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Abstract. In this paper we prove some characterizing properties of the minimal
shell of a convex body by means of linear semi-infinite optimization. Further we
present a representation of the optimal solution of the corresponding optimization
problem in dependence of the values of the support function of certain points of
contact of the convex body and its minimal shell.
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1. Introduction

Let B(z,r) be the closed n-dimensional ball with center x and radius r. K™ denotes the
set of all convex bodies (i.e. convex compact sets with a nonempty interior) in R". Let
K € K". For each x € K there is a ball B(z, R(z)) of minimal volume containing K and
a ball B(z,r(z)) of maximal volume, which is contained in K. The set B(z, R(z),r(z)) :=
B(z, R(x)) \ int B(x,r(z)) is referred to as the (closed) spherical shell of the convex body
K with center z € K. We look for a point 2° € K for which the function R(x) — r(x)
attains its minimum, i.e. the so-called minimal spherical shell (or shortly minimal shell)
B(x°, R(2°),r(2%)) is a shell of K with minimal thickness. Characterizations of the minimal
shell and the uniqueness of the center 2° were established by Bonnesen [2], Kritikos [6] and
Barany [1]. Generalizations to Minkowski spaces and to convex shells (shells bounded by two
homothetic images of a fixed convex body) are investigated by Peri [7], [8]. Applications of
spherical shells to improve a Blaschke’s inequality are given by Peri, Wills, Zucco [9].
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Using tools and results of convex analysis, Barany obtained the following characterization:
The point z° is the center of the minimal shell of K if and only if there are points p', ..., p* €
OK supporting B(z° R(z°)) (i.e. ||p® — 2% = R(z°)), and points ¢',...,¢' supporting
B(x% 7(x°)) (k,1 > 1) such that the two convex hulls

i__ .0 J_— 0
conv{pR(xf) : izl,...,k} andconv{%: jzl,...,l}

have a nonempty intersection.

Barany mentions that the numbers k, [ can be restricted to £+ < n+2 (without an explicite
proof of this assertion).

In what follows we formulate the minimal shell problem as a linear semi-infinite opti-
mization problem. Using the duality theory of linear semi-infinite optimization, we obtain
in a very natural way not only the results of Barany but also additional properties of the
minimal shell.

Let
k(u) :=supult
tek
and
hyp(u) = sup u't=ulz+ p||ul

teB(x,p)

be the Minkowski support function of the convex body K and the ball B(z, p), respectively.
The embedding B(z,r) C K and covering K C B(z, R) are fulfilled if and only if

hyr(u) < k(u) < hy g(u) Yue R,
Thus the minimal shell problem can be formulated as follows:
(SP) min{R —r | v’z + rljul] < k(u) <v'z + R|u|, v €R", R,r >0, v € K.}

This is a linear semi-infinite optimization problem, which will be regarded as a primal problem
in the following representation:

x
(SP) min} zp(z,R,7) = (01,1,-1) [ R (z,R,T) € Mgp

r
z
(sT,1,0) [ R > k(s), s€ 0B
MS’P = < R > .
x
(-tT,0,-1)| R > —k(t), t € OB

\ r /

Note that each support function is a positively homogeneous one; B denotes the bound-
ary of the unit ball B := B(0,1). It is not necessary to include the restrictions R, > 0 and
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r € K. R > 0 follows with s’z + R > k(s) Vs € OB and int K # (). With the existence
of the circumsphere B(z*, R(z*)) of K with z* € K, c¢f. [3], [5], follows Ry > R(z*) and
ro > r(z*) > 0 for an optimal solution (z°, Ry, 7o) of (P) . By 79 > 0 one further obtains
e K.

2. Minimal shells and linear semi-infinite duality

2.1. Duality

The minimal shell problem (SP) is a problem of the type

(P) min{zp(y) := ¢’y | y € Mp} (1)
. | aT(@Whz > b)), ule U
Mp = {y €K CLQT(U,Q)J) > b*(u?), u?eU? } ’ 2)

with ¢,y € R™, a'(u*) : U* — R™,b'(u') : U" - R, i = 1,2. In accordance with [4] (where
only one index set U' occurs) we associate with (1),(2) the data-sets

A= {al(ul)’a2(u2) | u' € Ul,U2 € U2} CR™ (3)

A={ (o)) ()

and the vertical line g € R™"!, given as

o = 0 + « ! —o<a<oo,teR™,
t c O

where the ty-axis is referred to as vertical axis. Let

o={()

be a hyperplane not parallel to the ?y-axis and going through the origin, with the normal

ul € Ut u? € U2} C R

vector ( _yl , Yy € R™. The feasibility y € Mp is equivalent to the inclusion

acm={( ")

The vertical line ¢ intersects the hyperplane H in the point

Q:zgﬂH=<CTy>.

yTt—togo}.

Cc

From these facts we are led to the following geometric meaning of the primal problem (P):
Among all nonvertical hyperplanes H (y) through the origin in R™*! containing the data-
set A completely in their nonnegative halfspace H(y) look for that one which intersects (in
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the point Q) the vertical line g as low as possible. With this background the duality concept
in (semi-infinite) linear optimization can be formulated in the following way:

Try to find this lowest intersection point () as the highest common point of the vertical line
¢ and the convex cone generated by the set A, i.e. as the upper piercing point of ¢ in cone

A. This leads to the dual problem
to —
(t)€gﬂconeA}. (4)

max {to

In more detail this dual problem has the following representation

(D) max{z( A) = ZZW( )| (u; )\)EMD}

i=1j=

with ) R
u = (U, .o, Ug,, U, oy uZ))

A= (AL, AL A2 L A2)

q’
Ujy ooy thy, € U

2
ul . ul €Uy

MD :<(u,/\) 92 >
AL ...,A;I >0
M, 2, >0
ZZ/\Z (uf) =c

\ 1=1j= y,

It is sufficient to choose ¢; + g2 < m + 1 since each point of cone A C R™*! can generally be
written as a nonnegative linear combination of at most m + 1 points of A (Caratheodory).
Considering the special structure of the vertical line g we obtain the equivalence of the
consistency of (D) and of ¢ belonging to cone A:

Mp # 0 <= c € cone A (5)

Additionally the dual problem (D) will be called superconsistent if ¢ € int cone A. Super-
consistency is a regularity condition which allows to prove some duality statements. In this
connection we call the primal problem (P) superconsistent if there exists a point § € R" with
@'’ (ui)g > bi(ul) for all ui € Ul and i = 1, 2.

(Slater-condition, g is referred to as a Slater-point of the feasible set Mp.)

As usual, we denote v(P) := inf zp(z) = inf ¢!z as value of (P) and
TEMp TEMp

v(D):= sup zp(u;\) = sup Z Z N5t (u?) as value of (D).
(wsA\)EMp (u;N)EMp i=1 j=
With these notations the following duahty properties can be verified in the same way as
in [4]:
Weak duality:
Let x € Mp, (u;\) = (ul, .. ul ju?) . u? ;AL AL

qz’ q1’

zp(u; A) < 0(D) <v(P) < zp(z) (6)

M, ..., \m) € Mp. Then
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holds.
Complementarity:
- o y solves (P)
y € Mp Aila* (uj)y — b*(u})] = 0 o and
(u; \) € Mp j=1,.,¢,i=1,2 (u; ) solves (D)
and v(P) = v(D)
Existence:

If Mp # (), v(D) < oo and cone A is closed, then there exists an
optimal solution of (D), further Mp # () holds and no duality gap
occurs, i.e. v(P) = v(D).

The closure of cone A is guaranteed under the following sufficient conditions:
-) U, U? are compact sets of finite dimensional linear spaces

) a‘(-),b(-) are continuous functions on U7 = 1,2
-} (P) is superconsistent

If Mp # () and the dual problem (D) is superconsistent, then there
exists an optimal solution of (P) and v(P) = v(D) holds.

Strong duality:

If both (P) and (D) are superconsistent, then both (P) and
(D) have an optimal solution and v(P) = v(D) holds.

97

(10)

(11)

It should be mentioned that all these results can be generalized to an arbitrary number N of

index sets U', ..., U™,

2.2. Optimality conditions of the minimal shell

Let K € K" be a fixed convex body. To the minimal shell problem (SP) there corresponds

according to 2.1 the following dual problem

(D) max { 2(w) = S0, A(s") + X0y sy (—k(F)) | w € Msp |
with \
(w = (81, oy ST EY e TP AL, oy Agy 1y wems )
s.t. st,...,s0 th ...t € OB
MSD = 4 ./\1,...,Aq,'LL1,...,/J,pZO \
q SZ p _tj On
XAl L+ 0 =] 1
\ = \o ) =T\ -1)
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or

(W = (8Y e, STt P AL, ey Mgy s ey ) T )
s.t. st,...,s9tl, ... tP € OB
)\1a sy )\q: M1y ey fp Z 0
q S .
g — 47
Msp := 1 i:z:l)\zs Jz::l’ujt -
q
=1
i=1
P
dopi=1
\ j=1 J
We further have, in view of (3), the data-set
s -t
A= 1], o s,t € 0B
0 —1

Both problems (SP) and (SD) turn out to fulfill the described regularity conditions:
Lemma 1. The minimal shell problem (SP) is superconsistent.

Proof. The continuous function £ attains its maximum and its minimum on the compact set
0B.

On
Let m := min k(u) and M := maxk(u). Then g := | M +1 | is a slater-point of (SP)
u€dB u€dB
m—1
since
(sT,1,0) = M+1 > k(s), Vs € B,
(—tT,0,-1)g = —(m—1) > —k(t), Vt € 9B,
holds. a
Lemma 2. The dual problem (SD) is superconsistent.
Proof. We have to prove
On
c= 1 | € int cone A.
-1

In the first place the point ¢ belongs to cone A: Choosing an arbitrary (fixed) point e € 0B
and setting s' = ¢! := e, \; := py := 1, we have w := (e,e;1,1) € Mgp, i.e. Mgp # () and
therefore ¢ € cone A according to (5).

Suppose ¢ ¢ int cone A: Then ¢ is a boundary point of cone A and there exists a
supporting hyperplane H of cone A with normal vector

a

n+1 | # Ongo, (12)
an—|—2

which goes through both the origin and c. H has the representation
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t
H= tar1 | € R aTt + anpityrr + aniotnia =0 ¢,
tn+2

where a,t € R, Oy 1k, Oxttes Rty Fnirg € R py1 = Gpio =: ag follows by ¢ € H.
All points of cone A are contained in a halfspace of H, say

t
a’t + ag(tpsr +tus2) <0, Y| tuy1r | € cone A.
tn+2
We have
d —d
1], 1 e A
0 0

for arbitrarily chosen d € 0B and thus ag < 0 follows by
a'd+ag<0and —ald+ay <0.

With the same argument ag > 0 holds due to

we get due to (13) the inequality

a contradiction to a # 0. This shows ¢ € int cone A and (SD) is superconsistent.

99

|

The support function & of the convex body K is as a convex function on R* automatically
continuous on R*. Consequently all the coefficient functions of the primal problem (SP) are
continuous ones on the finite-dimensional index set B = B(0, 1). Further both (SP) and (SD)
are superconsistent. According to the strong duality property we obtain the following lemma

Lemma 3. Both the minimal shell problem (SP) and its dual problem possess optimal solu-

tions and v(SP) = v(SD) holds.



100 F. Junke; O. Sarges: Minimal Spherical Shells and Linear Semi-infinite Optimization

It is a general result in linear semi-infinite duality that — if there exist optimal solutions of
the dual problem — then there exists also an optimal solution (basic solution) of the dual
problem in which the number of positive components (\;, i£;) is not greater than the number
of primal variables (cf. [4]). In view of (4) the geometric interpretation is as follows: The
upper piercing point of a vertical line in the cone .4 automatically is a boundary point of
cone A. Hence (SD) possesses an optimal solution with p + ¢ < n + 2.

The duality properties given in 2.1 allow to establish necessary and sufficient optimality
conditions of the minimal shell which are summarized in the following theorem:

Theorem 1. Let K be a convex body in R* and B(z°,ry) C K C B(2° Ry). Then the
following equivalence holds:
B(x°, Ry, 1) is a minimal shell of K if and only if there exist directions s', ..., s%,t',... P €
0B, p+q <n+ 2, with

(i) conv {s',...,s%} Nconv {t',... P} # 0.

(i)

2%+ Rys' € 0B(2°, Ry) NOK, i=1,...,q (14)

2%+ 1ot € 0Bz, 1) NOK, j=1,...,p (15)
20

Proof. (a) Let B(z°, Ry, 7¢) be a minimal shell of K. Then | R, | is an optimal solution of
To

(SP). Let wo = (s, ..., 8%, 4, ..., t; A1, ooy Ag, 1, -, Hp) be an optimal solution of (SD), where
p+q is assumed to be minimal. The minimality of p+¢ implies A;, p1; > 0 and p+¢ < n+2. In
what follows we show that the components s!, ..., s?,t!, ..., t? from the dual optimal solution
wp turn out in a very natural way to satisfy the assertions (i) and (ii). The dual feasibility

q p q . p .
of wy implies YA\, = > pj =1and Y \js* = Y p,t? such that (i) is fulfilled.

=1 j=1 =1 j=1
20

Due to v(SP) = v(SD) and the feasibility of [ Ry, | and wy we have
To

q ) P _
Ry—ry = Z )\ik(sz) - Z Mjk(tj)
i=1 =1

q T P -
< YN (s’ x0+R0> — > iy (tJ xo—f—ro)
i=1 j=1

T
q ) P . q P
= (Z Ais' — . th]> 2’ + 32 Ao — 3 o
=1 j=1 i=1 j=1
= R() —To.
In view of A;, u; > 0 this yields
s 2% + Ry = k(s') (16)

and - _
7 2% + 1y = k() (17)
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fori=1,...,gand j =1,...,p ((16), (17) correspond to the complementarity property (7)).
Therefore the values of the support functions of K and B(z° Ry) in direction s’ and of K
and B(z% rp) in direction ¢/ have to coincide and the hyperplanes

H={zeR|s'z2=k(s)}, i=1,...,q,

hi={zeR" |t z=k(t)}, j=1,...,p,
are supporting hyperplanes of both the convex body K and the outer ball B(z°, Ry) and the
inner ball B(z°, rq), respectively. The point
Z' = 1% + Rys’

is the uniquely determined supporting point of H; and B(z°, Ry). Let Z € H; N K be any
supporting point of K and H;. Due to K C B(2° Ry) we have Z € H; N B(2°, Ry) too and
therefore H; N 0B(z°, Ry) = {Z'} = H; N 0K, i =1,...,q, thus (14) is fulfilled.
In the same way the point

2 =2+ Totj
turns out to be a supporting point of the inner ball B(z° ) and both the hyperplane h;
and the boundary of K,

hi N B(2° 1) = {2’} Ch;NOK, j=1,...,p,

such that (15) is fulfilled too.

(b) Conversely, assume there are directions s',...,s%¢',... % € B with (i) and (ii). A
point z € conv {st,..., 5%} Nconv {t,... #*}, ie.
q . p .
Y
=1 j=1
q p
Zai = Zﬁ] = 17 ala"'aaqugla"'aﬂp 2 0
i=1 j=1
produces a dual feasible solution v := (s',...,s%, ¢}, ... t*;1,..., a4, B1y-..,Bp) € Msp.

Using B(z°, Ry) O K and z° + Rys® € K one obtains
hao o (5) > k(s) > s'" (2° + Ros™) = s* 2° + Ry = hyo g, (s°)

and thus . .
s 2’ + Ry=k(s) fori=1,...,q. (18)

Let H be a supporting hyperplane of K with normal unit vector ¢ which contains the point
2% + rot’. H also supports B(z° ) because B(z° ry) C K and z° + rot? € B(2% ). This
leads to t = ¢/ and thus

70+ =k(#) forj=1,...,p. (19)
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.’L‘O

(18), (19) verify that the primal feasible solution | Ry, | and the dual feasible solution
To

7 fulfill the complementarity condition (7). Therefore these solutions are optimal solutions

of (SP) and (SD) respectively, what also can be seen directly from their objective function

values:

(1) = L ouk(s) + z B,(=k ()
= Zq:l i (siTxO + Ro) + ]é B; <—thac0 - 7“0)

. (20)
q P .
= (Z&iSZ—Zﬁjt]> £U0+R0—7"0
i=1 j=1

= RO—T0=ZP($O,RO,7“0)- 20
From weak duality (6) we obtain immediately the optimality of | Ry |, i.e. B(z°, Ry, 1)
is the minimal shell. To O
Corollary. Let B(z°, Ry, 7o) be a minimal shell of the conver body K and suppose s', ..., s4,
tL, ..., tP to be the characteristic directions according to Theorem 1. Then each point

z € conv{s',... s} Nconv{t" ... t*}

produces with each representation

q p
Z)\Z:Z,U/le, )\ia/'bjzoa izla'-'aqa j:1,,p
=1 j=1

the thickness Ry — 1o of the minimal shell to
q . p -
R() — Ty = Z)\zk(b’z) - Z,Ltjk(tj) (21)
i=1 j=1

To confirm this corollary we only have to note that in part (b) of the proof of theorem 1 the
point z € conv {s',...,s7} N {t!,...,#*} can be chosen arbitrarily. Each such point z leads to
the representation (21) of the thickness Ry — ¢ according to (20).

Theorem 2.
(i) The center of the minimal shell of K is an inner point of K

(ii) The minimal shell of a convex body K is uniquely determined



F. Junke; O. Sarges: Minimal Spherical Shells and Linear Semi-infinite Optimization 103

Proof. (i) Assume 7y = 0. The supporting points xy + Rs® belong to K, i = 1, ..., g; together
with (19) this leads to

th.fEO = k(t]) = mai?tJTx Z th('/L‘O + RSZ) — th.’L'O + RothSi
T€

such that .
<0 i=1,...,¢, 7=1,...,p.
q

. P :
For u := ) N\js" = ) p;t’ it follows

=1 j=1

q \" /p _ g p .
lul| = (Z w) ( Wtﬂ) =D st ¥ <0
i=1 '

=1 =1 j=1
thus v = 0. Let a € int K, then
1 < k(t) =t

holds, j = 1,...,p, hence

p T p T
ul'a = (Z ,ujtj) a < (Z ,ujtj> 2% = ulxg
j=1 j=1

in contradiction to u = 0. Therefore ry > 0 holds which implies zg € int K.

(ii) The thickness Ry — ro of a minimal shell B(z° Ry, 7¢) of K vanishes if and only if
K = B(2°, Ry) is a ball itself; in this case the uniqueness of B(z°, Ry, o) = 0K is obvious.

z° z!
Let B(z% Ro,70) and B(z', Ri,71) be two minimal shells with | Ry | # [ R |,
To 1

suppose 11 > 19 and Ry > ro. This implies Ry — r¢ = Ry — r and Ry > Ry. Let wy =
st st P A, .., A, (i1, - - -, M) De an optimal solution of (SD). Then
q P

™+ R,s' € 0B(z™, R,)NOK, i=1,...,q

a:m—i-rmtanB(xm,rm)ﬂaK,j:l,,,,,p ,m:O,l. (22)
We have . . .
k(s)=s"2°+ Ry=s"z' + R, (23)
k() =t 2% +ro =t/ 2l + 1,
such that . .
s (@ -2 ) =R —Ry=r —rg=1t" (2° — z?) (24)

1=1,...,q, 7=1,...,p.
From z° + Rys' € K C B(z', R;) and (24) we obtain

R2> ||2° 4+ Ros' — 2> = [|2° — 2V + 2Ros" (2° — 2) + R2 = ||2° — 2*||2 + 2R Ry — R2,
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hence ||z° — z!|| < Ry — Ry.
On the other hand (24) shows

Ry — Ry=s" (2" — 2') < ||]2° — 2!, (25)

and all in all
|2° — '] = Ry — Ry = 11 — 1 (26)

holds; so from (z°, Ry, 7o) # (2!, Ri, 1) we obtain z2° # 2! and r # r; and Ry # R, as well.
The (Schwarz-)inequality (25) is fulfilled as equality what only may hold if

i 20— gl

e =2
for all i=1,...,q, thus ¢ = 1.

In the same way we get from (24), (26)
rL—To = th(xO - < |2’ =2t =r1 =10
and therefore
b 20 — !
Ja® - 2]

forall j=1,...,p, i.e. p=1. The dual optimal solution turns out to be

29— gl
=(d,d, 1,1 ith d=-—7——.

The center z° is always an inner point of K according to (i) and the supporting point z°+ Ryd
belongs to the boundary of K. This leads to

224+ Mde int K for0< )< R,

such that

.TO + Tod g_f oK
according to 7y < Ry, so z° + rod cannot be a supporting point of K and B(z° 1), a
contradiction to (22). O
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