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Abstract. The concept of cutting vectors is introduced to study the combinatorial
structure of vector configurations in the plane. We give a full characterization of
those n-tuples of integers which are realizable as cutting vector. Furthermore,
‘simple’ mappings are defined that transform cutting vectors into each other. Thus
it becomes possible to consider all combinatorial types of vector systems.

0. Introduction

In the context of combinatorial and computational geometry often occur vector systems, e.g.,
as normal vectors of hyperplanes in the Euclidean or projective d-space.

Starting with Griinbaum [6], vector systems of hyperplanes became a basic subject. Edels-
brunner [4] and others developed algorithms for computational treatments. In recent years
the theory of oriented matroids has been developed [2], [5], [1], [3]. Arrangements of oriented
hyperplanes may be viewed as realizations of oriented matroids. In general, arrangements
yield affine sign vector systems, which have been studied extensively by Karlander [8].

In [9] and [10] Linhart has shown that in E? interesting questions still are open, and that
it is natural to use a ‘geometric language’.

In this paper the concept of ‘cutting vectors’ is developed to code the combinatorial
structure of systems of unit vectors in E? . In order to consider all possible combinatorial
types of vector systems it is important to characterize the cutting vectors and to show how
to ‘move’ in the system of cutting vectors (of a fixed number of components). This is done
in Theorem 2.2 and Theorem 3.7.

In [7] we will use the concept of cutting vectors to derive results on the total weight of
arrangements.
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1. Basic notation

A finite collection of n > 2 unit vectors in the Euclidean plane E? is called a vector system.
Let V = {v1,...,v,} be such a vector system.

The angle < (v;,v;) is measured from v; to v; in the range [0,27) in mathematically
positive sense. We assume that the vectors are labelled according to mathematically positive
sense, i.e., it holds that

0< J(v1,v5) < A(vy,v5) & 1<j<y. (1.1)
For each v; € V' we determine the cardinality
ki:= card {v e V:0< J(v;,v) <7}

and the set

[0 if k=0
L {Ui+la P avi+k¢} else.

2. The concept of cutting vectors

Let V = {vy,...,v,} be a vector system, then there exists a vector k = (ki,...,k,) € N
uniquely determined by the cardinalities k; in the previous section. This vector is called the
cutting vector of the vector system V. It characterizes the combinatorial structure of the
vector system up to cyclic permutations, i.e., cyclic permutations of the cutting vector corre-
spond to appropriate relabelings of the vectors and, consequently, preserve the combinatorial
properties of the vector system.

Furthermore, we define the cutting matriz C = (c;;) by

cij := sign det (v;,v;) € {+,—,0}.

This is essentially the same as the chirotope of the considered vector system [1]. It follows
that

0 for j=1
Cij = 0 for ]:Z+k1+1 if Vitk;+1 = —U;
— for j:Z+kZ+1 ifvi+ki+17é—vi/\ki§n—2

— for j=i+k+2,....i4+n—-1 ifk;<n-3
(the expressions of the index j are taken modulo n).

Lemma 2.1. Let k = (ky,...,k,) be the cutting vector of the vector system V, and v be the
number of pairs of oppositely directed vectors in V. Then

CZ ki = %n(n —1)—7. (2.1)
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Proof. Let ¢; := (¢;1, - - ., Cin) be the i-th row of the matrix C' and ¢; the number of ‘+’ in ¢;.
Then Qi = ]Cz
Let ¢’ := (¢, ..., cni)’ be the i-th column of C and 1); the number of ‘+’ in ¢*. Then

b = n—k; —2 if v; and v;44,41 are oppositely directed
"l n—k; —1 otherwise.

n

Consequently, > (¢p; + ;) = n(n — 1) — 2. On the other hand, if ¥ denotes the number
i=1

of ‘47 in C, then kK = Y ; = >_ ;. Thus, we have k = > p; = > k; and
= ' = i=1

=1 =1 =1

1 [ - 1 1
KZE(ZSOH"ZT/%):EZ(%?L%):ETL(”—U—V- o
i=1 i=1 i=1
Now we consider the question for the realizability as cutting vector:

Given a vector a = (ai,...,a,) € N*. Under which conditions do there exist
vector systems with cutting vector a?

We can give an answer to this question by a characterization of cutting vectors (again all
indices are taken modulo n):

Theorem 2.2. The vector a = (a,...,a,) € N' is realizable as cutting vector of vector
systems if and only if the following system of inequalities is valid fori=1,...,n:

0<a; <n-1, (2.2)

a; < Qiy1 + 1, (23)

Qita; < —a; — 1, (2.4)

Aita;+1 2 n—a; — 2, (25)

Aita;4+2 2 n—a; — 2. (26)

Equality in (2.5) holds if and only if the vectors v; and viiq,+1 are oppositely directed.

Proof.
(1) Let a = (a4, ...,a,) be the cutting vector of a vector system V.
(a) (2.2) follows from the definition of cutting vectors.
(b) (2.3) holds true for a; = 0 and a; = 1.
If a; > 2, then from ¢; ;14, = + it follows that ¢; 41 44, = +. From

I (Vig1, Vita;) < T & Viga; € Vier € Citliva = +

we get a;41 > a; — 1, which proves (2.3).
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(c) (2.4) holds true for a; = 0.
If a; > 1, then from c¢;;y, = + it follows that c;i4,; = —. Consequently,
i+ a; + airq; + 1 < n+14, which proves (2.4).

(d) (2.5) holds true for a; =n — 1.
If ¢ijta;+1 = 0, then it follows that cjiq,41, = 0. Consequently, if a; # n — 1,
then ¢ +a; + 1+ @141 =n+7—1, and

Qita;+1 =T — a; — 2.

If ¢ijya;+1 = —, then it follows that c¢j1q, 41, = +. Consequently, 7 +a; + 1 +
Qita;+1 > M+ 4, which proves (2.5).
(e) (2.6) holds true for a; =n —1 and a; = n — 2.
If a; <n—3, then ¢; 14,42 = — and ¢;1q4;42; = +. Consequently, i+a;+2+a; 14,42 >
n + i, which proves (2.6).
(2) Let a = (a1,...,a,) € N satisfy the conditions (2.2)-(2.6). We construct a vector
system with cutting vector a.

(a) Let v; be an arbitrary unit vector in E2. If a¢; = 0, then we set V; := ().
It is easy to find a second unit vector v, satisfying < (v, ve) > 7.

If a; # 0, then it is easy to find a set V} = {vg, ..., V144, } of unit vectors
satisfying (1.1) and 0 < < (v1,v) <7 Vv € V]
(b) Assume that
Vi= { {Vig1y -, Vitq, } else

satisfies (1.1) and 0 < < (v;,v) <7 Vv € V.
If a; > 2, then from < (v;, vi4q,) < 7 it follows that

J(Vip1,v5) <7 for j=i+2,...,i+a;

and we may define the set

) {(D if a; < 2

V’i —
+1 -
{’UH_Q, . ,/Uz'+ai} else.

If a; = a;41 + 1, then we get i + a; = (¢ + 1) + a;41. Consequently, we can set

@ lf ;11 — 0
Vi = { Vigr  else.

If a; < aj41 + 1, then we get i +a; < (1 + 1) + @41
We consider the two cases:
(by) If (i + 1) + a;41 < n, then we find a set

' { 0 if ai+1 =10

i+l —
{Ui-i-ai-f-la SRR vi+1+ai+1} elsea
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of unit vectors satisfying

!

I (Vig1,v5) <7, A(vs,v5) > for v; € V).,
Then 3
Vipr = Vi UV,
satisfies (1.1), 0 < < (vi31,v) < 7Vv € Vii1, and this inequality fails for v €
{Ula .- avi—}—l}'
If (i+1)4 a1 =n+a, a>0, then we find a set
, _ [0 if a1 =0
1 {visaga1y---, U0} else,
of unit vectors satisfying the analogous conditions like in (b;). Furthermore, from
(2.4) it follows that
a+a,=(+1)+ a1 —n+ CGiprqa,, <0
Consequently, v; 11 ¢ V,. Now we define the set
[/ @ if a=0
L {wy, ..., 0.} else.

Then

Vier = Vi UV, UV
satisfies (1.1) and 0 < < (vj41,v) < 7TV € Vipq.
We still have to prove that the inequality fails for v € {vgi1,-.., 041}, i€,
« is maximal or, equivalently, v, 1 ¢ Viy1. From (i + 1) + a;41 = n + « it follows
that
a=(+1)4+a1—n<(i+1)+(n—-1)—n=1i.
If =14, then Y (vit1,v0+1) = 0.
If o < 4, then we consider two cases: If equality holds in (2.5), then from
Va+1 = {UOH-?’ sy Ua+1+aa+1}

and

a+l+4agp=0@+1)+ap1 —n+1+ 014,41 =10
it follows that v;y1 ¢ Vay1, which is equivalent to < (vai1,vir1) > 7.
On the other hand, from

Vier = {Ui—i-?: ce Ui—|—1—|—ai+1}

and i +1+4a;.1 +1=n+ a-+1 it follows that

I (Vig1, Vat1) > 7.

The two inequalities yield < (v;41,v4+1) = 7 and consequently voy1 ¢ Viyq. If
equality does not hold in (2.5), then from o + 1 + a1 > @ + 1 it follows that

Vir1 € Vau1, which is equivalent to vey1 ¢ Viyr. Together with Vi,...,V, we
obtain a vector system V = {v1,...,v,} with cutting vector a. !



186 G. Heinz: The Concept of Cutting Vectors for Vector Systerms. . .

Corollary 2.3. Let a = (ay,...,a,) € N* be realizable as cutting vector of a vector system
V. Then there ezists an index j € {1,...,n} such that

Q; S Qjy1-
Proof. 1f we assume that a; = a;0.1 + 1,7 = 1,...,n, then we get the contradiction
a1 =ai + n. a
Corollary 2.4. Let a = (ay,...,a,) € N* be realizable as cutting vector of a vector system

V. If a; < a4 for some j € {1,...,n}, then

a; <n—2. (2.7)

Proof. From (2.2) we know that a; < n — 1. If a;41 < n — 1, then it follows that a; <n — 1.
If we assume that a; = a;;; = n — 1, then from (2.4) it follows that

@j = Gjtita SN =0 —1=0,
which is a contradiction. O
Corollary 2.5. Leta = (ay,...,a,) € N* be realizable as cutting vector of a vector system V,
aj < aj1 for some j€{l,...,n},
and assume that vj and vji.;41 are not oppositely directed. Then

a,j -+ aj+aj+1 =n-—1. (28)

Proof. Setting o := a;41 — a;, we get the following observations. From (2.5) we know that
aj + Gjya;+1 2N — 13
on the other hand, from (2.3) it follows that
Ujtaj+1 = Ojtajii—atl S Qjqiya; . T Q,
and from (2.4) we get
Ujt1ta, TSN —0j1—1+a=n—a; — 1

Consequently, (2.8) holds. |
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3. ®;-mappings

Now we deal with the question: How to get a cutting vector from another one?

We will define mappings which correspond to special rotations of the vectors in the vector
system. On this way we describe the change of the combinatorial structure of the vector
system step by step.

We consider the mapping ®; : N* — N", where

!

a =®;(a), j €{1,...,n} is given by

a;+1 for =3 .
{ a:' else } if - aj+ a0+ =n—2
a; = (3.1)
a;—1 for i=j7+a;+1 .
{ a: olse J } if a; + aj+aj+1 # n— 2.

Theorem 3.1. Let k = (ky,...,k,) be the cutting vector of the vector system V. Then
k' = ®;(k) is realizable as cutting vector of a vector system if the following condition holds:

kj < k. (3.2)

Proof. Using Corollary 2.4 and Corollary 2.5 it is easy to check that &' = ®;(k) fulfils the
conditions of Theorem 2.2. O

In the following for given cutting vectors k = (ki,...,k,) and &' = (k},..., k) we
consider the vector kK = (K1, ..., k), where
ki, 1= 1,...,n.

KR; ‘= ]f; —

Corollary 3.2. Let k = (ki,...,k,) and k' = (ki,...,k]) be the cutting vectors of vector
systems 'V and V', respectively. If k; > 0 for some l € {1,...,n}, then there erists an index
j€{1,...,n} such that

kj S kj_|_1 A Kj > 0.

Proof. If k; < k41, then the assertions holds for j = I.
If we assume that

ly...,7—1 if <y

< L
Looon+j—1 if 1> NFSkn

ki:ki+1+1 fori:{

(from Corollary 2.3 we know that such an index j exists), then it follows that

oo kit (=) if 1<j
! kj+(n+ji—1) if >3]
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On the other hand, from (2.3) it follows that

e [ BTG if 1<y
N N (RN ) IR L

Thus we obtain
lﬁj:k;—ijk;—kl:lﬂ>0. O

Corollary 3.3. Let k = (ki,...,kn) and k' = (k,...,kl,) be the culting vectors of vector
systems V and V', respectively. If k; >0 for some j € {1,...,n}, then

. < 0 if kj+kj+kj+1 =n-—2
Jrki+l = —1 Zf kj =+ k'j+kj+1 >n— 1.

Proof.
(1) If kj + kj—f—kj—l—l =n— 2, then

ki + Kipoyr = K+ Ky + Ko + Kk = (00— 2) + K5 + Kjppgr
(2) Tf kj + kj, 1 > n — 1, then
kG + ki > (0= 1) + k) + K1
(3) Furthermore, from Theorem 2.2 we have
ki + Kjk, 41 :k;+k;+,c}_nj+1 <(n-1)+(k; —1). 0
Corollary 3.4. Let k = (ki,...,k,) and k' = (ki,...,kl) be the cutting vectors of vector
systems V and V', respectively. If k; <0 for some j € {1,...,n}, then
. {1 if kj+kijre =n—2
AL =00 if kj+ ke =n—L
Proof.
(1) If kj + kjyx;41 = n — 2, then
ki + K1 = (0= 2) + Kj + Kjang 1.
(2) Tf kj + kjg, 11 =n — 1, then
i+ kg = (0= 1) + K5+ K41
(3) Furthermore, from Theorem 2.2 we have

k;+k;+kj+1:k;+k;+k;_nj+lz(n—l)—l—h;j. O
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Corollary 3.5. Let k = (ki,...,k,) and k' = (k,...,kl,) be the culting vectors of vector
systems V and V', respectively. Then

0 iof k;=-1
> J
’“J*’“f—{1 if Ky <-—L.

Proof.
(1) If k; = —1, then from (2.5) it follows that

Bt Ky = K Ky > =2
(2) If k; < —1, then from (2.3) and (2.5) it follows that
ki + Ky, =k + k;,rk;_nj > n — (—kK;).
(3) Furthermore, from (2.4) we have
ki + K, = ki + kjir; + K5+ Kjpry < (0= 1) + K5 + K- 0
From now on we use a further distinction. The vector system V' is called non-degenerate if

and only if there are no two oppositely directed vectors in V. Otherwise V is said to be
degenerate.

Corollary 3.6. Let k = (kyi,...,k,) and k' = (ki,...,k]) be the cutting vectors of vector
systems V and V', respectively. If V' is non-degenerate and

nl§0 VlE{l,...,n},
then k = k'.

Proof. Assume that x; < 0 for some j € {1,...,n}.
(1) If k; < =1, then k44, > 1, by Corollary 3.5, is a contradiction.
(2) If k; = —1, then k;14;, > 0 by Corollary 3.5.

a) If k;4,. > 0, we have a contradiction.
J+k;

(b) If k1, = 0, then from (2.4) we get

kj + k;'+k§-+1 = ki + Kir, = ki = 1+ Ky,

which is a contradiction. O

In the following we make use of

D, 0, (k) == @, (P4, (k) and  W;(k) := 0;®;(k).
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If k' = U;(k), then from the definition of ®; (see (3.1)) it follows that

ki+1 for 1=7
ki=< ki—1 for i=j+kj+1
k; else.

Theorem 3.7. Let k, k' € N* be realizable as cutting vectors of vector systems V and V',
respectively. Then they may be transformed into each other by a finite number of ®;-mappings.
Each intermediate vector is realizable as cutting vector of a vector system.

Proof. We give an inductive construction:
(1) Setting £ :={1,...,n}, Iil(o) =k, —k;,l=1,...,n, we consider

LY ={ieL:s” >0}

(2) If LS? # 0, then, according to Corollary 3.2, it follows that there exists j € ng) such
that k) < k', and &{’ ==k} — £ > 0.
(a) If k](-z) + kj(_zikj(i)+1 =n — 2, then k(D := &;(k®) is realizable as cutting vector of

a vector system, and

l (%)

Hl(i+1) =k - LD { ’fz(l_) -1 if1 l=3j
Ky else.

(b) If kg-i) + k(,ik(i)ﬂ =n — 1, then k(*V) := W, (k®) is realizable as cutting vector of
] .
a vector systjem, and
. . l{l(i) -1 if =7
e R R - LS BT S = By SO
kD else.

From Corollary 3.3 it follows that
G+k{+1 j+k§+1
Setting ,Cgfﬂ) ={leL: /fl(iﬂ) > 0}, in both the cases (a) and (b) we have ETLI) C
ES:). If ES:H) # (), the procedure of this part works again.

(3) If [,Sf) = () and V' is non-degenerate, from Corollary 3.6 it follows that &' = k().

Thus, we have to consider only the case where Lﬁ’ = () and V"' is degenerate. If K,g-i) <0
for some j € L, then by Corollary 3.4 we obtain

(4) > J kY41
Kok = , (), 1.6) _
Jtk;7+ 0 if kj + k = n-—1.

k{41
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Only the second case is relevant (notice ,Cgf) = ()). Thus, we may assume
A
j

and
(i) et (1) _
IO Kk®a1 ™ k'+k“)+1 N
J ' JTE; J '

Furthermore, from (2.4) we know that

() (2)

(a) If mg-i) = —1, from (2.5) it follows that
E; +k;+k](.“ = kj + k}+k;+1 >n—2.
Thus, together with (x3) we obtain

(Z) I _ 7 i g (1,) _ B _

Again, only the case K('ilk(” = 0 is relevant, and by (*3) it follows that
JTE;
Kotk =6 — 14k o=k +k% —1<n-2

Together with (2.5) we obtain equality. Consequently,
(%) @ _ . _
ki + kj+k§i) =n-—1.

From (%) and (x4) we get
JAONSN RO
e k41

Thus, the conditions of Theorem 3.1 are satisfied and, consequently,
i+1) . _ i
Lt . — (Dj+k§i) (k(Z))
is realizable as cutting vector of a vector system. Furthermore, from

) (i) EMON 0 _, 1
T
J

we obtain (see (3.1))

(+1) _ (9 _
K; =K; + 1=0.

191
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(b) The case ng-i) < —1 is not relevant, since from Theorem 2.2 it follows that

/ ! gt / (4)
kj + kj+k](l) = k] + kj+k;fn](-i) Z n+ /fj
and, together with (x3),
W _ 0 Oy 32 1y

If /{gi“) < 0 for some j € L, then the procedure of this part works again.

4) The procedure of part (2) and (3) stops at 7 = ¢ if m(g) =0,l=1,...,n. O
( ) p p p 1 ’ ) )
Example 3.8. We consider

6,5,5,5,4,3,3,4,4)
6,5,5,4,3,2,1,4,7).

7

The vectors k and k' satisfy the conditions of Theorem 2.2. We obtain

ED = @ (k) = (6,6,5,5,5,4,3,3,4,4)
k2 = v (kM) = (7,6,5,5,5,4,3,2,4,4)
EG) = U (k®) = (7,6,5,5,4,4,3,2,4,5)
ED = U(k®) = (7,6,5,5,4,3,3,2,4,6)
k) = W (k®W) = (7,6,5,5,4,3,2,2,4,7)
o = &(k®) = (7,6,5,5,4,3,2,1,4,7).

Thus k' = (D(k) hOldS, where ® := (1)10\1110\1110\1/10\111@1.
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