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Abstract. This paper investigates the region in which all the minimal solutions
of a linear diophantine equation lie. We present best possible inequalities which
must be satisfied by these solutions and thereby improve earlier results.

Keywords: linear Diophantine equations, Hilbert basis, pointed rational cones.

1. Introduction
For two nonnegative integral vectors a € N*, b € N n,m > 1, let
L(a,b) ={(z,y) e N* xN" : a"z = bTy} (1.1)

be the set of all nonnegative solutions of the linear Diophantine equation aTx = bTy. Here
we are interested in the minimal solutions of this linear Diophantine equation, where (z,y) €
L(a,b) is called minimal if it can not be written as the sum of two other elements of
L(a,b)\{0}. The set of all minimal solutions is denoted by #(a,b). By definition we have

L(a,b) = {Zj—1 ah' 2 qi,p €N, B' € H(a, b)}

and #(a,b) is a minimal subset of £(a, b) having this generating property.
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In other words, H(a,b) is the Hilbert basis of the pointed rational cone
C(a,b) ={(z,y) e Ry x RYy : aTx = b7y} (1.2)

A Hilbert basis of an arbitrary pointed rational polyhedral cone C C R" is defined
as the unique minimal generating system (w.r.t. nonnegative integral combinations) of the
semigroup C' N Z". Observe, that C(a,b) N N"*™ = L(a,b). The existence of such a system
of finite cardinality was already shown by Gordan [5] for any rational cone. Van der Corput
[1] proved the uniqueness for pointed rational cones.

The set H(a, b) of all minimal solutions of a linear Diophantine equation has been studied
for a long time in various contexts, see e.g., [3], [4], [6] and the references within. The purpose
of this note is to generalize a result of Lambert [7] and Diaconis/Graham/Sturmfels 2| by
proving that the elements of #(a, b) satisfy a certain system of inequalities.

We assume throughout that a = (a1,...,a,)T € N*, b= (by,...,0,)T €N" n>m > 1,
and a1 < ao < --- < ay, by <by <---<by,. Itis not hard to see that

C(a,b) = pos {bje' + ae"7 :1<i<n,1<j<m},

where pos denotes the positive hull and e € R**™ denotes the i-th unit vector. A trivial sys-
tem of valid inequalities for the elements of #(a, b) is given by the facet defining hyperplanes
of the zonotope

{(xy)ER”+m'(xyT—Z Aij(bje’ — aze” )0<)\Z]§1}

because it is well-known (and easy to see) that the Hilbert basis of a pointed rational cone is
contained in the zonotope spanned by the generators of the cone. Stronger inequalities were
given by Lambert ([7]) and independently by Diaconis/Graham/Sturmfels [2]. They proved
that every (z,y)T € H(a, b) satisfies

m

ixi <b, and Zyj < ap,. (1.3)
i=1

j=1
Here we show
Theorem 1. Every (z,y)T € H(a,b) satisfies the n + m inequalities

n -1
S M S LEURP ML~
i=1 j=1 n

j=l+1

m k—1
[Ik]: Zy]_i—Z\‘akb_aszzSak—{_Z ’V _ak-‘ 1y k:L"',na
j=1 i=1 m

i=k+1

-‘ Lo l=1,...,m,

where [x] (|z]|) denotes the smallest integer not less than x (the largest integer not greater
than x).

Observe, that [J,] and [I,,] are generalizations of the inequalities stated in (1.3).
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2. Proof of Theorem 1

In the following we denote by < (respectively by <) the usual partial order, i.e., for two
vectors x,y we write x < y if for each coordinate holds z; < y; and we write z < y if|
in addition, there exists a coordinate with z; < y;. The proof of Theorem 1 relies on the
following observation.

Lemma 1. Let (Z,9)T € L(a,b) and let (z*,y")T, (2%, y*)T € N"*™ such that 0 < (z* —
oy’ —y)T < (Z,9)7 and aTxt — bTy! = aTx? — bTy?. Then (Z,9)T is not an element of

H(a,b).

Proof. Let (24, 2,) = (2% — z',y* — y'). By assumption we have (z;, 2,)7, (T — 2, J — 2,)7 €
L(a,b)\{0}. Thus (Z,7y) = (T—24, y—2y)+ (24, 2,) can be written as a non-trivial combination
of two elements of L(a,b)\{0}. O

Proof of Theorem 1. Let (Z,9)T € H(a,b). By symmetry it suffices to consider only the
inequalities [Jj], I = 1,...,m. Let us fix an index | € {1,...,m} and let £ = > " | &,
v = 2721 ;. We choose a sequence of points z* € N*, 0 <4 < &, such that

0=2"<z' <2< ---<2t=3 (2.1)
Next we define recursively a sequence of points 7 € N™, 0 < j < v, by ¢° = 0 and Yy =
y/ ' +e%9) 5 > 1, where the index d(5) is given by d(j) = min{l < d < m : yé_l +e? < gq}-
Observe that here e? denotes the d-th unit vector in R™. Obviously, we have

0=y <yl<yl<---<y=14. (2.2)

For two points © € N*, y € N™ let r(x,y) = aTz — bTy and for a given point 2 let y*® be
the unique point such that

r(z?, y*) = min {r(z’,y?) : r(z’,y) > 0,0 < j <w}.
For abbreviation we set (i) = r(z%, y*®). It is easy to see that (i) € {0,...,b, — 1} and
0= yu(o) < yu(l) << RO = g (2.3)
Moreover, by definition of y/ we have the relation
r@) > b =y =g, 1<j <t (2.4)

So we have assigned to each i € {0,...,£ — 1} its residue r(7) and now we count the number
of different residues which may occur. To this end let

R={ic{0,.. . c-1}:7(4) <b)},

and for [ +1 <75 <mlet

Rj = {7, € {0, .. .,f — 1} : bl < T‘(’L) < bj, yff? = gj—l; yf(l) < ?jj} .
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Since {0,...,& — 1} = U2, R; we have

S & <#R+ Y #R;. (2.5)
=1

j=l+1

By Lemma 1, (2.1), (2.2) we have

#Rl = #{T(Z) 11 € Rl} S bl. (26)

We claim that for j =1+ 1,...,m

b; — b
#ry < |20 (2.7
a1
To show this let ¢ € {0,...,9; — 1} and let 2t < --- < ' be all vectors of the z-sequence
(cf. (2.1)) satisfying y;f(z) = ( and i € R;. By construction we have y#(1) = yr(i2) = ... = ynulir)
and so

(r—Day < a’z" —aTa™ =r(iy) — (i) < (bj — 1) — by,

Hence 7 < [(bj — by)/a1]| and we get (2.7).
So far we have proved (cf. (2.5), (2.7))

> [t (28)

j=l+1

D i <#R +
i=1

In the following we estimate the number of residues in {0, ..., —1} which are not contained
in {r(i):i € R}

To do this we have to extend our z-sequence. For v € N let p,,q, € N be the uniquely
determined numbers with v = p,& + ¢,, 0 < ¢, < &, and let

¥ = ppat + %,

Observe that 7(Z%,y) = p,bTg — b7y +aTz®. For s € {1,...,l—1} and t € {0,...,7s — 1} let
y*' be the point of the y-sequence (cf. (2.2)) with coordinates

st

y'=t, g =9, 1<j<s—1, and y'=0,s+1<j<m
For such a vector y** let Z°>*) be the point of the Z-sequence such that

r@e9,y*) = min {r(@,y") : 1@,y > by, i € {0,..., )}

d(s,t

Observe that such a point 7°(*?) exists, because ¢ € {0, ..., 7, — 1}. Moreover, (! belongs

to the “original” x-sequence. In particular, we have

by < T(x‘s(s’t), y*t) < by + ay. (2.9)
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Let rg, = {T" : bs < r(T",y*") < b}. Obviously, by (2.9) we have

#Ts,t 2 L(bl - bs)/anJ . (210)
Now we study the cardinality of

-1 (9s—1
R: U { U {T(fi’ys,t) . bs S T,(Ei’ys,t) < bl}}
t=0

s=1

and we show

-1 b —b
s=1 n

Suppose the contrary. Then, by (2.10), we can find s,s' € {1,...,1 =1}, t € {0,..., 7, — 1},
t' € {0,...,75y — 1} and vectors 7, Z¥ of the Z-sequence such that r(z°, y**) = (%, y***).
We may assume y*! < y*¥ and therefore 70 < T, i.e., v < w. Since

J 7s. (2.11)

r(@,y*h) = pbTh — Ty + aTa® = p,bTH — b1y + aTat = (@, y*")

we get py € {py, Py + 1}

a) If p, = p, then 0 < ¥ — 7Y = 2% — 2% < ¢ and we can apply Lemma 1 to (z%, y*")T,
(%, y***)T which yields the contradiction (%, ) ¢ H(a,b).

b) If p, = p, + 1 then 0 < T — Z¥ = 2% + 2% — z%. Since

aT(xq” _ x(Iw) — ng + bTys,t . bTys’,t’ >0

we have 2% < 2% and thus 0 < Z% — z¥ < 2¢. Hence, also in this case we can apply Lemma
1 and obtain a contradiction.
Next we claim that

RN{r(i):ie R} =0. (2.12)

Otherwise there exist 7V, y*! with by < r(z",y*) < b, and 7, y*®), 0 < < &€ — 1, such that
r(@,y*t) = r(@, y*®). Since r(@,y>') > b, but y> < §, we have y* # y#@ (cf. (2.4)).
Hence, we may assume y*' < y#® or yt0) < yst,
a) If > < y"®) then T¥ < 7" and thus v < i < €. Again, by Lemma 1 we find (%, %) ¢ H(a,b).
b) If y*() < y* then T8 < Z¥. As above, it is easy to see that p, € {0,1} and that in both
cases Lemma 1 can be applied in order to get a contradiction.

Finally, we note that (2.6), (2.12) and (2.11) imply

= b
#ngbl_Z\‘la sJﬂs,

s=1

which proves inequality [J;] (cf. (2.8)). O
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3. Remarks

Theorem 1 shows that the minimal solutions of a linear Diophantine equation lie in the region
that one obtains from intersecting the zonotope associated with the generators of C(a, b) with
all the halfspaces induced by the inequalities [Ix], k = 1,... ,n and [J)], [ = 1,... ,m. We
believe that a stronger statement is true: every element of #(a,b) is a convex combination
of 0 and the generators b;e’ + a;e"*? of C(a,b). More formally, let

P(a,b) = conv {0,bje' + a;e"7 : 1 <i<n, 1<j<m}.
We conjecture that
Conjecture 1. H(a,b) C P(a,b).!

We remark that there is an example by Hosten and Sturmfels showing that if one replaces
P(a,b) by the “smaller” polytope P(a,b) = conv {0, (b;e’ + a;e"*7)/ged(bj,a;) : 1 < i <
n, 1< j <m}, then H(a,b) ¢ P(a,b).

For m = 1 Theorem 1 implies the inclusion H(a, b) C P(a,b). This can easily be read off
from the representation

=1

P(a,b) = {(36,y)T ER"xR: dTz=by, z,y>0, ) ;< bl}-

It is not difficult to check that the inequalities [I] and [J;] of Theorem 1 “without
rounding” define facets of P(a,b).

Proposition 1. Forl=1,...,m let

n

-1
b
J; = {(x,y)ER” me:in—l—Z la
j=1

i=1 n

b; =\ b —b
Ty; < b+ Z Ja lyj}
j=t+1 Ot

and fork=1,...,n let

m k—1 n
ap — a; a; —a
Ik:{(x,y)ER”me: E yj—|-E kb ‘i < ap + E 1b kxi}.
j=1 i=1 m

i=k+1 1

Then we have P(a,b) C J;, P(a,b) C Iy. Moreover, P(a,b) N J; and P(a,b) N Iy are facets
of P(a,b), 1<1<m,1<k<n.

Proof. Tt is quite easy to check that all vectors bjei +ae", 1 <i<n, 1<j<m,are
contained in J;, [ = 1,..., m. Moreover, the inequality corresponding to .J; is satisfied with
equality by the n+m — 1 linearly independent points b'e’ + a;e"*!, 1 < i < n, b;e" + a e,
1<j<1l-1, bje1 +ae", 1 +1 < j < m. The halfspaces I, can be treated in the same
way. U

! This conjecture was independently made by Hosten and Sturmfels, private communication.
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Elementary considerations show that for m = 2 the polytope P(a,b) can be written as
P(a,b) = {(z,y)T € R”* xR : aTx = bTy;z,y > 0, (x,9)T € I;, 1 < k < n}, and thus
Theorem 1 and Proposition 1 imply that the conjecture is “almost true” when m = 2 (or
respectively, for n = 2).
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References

[1] van der Corput, J. G.: Uber Systeme von linear-homogenen Gleichungen und Ungleichun-
gen. Proceedings Koninklijke Akademie van Wetenschappen te Amsterdam 34 (1931),
368-371.

[2] Diaconis, P.; Graham, R.; Sturmfels, B.: Primitive partition identities. Paul Erdds is 80,
Vol. I1, Janos Bolyai Society, Budapest (1995), 1-20.

(3] Ehrhart, E.: Sur les équations diophantiennes linéaires. C. R. Acad. Sci. Paris, 288
(1979), Série A, 785-787.

[4] Filgueiras, M.; Tomés, A. P.: A fast method for finding the basis of non-negative solutions
to a linear Diophantine equation. J. Symbolic Comput. 19 (1995), 507-526.

[5] Gordan, P.: Uber die Auflosung linearer Gleichungen mit reellen Coefficienten. Math.
Ann. 6 (1873), 23-28.

[6] Greenberg, H.: Solution to a linear Diophantine equation for nonnegative integers. J. Al-
gorithms 9 (1988), 343-353.

[7] Lambert, J. L.: Une borne pour les générateurs des solutions entiéres positives d’une
équation diophantienne linéaire. C.R. Acad. Sci. Paris 305 (1987), Série I, 39-40.

Received January 4, 1999



