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Abstract. Let k£ be a commutative ring with unity and let f € k[X] a monic
polynomial. We determine the ring structure of the Hochschild cohomology for the
k-algebra k[X]/(f). This generalizes results of [4] on the Hochschild cohomology
rings of modular group algebras of cyclic groups over fields.

1. Introduction

The multiplicative structure of the Hochschild cohomology of an algebra is not known in
general and is difficult to calculate, even in examples. In [4] we determined the structure
of the Hochschild cohomology for commutative modular group algebras over a field. With
a different and more direct method this was recently generalized by Cibils and Solotar to
commutative group algebras over arbitrary commutative rings k, showing that there exists
an algebra isomorphism HH*(kG) = kG ®y H*(G, k) for any finite abelian group G, [2].

In this paper we deal with the Hochschild cohomology of algebras of the form k[X]/(f)
where k is a commutative ring and f € k[X] is a monic polynomial. This includes the case
of group algebras of cyclic groups and the results of [4] are obtained as special cases. But
apart from group algebras we also obtain results on the Hochschild cohomology rings for a
much larger class of algebras.

Our approach relies on the construction of projective resolutions of algebras k[X]/(f)
as bimodules over itself given in [3]. The authors in [3] were mainly interested in cyclic
homology and therefore studied only the additive structure of Hochschild cohomology. So
the main topic of this article is to introduce the multiplicative structure in this context.
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For the convenience of the reader we review in this section the basic definitions on
Hochschild cohomology. Let k£ be a commutative ring with unity and let A be an asso-
ciative k-algebra. In the sequel any commutative ring is assumed to have a unit element. By
A" = A ®; AP we denote the enveloping algebra of A. Recall that every A-bimodule is a
(left-) A°*-module, and vice versa. For all i > 0 set A% = A ®y ... ®; A, the i-fold tensor
product, and C* = C*(A) = Homy, (A%, A). Define a differential operator d* : C* — C**! by
setting

(d’f)(al R...Q ai+1) = alf(az R...Q ai+1)+
—+ Z(—l)”f(al ® e ® ajaj+1 ® e ® CLi_|_1) + (—1)i+1f(a1 ® e ® a'z')a'i—H
j=1
for all a1,...,a;11 € A and f € C. Then (C% d");>o is easily seen to be a complex of
A"_modules. The additive group HH*(A) = ker(d*)/im(d"!) is called the i-th Hochschild
cohomology group of A.

There is an equivalent definition of these cohomology groups via certain Ezt-functors.
For all 1 > —1 set C; = C;(A) = A®*? with the obvious A*-action and define a differential
by setting .

di(ag® ... ®aip1) = > (1) ®...® ajaj1 @ ... a1
=0
for all ag,...,a;11 € A. Then (C’i,c@-)izo is a projective resolution of A as an A®*-module
([1], 2.11). Tt is usually called the standard resolution. Applying the contravariant functor
Homgen(—, A) to this resolution yields Homaen(Ci(A), A) = C*(A). Thus by passing to
cohomology one gets HH!(A) & Ext'y.. (A, A) for all i > 0.

In addition to the additive structure one can define a multiplication for the cochains.

The cup product of two cochains f € C*(A) and g € C’(A) is by definition the cochain

fUg € HH"(A) given by
(ng)(a1®®aH_]) :f(a1®®az) g(az+1®®az+])

for all a4, ..., a;4; € A. By a straightforward calculation one verifies d't7(fUg) =d'fU g+
(—1)f Udig for all f € C*(A), g € CI(A). Thus the cup product of two cocycles is again a
cocycle, which implies that the cohomology class of f U g only depends on the cohomology
classes of f and g. So the cup product induces a well-defined product on Hochschild coho-
mology U : HH*(A) x HH’(A) — HH*I(A). This product turns the graded k-vector space
HH*(A) = @, HH(A) into a graded k-algebra.

2. A periodic resolution

Let f=X"+ f, 1 X" '+ ...+ fiX + fo € k[X] be a monic polynomial. We consider the
corresponding k-algebra Ay = k[X|/(f) where (f) denotes the ideal of k[X] generated by f.
Without further notice we often set in the sequel A = A; for abbreviation.

In [3], the authors construct periodic resolutions for the algebras A; as bimodules over
itself and they give homotopy equivalences between these resolutions and the standard reso-
lution defined in Section 1.
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We first fix some notation. By P, @, P;, ... we denote polynomials in k[ X], but also their
cosets in A if there are no ambiguities possible. The following maps will appear in the sequel:

T:A— A", T(P)=1®P—-PQ®1,

€01 A®T2 5 AT | (a0 ® ... ®a541) =1®ar®...®as1 (for s>0),

prAT = A, wW(PeQ)=PrQ.

As f is monic, for any P € k[X] there exist polynomials P, P € k[X] with P = Pf + P
and deg P < deg f.
Proposition 2.1. ([3], 1.3) Let A = Ay = k[X]/(f) where f = I ;X" is a monic poly-
nomial. Consider the sequence

C,=C(A): ... 55 A%2 2, 82 1, f02 1y 4 40

where dor1 (P® Q) = (PRQ)T(X) , dor(PRQ) = (PRQ)(ZL, fi TiZo X @ X 771) for
all ¥ > 0. Then C.(A) is a projective resolution of A as an A" -module.

Thus the Hochschild cohomology of Ay is the cohomology of the complex Homaen (Cy(Af), Aj).

For f € k[X] denote by f' € k[X] the (formal) derivative of f; for g € k[X] let Ann(g) =
Anna(g) = {a € A | ga = 0} be the annihilator of g.

Proposition 2.2. Let A = k[X]/(f) as above. )
1. Using the identification Homen (A®?, A) = A, the complex Hompen (C,(A), A) takes the
form
AN a4 54054 % 054
where A <5 A is the map P — Pf' given by multiplication with the derivative f'.
2. The Hochschild cohomology groups of A are
A if1=0
HH'(A) =< Anna(f') ifiodd
A/(f") if i even
Proof. We identify Homen(A®?,A) 2 A by g — ¢g(1 ®1). Then for all 7 > 0 and g €
Hom gen (A®?, A) one has

dyi1(9)(1®1) =gody1(1®1)=g(1®X -X®1)=9(1®1)- X -X-g(1®1)=0
as ¢ is an A°"-homomorphism and A is commutative. Similarly,
i1
d(9)(1®1) = g3 fid X' @ X"
i>0  j=0

1—1
= Y LY gXeXxiT

i>0  j=0

= g(1®1)2fi§Xi‘1 =g(1®1)-f'

i>0  j=0
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for all 7 > 0. This proves the first part; the second assertion is an easy consequence. O

We now turn our attention to the multiplicative structure of HH*(Ay). In order to be able
to compute the cup product (which is given in terms of the standard resolution) we consider
homotopy equivalences between the standard resolution and the resolution of Proposition
2.1. These were given in [3] in terms of Hochschild homology; we sketch the construction and
transfer their results to cohomology.

Define A¢"-homomorphisms g, : C'* — C, inductively as follows
go = Id : A®?2 — A®? the identity map;
g1 A®P — A% g(leP®1)= —;82 )
go: A®t = A% | (1 PP, ®1)=—-1Q® PP,
gs: A®T? 5 A®? | g (1QP®...QP,®1) = g, 2(10P,®...QP, 4®1)-¢2(10P, 1QP,®1)
for s > 2.

The next result describes the induced homomorphisms g = Homaer(g;, A). For homology
this was shown in [3]; a proof of the cohomological version needed here can be found in [4].

Lemma 2.3. Identifying Homaen (A%%, A) 2 A and Homen (A®5T2  A) = C%(A) for s > 0
the following formulas hold for all v > 0 and all P, Py, ..., Py 1 € A:

G5 (P)(PL®...Q Py) = P(—1)"[Tj—; Pai 1P2z ,

9oy (PY(PL® ... Q@ Pory1) = P(—1)" " P TII_, Po; Pais1.

Conversely, define A°*~-homomorphisms A, : C, — C'* by setting for all » > 0

i1—1eip—1

ho(1®1) = (=1 Y (fun---fi) D 10X"Q@X®...0X"®X®X4

Bl yeenylp=1 k1yeenkr=1
n i1—1,yip—1
horp1(1®@1) = (=1 > (fi-o fir) D, 1@X0X"®...0 X"®X QX
i1 yeenin=1 k_1,..kp=1

where we have set ¢ = 377_; 1, — 3_7_; k; — r for abbreviation. Again we are mainly interested
in the induced maps hf = Homgen (h;, A).

Lemma 2.4. Setting ¢ =3%_11; — 3i_ kj — r for abbreviation the following formulas hold
forallr > 0:
n 11— a az’l‘_l
Ry ()1®@1) = (=1)" > (fi---fi) Z XaleX"eX®..0 X"@X®1l)
214 nylp =1 k1,..,kr=1

for a € Hompen (A®* 12 A),  and

1= —1

Wy (@)(1®1) = (—1)* i (fa---fi) Y Xo(l®X®X"®..0X"®X®1)

81, nylp=1 k1,...kr=1

for a € Hompen (A®?713 A).
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Proof. By the above formula for hy, one has for all r > 0 and o € Homigen (A®? 2 A):

n s U
Ro()1@1) =a((-1)" Y (fu---fi) Y. 1@X"@X®...0 X" ®XQ®X
i1yeenyir=1 k1yennkr=1
n 81— 1,eip—1
=0 Y (fu- fi) Y Xa(l®XMRX®..0X'"@X®1)
i1—1enyipr—1 k1,e.kp=1

because « is an A**-homomorphism and A is commutative.
The second assertion is shown similarly. O

3. The even cohomology ring

In this section we determine the structure of the subring HH®(A) = @;>c HH*(A) of
elements of HH*(A;) of even degree. Therefore we have to develop formulas for the cup
product of even elements.

The A*-homomorphisms g, and h, of complexes are homotopy equivalences [3], so
they induce isomorphisms in cohomology. By Proposition 2.2 we know HH%(A) = A and
HH*(A) = A/(f") for all i > 0, i.e. the elements of even degree in HH*(A) are represented
by polynomials in k[X]. The strategy for computing the cup product of two elements is as
follows. Map the elements with g, to the level of the standard resolution, compute the cup
product according to the definition of Section 1 and then map the result back with A,.

Lemma 3.1. Let A= A; = k[X]/(f) as above. Then the cup product on the even Hochschild
cohomology ring of A is induced by multiplication in A.

Proof. Assume Q; € HH?"(A), Q, € HH?$(A) for some 7, s > 0. For abbreviation, Q; U Q,
denotes the element ¢g*(Q1) U g*(Q2) € C*(A). Then by definition of the cup product and by
Lemma 2.3

(Ql U Q?)(Pl ®...Q P2(T—|—S)) = g;r(Ql)(Pl ®...Q PQT) ' g;s(QQ)(PZT—H ®...Q P2(r—|—s))

r r+s
= (=1)"Ch H Poi_1Py; - (—1)°Qo H Py 1 Py
=1 i=r+1

T+

= (_1)T+SQ1Q2 H Py 1 Py;
i=1

for all Py, ..., Pyyis) € A. Setting b= 375745 — X051 kj — r — s it follows by Lemma 2.4
Rris)(@1UQ)(1® 1) =

n t1—1,ipys—1

= () X (fa-fin) 2 X(@QU@QEMRX...0 XM X)
Llyeenlr4s=1 k1yeskrps=1
n il—l,...,ir+s—1 r+s
— (_1)r+s Z (le N 'fir+s) Z Xb(—l)H_SQlQQ H Xkitl
i1 yemipps=1 K1 yeonsbrps=1 i=1

= QlQ? ’
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because Xkit! = §. 1. O

Now we are in the position to give a presentation for the even Hochschild cohomology ring
of k[X]/(f) by generators and relations.

Theorem 3.2. Let k be a commutative ring and let f € k[X] be a monic polynomial with
corresponding k-algebra A = k[X]/(f). Then

HH®(Ay) = klz, 2]/ (f(z), f'(2)2)
where deg x = 0 and deg z = 2.

Proof. As HH®(A;) & A and cup product in degree zero is multiplication in Ay, the coset
z =X + (f) generates HH"(A;); the only relation is f(z) = 0.

Take z € HH?*(A;) = Ap/(f') to be the coset of the constant polynomial 1 € k[X].
Then HH?(Ay) is generated by 2z and HH°(Ay), again because the cup product is induced
by multiplication. As HH?(A) = A¢/(f'") one gets the relation f'(z)z = 0.

In higher degrees HH?(Ay) is generated by the i-fold cup product z* = 2 U...U z and
HH(A;). The corresponding relation f’(z)z* = 0 is a consequence of the above relation in
degree two. O

Putting some restrictions on £ we already obtain the complete Hochschild cohomology ring
of kC,, from Theorem 3.2. Note that the following result applies in particular to integral
group algebras.

Corollary 3.3. Let k be an integral domain and let C,, be a cyclic group of order n. If the
characteristic of k does not divide n then

HH*(kC,) = k[z,2]/(z" — 1,na"'2)
where deg x = 0 and deg z = 2.

Proof. Under the given assumptions the group cohomology of C, with trivial coefficient
module & vanishes in all odd degrees. This implies HH**!(kC,) = 0 for all : > 0 ([1],
2.11.2). Thus HH*(kC,,) = HH®"(kC,,) and the assertion follows from Theorem 3.2. O

4. The cup product in odd degrees

We have already seen that for arbitrary f the cup product in HH®’(Ay) is given by multi-
plication in Ay. The situation in odd degrees is more difficult as we will see in this section.
The aim is to prove the following result. Note that by Proposition 2.2 the elements of the
Hochschild cohomology groups are represented by polynomials.

Lemma 4.1. Let f =Y fiX" € k[X] be monic and set A= A; = k[X]/(f).

If i or j is even then the cup product U : HH*(A) x HH/(A) — HH"(A) is induced by
multiplication in A.

If i and j are odd then the cup product is given by the formula

n 41—1

Q1UQ2=—-Q:1Q: Z ( Z k‘l)filXil*%

i1=1 k1=1
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Proof. If i and j are even this was proved in Lemma 3.1. So let Q; € HH**'(A), HH*(A)
for some 7, s > 0. Then by Lemma 2.3

(QLUR)(P®...® P2(7~+s)+1) =
= 9 1(@Q)(P® ... ® Pri1) - 63,(Q2) (Pors2 ® - .. ® Parys)11)

T r+s
= (- QP[] PoiPoivi - (-1)°Q2 [ PaiPairs
i=1 i=r41
r+s
= (—1)T+S+IQ1Q2P{ H Po; Py 1.
i=1

Applying the induced map h* and setting b = E;i{ i —Z;;’f k;—r—s it follows by Lemma 2.4
S+ (@1 UR)(1® 1) =

n 11— 1, ipps—1
= (=)™ ST (fiefins) Y XM(QU@)(X@XPRX®...0 XM e X)
£150enlps=1 k1yeenskrts
n il*l,...,ir-}-s*l 7458
= (_1)T+8+1 Z (fll ttc fir+s) Z 'Xb : (_1)T+S+1Q1Q2X, H Xk7'+1
115yl ps=1 k1yeekris=1 =1

= QIQQ

as Xkitl =6y . 1.
Assume now @, € HH***(A), Q, € HH*%1(A) for some r, s > 0. Then by Lemma 2.3

(QUQ)(PL®...® Popyarn) =

= G311 (Q1)(PL® ... @ Pory1) - 95511(Q2) (Pory2 @ . .. ® Po(ryst1))

r r+8
= (=) P [ PoiPoit1 - (1) QP55 [ PoitiPaiso-
i=1 i=rt 1

Setting a = Y5554 i; — 55 kj — r — s — 1 it follows by Lemma 2.4

§(r+5+1)(Q1 UQR)(1®1) =

n i1—1,..., fptst1—1
= (=)™ N (fiefien) Y X(QUQ)XPRX®...@ X RX)
21,eenybpst1=1 k1yeenskrts41=1
n 11— 1, lpps41—1 r4s+1
— (_1)r+s+1 Z (le L fi7‘+s+1) Z Xa(_l)r+s+2Q1Q2(Xk1)/X/ H Xkit1
Tl yeeey ir+s+1:1 kl,---;kr+s+1:1 =2

71—1

= —Q1Q2 ) fi, Y, X xR
11=1 ki1=1

n 71—1

= Q1@ > (X)) fi, X172

11=1 k1=1

which completes the proof of the lemma. O
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5. Polynomials with zero derivative

A consequence of Theorem 3.2 is that if f' = 0 then the even Hochschild cohomology ring
of A; is a polynomial ring over HH?(A;). In this section we determine the structure of the
whole cohomology ring of A for certain polynomials with derivative f’ = 0 using the explicit
formulas for the cup product given in Lemma 4.1. Note that non-zero polynomials with zero
derivative can only occur in positive characteristic.

Lemma 5.1. Let k be a commutative ring of characteristic p > 0. Assume that f € k[X]
is a monic polynomial with f' = 0, i.e., f has the form f = Y[ f;pX?? € k[X]. For
Ap = k[ X]/(f) we then have HH*(Af) = Ay for all i > 0. The cup product U : HH"(Af) x
HHI(Ay) — HH™I(Ay) is induced by multiplication in Ay if i or j is even; if i and j are
odd then U s given by

V25—2Y  if o
A LS

Proof. As f' =0 we get HH'(A;) = Ay for all i > 0 by Proposition 2.2. If  or j is even
then U : HH'(Af) x HHI(A;) — HH""(A;) is multiplication in A; by Lemma 4.1. So it
remains to consider the case where 7 and j are odd. If Q; € HH'(Ay), Qs € HHI(Aj) then

mp ’ilfl

QUQr = —QiQ2 > (D ki) fi X172

i1=1 k=1
m  jp—1

— Q03X B x

=1 k=1

If p # 2 then Y7~ ki = 0 (mod p) for all j > 1. Therefore @, U @, = 0 in this case.
We finally consider the case p = 2. Then

QjZ_lk _ ] 0 (mod2) ifj even
=) 1 (mod 2) if j odd

k1=1
Consequently, Q1 U Q2 = Q1Q2(X; oaa f2; X7 71). 5
We are now able to describe the cohomology rings HH*(Ay).

Theorem 5.2. Let k be a commutative ring with characteristic p > 0. Assume f € k[X] is
monic and f' =0, i.e., f = Y7, f;pX? € k[X]. Then the Hochschild cohomology ring of
A; = E[X]/(f) has the following structure:

If p #2 then HH*(Af) & Afly, 2]/ (y?) where deg y =1 and deg z = 2.

Ifp=2then HH*(Ay) = klz,y, 2/ (f(z), Y*— (2} oda f2j2%?)z) where deg x = 0, deg y =1
and deg z = 2.

Proof. Take y € HH'(A;) to be the coset of the constant polynomial 1 € k[X]. In both

cases the cup product U : HH'(A;) x HH(A;) — HH'(A{) is multiplication in A; and
therefore HH'(A;) = {yUQ | Q € HH°(A;)} is generated by y and HH®(Ay).
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First we consider the case p # 2 or p = 2 and 3 44 f2; X > = 0. Then yUy = 0 by
Lemma 5.1. Therefore one needs another generator z in degree two. Take z € HH?(Ay) as
the coset of 1 € k[X]. For all ¢ > 0 the i-fold cup product 2' = 2 U...U z corresponds to 1.
Thus HH*(A;) = {2’UQ | Q € HH(A;)} and HH**'(A;) = {2’ UP | P € HH'(A;)}
are generated by y and z over HH°(A;). Obviously the only relation is y* = 0.

Assume now p = 2 and Y 44 f2;X?7% # 0. Then y Uy € HH?(Ay) is the coset of the
polynomial 3,44 f2,X% 2 € k[X]. We shall need a generator z in degree two corresponding
to the constant polynomial 1 € k[X]. As in the previous case, HH*(Ay) is generated by y
and z over HH°(Ay). Obviously, the only defining relation is y* — (X o4 f2j2% ?)z =0. O

6. The general case (in characteristic # 2)

Let f = g7*- " be the decomposition of f in irreducible factors in k[X]. By the Chinese
Remainder Theorem Ap = Ager X ... x Agar. It is well known that Hochschild cohomology
behaves well with respect to direct products ie.

HH*(A;) = HH*(Ag) % ... x HH*(Ag:).

So the general case reduces to the study of HH*(Ay) where f = ¢* for an irreducible g € k[ X].
This will be done in this section. But for technical reasons we have to exclude the case of
characteristic 2.

So assume char k # 2. Let g € k[X] be irreducible and monic and f = ¢g* for some a € N.
If a =1 then HH*(As) = Ay concentrated in degree zero. So we may assume a > 2. One
has f' = ag* '¢'; if f' =0 then we already know the structure of HH*(Af) by Theorem 5.2.
Thus we may assume f’ # 0. In particular, a #Z 0 (mod p), ¢’ # 0 and g is separable. Then
HH* 1 (Af) = Ann(f") = (9)/(g*) < Ay for all i > 0 and as before HH*(A;) = A/(f') for
1> 0.

After these introductory remarks we begin with building up a presentation for HH*(Ay).
Let z € HH®(Ay) be the coset of the polynomial X € k[X]. Obviously, z generates HH®(Ay)
as a k-algebra; the only relation is f(z) = 0. Take ¢t € HH'(Af) corresponding to g +
(9*) € Ann(f'). Then HH'(A;) = (g)/(¢9°) is generated by ¢ and x; an obvious relation is
tg® (z) = 0. To deal with powers of ¢t we need the following auxiliary result.

Lemma 6.1. Let k be a commutative ring with characteristic # 2 in which 2 is invert-
ible. Assume g € k[X] is irreducible, f = g° = Yi, f;X* for some a € N and set S =
Y, £ Yio1 kXI72 € k[X]. Then g2 divides S.

Proof. As the characteristic of k£ is not 2 one gets
1

i ikXy —2 ij X] 2 __ 2f”-
=2 k=

Every root of g is a root of f with multiplicity @ and thus a root of S = % f" with multiplicity
a— 2. O
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The expression S appears in the formula for the cup product of elements of odd degree (cf.
Lemma 4.1). The element t* =t Ut € HH?*(Ay) is represented by —g>S. By the preceding
lemma f = ¢ divides —g?S and therefore t* = 0 in HH?*(A;) = A/(f'). So one needs at
least one additional generator to generate the cohomology ring. Take z € HH?(Af) to be
the element represented by the constant polynomial 1 € k[X]. Then HH?(A;) is generated
by z and x because the cup product in even degrees is induced by multiplication. One gets
the relation zf'(z) = 0. The set {z,¢, 2z} generates HH*(Ay) as a graded k-algebra. In fact,
the i-fold cup product 2* € HH?(A;) is represented by 1 € k[X]; therefore HH?%(Ay) is
generated by 2" and x and HH?"(A;) is generated by 2' Ut and z. It is not hard to see
that all the relations occuring in higher degrees are consequences of the relations given above.
Thus we have proved the following result.

Theorem 6.2. Let k be a commutative ring with characteristic # 2 in which 2 s invertible.
Let g € k[X] be irreducible, separable and monic and let f = g* for some a > 2. If f' #0
then the Hochschild cohomology ring of Ay = k[X|/(f) has the following structure

HH*(Ay) = klz,t,2)/(f(2), tg° (2), t*, 2f'(2))
where deg x =0, deg t =1 and deg z = 2. O

Remark 6.3. 1. If one restricts the above result to the even subring, i.e. set ¢ = 0, then
HH*(Af) = klz,2]/(f(z), zf'(x)) as in Theorem 3.2.

2. Note that the case a = 1 which is not covered by Theorem 6.2 was already dealt with in
Section 2. If a = 1 then HH*(Af) = k[X]/(f) concentrated in degree zero.

It remains open to deal with the case of characteristic 2. The problem seems to be that one
does not have a result like Lemma 6.1 at hand. This makes it difficult to handle the powers
of the generator ¢t. Although it may be possible to compute specific examples we were not
able to find a general presentation for HH*(Ay).

7. Truncated polynomial algebras

In this final section we apply our results to an important class of examples. For n > 2 let
A, = k[X]/(X™) be the truncated polynomial algebra. Note that this class contains modular
group algebras of cyclic p-groups, whose Hochschild cohomology rings were determined in
[4].

The structure of the even Hochschild cohomology rings of A,, are given by Theorem 3.2:

HH®(A,) = k[z,2]/(z", na" '2)

where degx = 0 and deg z = 2. The structure of the odd part depends on the characteristic
of the ground ring £.

Case 1: p:= char k | n. The structure of HH*(A,) is given by Theorem 5.2:

HH*(A )fl.l k[x,y,z]/(x”, yz) 1fp7é20rp:23ndt50(mod4)
"7\ Klz,y, 2]/ (3", y? — 2" 22) ifp=2and t = 2(mod 4)
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where degz = 0, degy = 1 and deg z = 2.

Case 2: p := char k {n. In this case we have the following result:
HH*(A,) = k[z,t, 2]/ (2", nz" 'z, t2™ !, £2).

For p # 2 this follows from Theorem 6.2. But the presentation is also true in characteristic
2; in fact, for the special polynomial X™ the formula in 4.1 for multiplication of odd degree
elements becomes in characteristic 2

[0 if n=0,1(mod 4)
QIUQ2_{ Q1Q:X™ 2% if n=23(mod 4)

It follows that the square of the generator ¢ chosen in Section 6 is 0. The other relations are
proved verbatim as for p # 2. We summarize the results on the structure of the Hochschild
cohomology rings of truncated polynomial algebras.

Theorem 7.1. Let k be a commutative ring with char k = p > 0. For n > 2 consider the
truncated polynomial algebra A, = k[X]|/(X™). Then the Hochschild cohomology ring of A,
has the following structure

klz,y, 2]/ (z", y?) if p|n, and
. ~ ifp#2orp=2andt=0(mod4)
HH(A,) = klz,y, 2]/ (2™, y? — 2" 22) if p|n, and p=2 and t = 2 (mod 4)

klz,y,2]/(z™, na" 1z, yz" "1 y?) ifptn

where degx = 0, degy =1 and deg z = 2.
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