3) §(K, L) cannot be
replaced by any §(K, L)* with o > 1 (for any appropriate choice of the coefficients).

Before we turn to the proof of this theorem we add several remarks.

1. The proof of the theorem will show that if K C L then ¢; in (1) can be replaced by
c1/2, and c3 in (3) by o, ((3""1 —1)/2""1)D"~2.

2. Inequality (1) can be combined with (4) or (5), and (2) can be combined with (3) to
yield inequalities relating the symmetric difference metric with the surface area deviation,
namely

Ay(K, L) < cre4Dg (K, L)Y (=D (n > 3),
Ay(K,L) < cresAg(K, L)% (n=2),

and
AS(K7 L) S CQC3AU(K7 L)l/n

Particularly if K C L these inequalities are of some interest and then the improvements
of the coefficients mentioned in the previous remark are possible.

3. Inequalities (2), (4), and (5) can be viewed as quantitative versions of the fact that
K C L implies v(K) < v(L) and s(K) < s(L). Indeed these inequalities show that if
K C L and if K and L have in some direction support planes of distance at least €, then
v(K) <v(L)—c3"e, s(K) < s(L)—cy ™" 'ifn >3, and s(K) < s(L) —c5 e if n = 2.
4. If n =2 and K C L, then (5) is essentially the same as a special case of an estimate of
Vitale [6] for the Li-metric.

Proof of the Theorem. In all parts of this proof the following conventions will be used.
Hyperplanes will be referred to simply as ‘planes’. The unit ball in R™ (centered at o) will
be denoted by B, and for any M € K™ and u C S™~! we let Hps(u) denote the support
plane of M in the direction u. Furthermore, we frequently write only §, A,, and Ag instead
of §(K,L), A,(K, L), and As(K, L), respectively.

The proof of (1) is a consequence of Steiner’s formula for the volume of a parallel
body. If W; denotes the i-th projection integral (Quermafintegral) in R™ this formula
states that for any A > 0

v(K + AB) = .n (") W (KN
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Letting A = 0(K, L) and noting that Wy(K) = v(K) and
v(L)—v(KNL)=v(KUL)—v(K) <v(K+0B)—v(K) (6)

we obtain

n
n i
v(L) —v(KNL) < Z (i)Wi(K)é .
=1
Since, among all convex bodies of given diameter, W; attains its maximum for balls (see
Bonnesen-Fenchel [1, Sec. 54]) it follows that for all M € K"

Wi(M) < 27"k, (diam M)" . (7

Hence, for any o > 0 we have

o(L) —v(K N L) < z—nﬁnD"—laé 2:; (?) (20)° (if_l .

aD

Letting o = (21/™ — 1) /2 and assuming that §/aD < 1 we deduce that

(1420)" =1 (D\" ! Fon D\" !
— < B —_— = — —_— .
v(L) —v(KNL) <ky 90 5 0 5i7m 1\ 3 )

But the same estimate holds if /oD > 1 since another application of (7) (with ¢ = 0)
shows that

(5 K D n—1
o(L) ~ (KN L) <27k D" < 27" DM 0 = it (2) )

Combining this with the corresponding inequality for v(K) — v(K N L) we obtain (1).

If K C L, then A,(K,L)=v(L)—v(KNL) and it is clear that ¢; can be replaced by
c1/2 as stated in our first remark.

IfA\>0and K = B,L = (14)A)B, then §(K, L) = Aand A, (K, L) = ,((1+A)"—1) >
nky A which shows that (3) cannot be improved in the sense stated in the theorem.

The analogue of (1) for the surface area, that is inequality (3), is more difficult to
prove. The problem is that (6) rests on the fact that the inclusion K UL C K 4 6B implies
v(K UL) < v(K + 0B); but the corresponding inference for the surface area is not valid
since, in general, K U L is not convex. To surmount this difficulty we use the following
concepts. If M € K™, 0 € M, and u C S™! let ppr(u) denote the radial function of M,
that is the length of the line segment M N R(u), where R(u) denotes the ray {ru : 7 > 0}.
Moreover, if 0 € K N L we define the radial distance between K and L by

0p(K, L) = sup{lpr(u) — px(u)| 1w € S"7'}.

For the proof of (3) let us now assume, as we may, that rB C K N L. If u, € S~ ! is such
that ¢ is the distance between the respective support planes Hg (u.) and Hp (uy), then,
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considering the line segment from o to a point in 0K N Hg (u,) or 0L N H(u.) we see
immediately that
dp(K, L) > 0(K, L). (8)

Next we show that r

Interchanging, if necessary, the roles of K and L one can choose a u, € S~ ! such that

0p(K, L) = pr(uo) — px(to)-

Let Ex denote the support plane of K at the point 0K N R(u,) and let E7, be the plane
parallel to Ex and containing 0L N R(u,). Now, if h, denotes the distance of o from E7,,
and d, the distance between Fx and Ep, then elementary geometry shows that

D D
5 (K, L) = PE)s Dy o Dy 1)
ho r r
and this proves (9).

Using (8), (9), and the obvious fact that |pr(u) — px (u)| > |pr(u) — prar(u)| (for all
u C S™ 1) we deduce that

6 > T0,(K, L) = - sup{|pr(u) = prc(u)| s w € 577}
T T
> L sup{|pr(u) = prrr(w)] s u € S} = S8,(L KN L)
C
> —6(L,KNL).
> L6(L,KNL)

Thus, 6 > (r/D)d(L, KN L) and similarly one finds § > (r/D)d§(K, KN L). It follows that
Kc(KNL)+ (D/r)éBand L C (KNL)+ (D/r)dB, and this implies

Ay <2(s((KNL)+26B)—s(KNL)). (10)

We now use Steiner’s formula for the surface area which states that for any M € K™ and
e>0

(M +¢B) = nnf (” - 1) Wit (M)é (11)

i=0
(see Hadwiger [4, p. 214]). Letting e = (D/r)d, M = K N L and using (10) together with
the relation nWy (M) = s(M) we find that

/n-1 D\
1 r
i=1

This, combined with (7) and the obvious estimate §/D < 1, yields

n—1 ) % n—1
As < o.n22—nDn—1 Z (n _ 1) (@) (%) < 0.n22—'nD'n—26 ((E + 1) — 1) .
7 T T
=1
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Observing also that 1 < D/2r, we obtain (3).
If K C L, then
As;=5s(L)—s(K) < s(K+B) — s(K).

Using again (7) and (11) (with M = K and € = §), one finds

n—1 4 n—1
1-n yn—1 n—1 i 0 3 -1 n—2
AS S 0'n2 D Z ( i )2 (5> S UHWD 5,

=1

which justifies the corresponding statement in our first remark.

The same example as that used in connection with inequality (1) shows that no es-
sential improvement of (3) is possible.

We now prove (2). Without any loss in generality it can be assumed that rB C KN L.
There exists a direction u, such that, with proper designation of K and L,

0= hL(uo) — hK(’U,O).

Let p € LN Hr(u,) and let C be the smallest cone that contains rB, has apex p and
whose base is in H(,p)(—u,). If J denotes the slab bounded by Hg (u,) and Hp,(u,) then

the cone C = C N J is similar to C and it is obvious that A, > v(C). Let @ denote
the largest ball in C' with center in Hg (u,), and let p denote the radius of Q. Then we
have p/r = 6/hr(u,) and therefore p > (r/D)d. Also, since the base of C contains the
(n — 1)-dimensional ball Hg (u,) N Q, the ((n — 1)-dimensional) volume of the base of C is
at least x,_1p" 1. Hence,

L S P T AL
2012 Pt s B ()
and this proves (2).

That the exponent of A, (K, L) in (2) cannot be improved is seen by letting K be a
right cone with spherical base, and L the truncated cone obtained by cutting off from K
(with a plane parallel to its base) the cone similar to K of height 4.

For the proof of (4) and (5) we first consider two convex bodies M and N in R"™ such
that 7B C M C N and derive a lower bound for A (M, N) in terms of § = §(M, N), r,
and D = max {diam M, diam N}. Clearly, there is a u, € S"~! such that

S(M, N) = hay (uo) — g (o).

Let Hj,(u,) be the closed half-space bounded by Hps(u,) and containing M, and let
M' = N N Hy;(u,). Obviously,

§(M,N) = §(M’, N). (12)

Also, since Ag(M',N) < Agy(M,N) and Ay(M',N) = s, — s(N N Hp(u,)), where s,
denotes the surface area of the part of 9N not lying in 9M’, we have

Ag(M,N) > s, —s(N N Hpy(u,)). (13)
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Let now £ be a line orthogonal to hps(u,), and let us perform a spherical symmetriza-
tion (Schwarzsche Abrundung, see Bonnesen-Fenchel [1, Sec. 41]) of M’ and N with ¢
as axis. It transforms these bodies into rotationally symmetric bodies, say M’ and N.
Moreover, N N Hps(u,) is transformed into an (n — 1)-dimensional ball, say G, that lies in
the plane Hjs(u,) and has its center in £. Since spherical symmetrization preserves volume
and does not increase surface area it follows from (13) that

Ay(M,N) > 5, — s(N N Hyr(u,)), (14)

where 3, is defined as s, but with respect to N and M’ rather than N and M’. Let now C
denote the cone with apex ¢ = Hy(u,) N4 and base G, and let § denote the lateral surface
area of C. Then, § < 5,, and it follows from (14) that

Ay(M,N) > 5 — s(N N Ha(u)). (15)

Furthermore, if G has radius p, then

§= K/n—lpn_z \/ 82 + p2,

and (15) implies therefore

= n—2(§2
Ad(M,N) > k19" 2(\/p2 + 62 — p) = fip_1 " .
(M,N) 2 fin_1p"""(\/P? + 6% —p) =& Y 1,

(16)

Since rB C N the body N contains a ball, say O, of radius r with center on £. Consider a
line T' that contains ¢ and is tangent to O. Let 1 denote the distance between the center
of G and TN G, and ¢ the distance between g and the point 7'N O. Then we deduce,
observing also (12), that ¢/r = ¢/n and consequently

Ta_ T4
>n=-02>=90.
pP=1 =P
Combining this with (16) we infer that
pn—382

AS(M,N)EKn—l < .
(Dfry + 12+ 1

If n > 3 then p™~3 is increasing or constant and therefore

f) n—3 .
As(Ma N) > Kp—1 ~ (T/ ) n—l.
((B/n?+ 1172 +1
Since 1 < D/2r this yields
r\"? 2 .
Ag(M,N) > kp_1 | = ot 17
02 (5) 2 a7
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The desired inequality (4) is now obtained by adding the two inequalities that result
by substituting into (17) M = KN L and N = K or N = L, and noting that D < D,
S(K,KNL)" '+ 4§(L,KNL)" 1> (max{§(K,KNL),§LKNnL)}H!>§K,L)" 1,
and Ay(K,L)=A4(K,KNL)+ As(L,KNL).

That the exponent of A;(K, L) cannot be improved is seen by the same example as
that described in connection with (2).

All conclusions of this proof up to and including inequality (16) remain valid if n = 2.
Thus, in this case we have

52
(02 + )2+ p’

As(M,N) > 2

and since 4 < D, p < D it follows that

2 5

(V2+1)D

Letting again M = KN L and N = K or N = L and proceeding as before we obtain (5).
Note that (5) is trivially satisfied if int (M N N) = () and int (M N N) # (.

It is remarkable that the case n = 2 is really exceptional. To show that in (5) the
exponent 1/2 cannot be replaced by a larger number consider the following example. In
the usual (z,y)-coordinate system let K be the convex domain bounded by y =0 (-1 <
z < 1) and the curve y = 1 — 2™ (=1 < z < 1), where m is a positive even integer.
Furthermore, assuming that an e € [0, 1] is given, let L be defined as the part of K where
y <1—ec. Clearly, 6(K,L) = e and A, (K, L) > 2(V/e2 + e2/m — /™) = 22 /(\/€2 + el/m +
el/™) > (2/(v/2 + 1))e2~/™, Since m can be arbitrarily large this justifies our assertion.

As(M,N)

v
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