Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 41 (2000), No. 1, 141-150.

Equivariant Higher K-theory for Compact Lie Group Actions

Aderemi O. Kuku

United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency International Centre for Theoretical Physics, Trieste, Italy.

Introduction

The aim of this paper is to construct an equivariant higher K-theory for compact Lie group actions in a way analogous to the ones constructed in [2], [3] for finite groups and [6] for profinite groups.

In Section 1, we discuss the category $\mathcal{A}(G)$ of homogeneous spaces on which Mackey functors are defined. In Section 2 we define the higher K-groups $K_n^G(G/H, \mathcal{C})$, $n \geq 0$ for any exact category \mathcal{C} and show that $K_n^G(-,\mathcal{C}): \mathcal{A}(G) \to \mathbb{Z}$ -mod is a Mackey functor and that $K_n^G(-,\mathcal{C})$ are $K_0^G(-,\mathcal{C})$ -modules. In Section 3, we explore induction techniques in the style of [4] to show that $K_n^G(G/G, \underline{M}(\mathbb{C}))$ (all $n \geq 0$) are hyperelementary computable where $\underline{M}(\mathbb{C})$ is the category of finite dimensional vector spaces over the complex numbers.

In a final section, we briefly discuss possible generalisations of the foregoing to the category of G-spaces of G-homotopy type of G-CW complexes.

Notations and Conventions

Let \mathcal{C} be an exact category in the sense of Quillen [9]. Then for all $n \geq 0$ we write $K_n(\mathcal{C})$ for the Quillen K-groups $\pi_{n+1}(BQ\mathcal{C})$. If \mathcal{B} is any small category, we denote by $[\mathcal{B}, \mathcal{C}]$ the category of covariant functors from \mathcal{B} to \mathcal{C} . Unless otherwise stated, G denotes a compact Lie group, and maps between G-spaces are G-equivariant. If H is a closed subgroup of G, we write $N_G(H)$ or just NH for the normaliser of H in G. Also we write R(G) for the complex representation ring of G.

0138-4821/93 \$ 2.50 © 2000 Heldermann Verlag

1. Mackey functors on the category $\mathcal{A}(G)$ of homogeneous spaces

1.1. Let G be a compact Lie group, X a G-space. The component category $\pi_0(G,X)$ is defined as follows: Objects of $\pi_0(G,X)$ are homotopy classes of maps $\alpha: G/H \to X$ where H is a closed subgroup of G. A morphism from $[\alpha]: G/H \to X$ to $[\beta]: G/K \to X$ is a G-map $\sigma: G/H \to G/K$ such that $\beta\sigma$ is G-homotopic to α .

Note that since $\operatorname{Hom}(G/H,X) \simeq X^H$ where $\varphi \to \varphi(eH)$, we could consider objects of $\pi_0(G,H)$ as pairs (H,c) where $c \in \pi_0(X^H)$ = the set of path components of X^H .

1.2. A G-ENR (Euclidean Neighbourhood Retract) is a G-space that is G-homeomorphic to a G-retract of some open G-subset of some G-module V. Let Z be a compact G-ENR, $f: Z \to X$ a G-map. For $\alpha: G/H \to X$ in $\pi_0(G, X)$, we identify α with the path component X_{α}^H into which G/H is mapped by α .

Put $Z(f,\alpha) = Z^H \cap f^{-1}(X_\alpha^H)$:= subspace of Z^H mapped under f into X_α^H . The action of $N_\alpha H/H$ on Z^H induces an action of $N_\alpha H/H$ on $Z(f,\alpha)$ i.e. $Z(f,\alpha)$ is an Aut (α) -space (see [4]). Note that Aut $(\alpha) = \{\sigma : G/H \to G/H | \alpha \sigma \simeq \alpha\}$ and $N_\alpha(H)_H$, the isotropy group of $\alpha \in \pi_0(X^H)$ is isomorphic to Aut (α) .

1.3. Let $\{Z_i\}$ be a collection of G-ENR, $f_i: Z_i \to X$, G-maps. Say that $f_i: Z_i \to X$ is equivalent to $f_j: Z_j \to X$ if and only if for each $\alpha: G/H \to X$ in $\pi_0(G, X)$, the Euler characteristic $\chi(Z(f_i, \alpha)/\operatorname{Aut}(\alpha)) = \chi(Z(f_j, \alpha)/\operatorname{Aut}(\alpha))$.

Let $\mathcal{U}(G,X)$ be the set of equivalence classes $[f:Z\to X]$ where addition is given by $[f_0:Z_0\to X]+[f_1:Z_1\to X]=[f_0+f_1:Z_0+Z_1\to X];$ the identity element is $\phi\to X$; and the additive inverse of $[f:Z\to A]$ is $[f\circ p:Z\times A\to Z\to X],$ where A is a compact G-ENR with trivial G-action and $\chi(A)=-1$ (see [4]).

Then $\mathcal{U}(G,X)$ is the free Abelian group generated by $[\alpha]$, $\alpha \in \pi_0(G,X)$ i.e. $[f:Z \to X] = \Sigma n(\alpha)[\alpha]$, where $G/H \times E^n \subset Z$ is an open n-cell of Z, and the restriction of f to $G/H \times E^n$ defines an element $[\alpha]$ of $\mathcal{U}(G,X)$.

The cell is called an *n*-cell of type α . Let $n(\alpha) = \Sigma(-1)^i n(\alpha, i)$ where $n(\alpha, i) =$ number of *i*-cells of type α (see [4]).

If X is a point, write $\mathcal{U}(G)$ for $\mathcal{U}(G,X)$.

1.4. For a compact Lie group G, the category $\mathcal{A}(G)$ is defined as follows: $ob\mathcal{A}(G) :=$ homogeneous spaces G/H. The morphisms in $\mathcal{A}(G)(G/H, G/K)$ are the elements of the Abelian group $\mathcal{U}(G, G/H \times G/K)$ and have the form $\alpha : G/L \to G/H \times G/K$ which can be represented by diagram $\{G/H \stackrel{\alpha}{\leftarrow} G/L \stackrel{\beta}{\rightarrow} G/K\}$, so that $\mathcal{U}(G, G/H \times G/K) =$ free Abelian group on the equivalence classes of diagrams $G/H \stackrel{\alpha}{\leftarrow} G/L \stackrel{\beta}{\rightarrow} G/K$ where two such diagrams are equivalent if there exists an isomorphism $\sigma : G/L \to G/L'$ such that the diagram

commutes up to homotopy.

Composition of morphisms is given by a bilinear map

$$\mathcal{U}(G, G/H_1 \times G/H_2) \times \mathcal{U}(G, G/H_2 \times G/H_3) \to \mathcal{U}(G, G/H_1 \times G/H_3)$$

where the composition of $(\alpha, \beta_1): A \to G/H_1 \times G/H_2$ and $(\beta_2, \gamma): B \to G/H_2 \times G/H_3$ yields a G-map $(\alpha \bar{\alpha}, \gamma \bar{\gamma}): C \to G/H_1 \times G/H_3$, where $\bar{\gamma}$, $\bar{\alpha}$ are maps $\bar{\gamma}: C \to B$ and $\bar{\alpha}: C \to A$, respectively.

1.5. Remarks. (i) Each morphism $G/H \stackrel{\alpha}{\longleftarrow} G/L \stackrel{\beta}{\longrightarrow} G/K$ is the composition of special types of morphisms

$$G/H \stackrel{\alpha}{\longleftarrow} G/L \stackrel{\mathrm{id}}{\longrightarrow} G/L$$
 and $G/L \stackrel{\mathrm{id}}{\longleftarrow} G/L \stackrel{\beta}{\longrightarrow} G/K$.

(ii) Let π_0 (or G) be the homotopy category of the orbit category or (G), that is, the objects of π_0 (or G) are the homogeneous G-spaces G/H and morphisms are homotopy classes $[G/L \to G/K]$ of G-maps $G/L \to G/K$. We have a covariant functor π_0 (or G) $\to \mathcal{A}(G)$ given by $[G/L \xrightarrow{\beta} G/K] \to (G/L \xleftarrow{\mathrm{id}} G/L \xrightarrow{\beta} G/K)$ and a contravariant functor π_0 (or G) $\to \mathcal{A}(G)$ given by

$$[G/H \to G/L] \to (G/H \leftarrow G/L \xrightarrow{\mathrm{id}} G/L)$$

(iii) Addition is defined in $\mathcal{A}(G)(G/H, G/K) = \mathcal{U}(G, G/H \times G/K)$ by

$$(G/H \leftarrow G/L \rightarrow G/K) + (G/H \leftarrow G/L' \rightarrow G/K)$$
$$= (G/H \leftarrow (G/L)\dot{\cup}(G/L') \rightarrow G/K)$$

where $(G/L)\dot{\cup}(G/L')$ is the topological sum of G/L and G/L'.

1.6. Let R be a commutative ring with identity. A Mackey functor M from $\mathcal{A}(G)$ to R-mod is a contravariant additive functor. Note that M is additive if

$$M: \mathcal{A}(G)(G/H, G/K) \to \underline{R\text{-mod}}(M(G/K), M(G/H))$$

is an Abelian group homomorphism.

- 1.7. Remarks. M comprises of two types of induced morphisms
- (i) If $\alpha: G/H \to G/K$ is a G-map, regarded as an ordinary morphism $\alpha_!: G/H \stackrel{\text{id}}{\longleftarrow} G/H \stackrel{\alpha}{\longrightarrow} G/K$ of $\mathcal{A}(G)$, we have an induced morphism

$$M(\alpha_!) = M^*(\alpha) =: \alpha^* : M(G/K) \to M(G/H)$$

- (ii) If α in (i) is induced from $H \subset K$, i.e. $\alpha(gH) = gK$, call α^* the restriction morphism.
- (iii) If we consider α as a transfer morphism $\alpha': G/H \leftarrow G/K \rightarrow G/K$ in $\mathcal{A}(G)$, then we have

$$M(\alpha^!) =: M_*(\alpha) =: \alpha_* : M(G/H) \to M(G/K)$$

and call α_* the induced homomorphism associated to α .

1.8. Let M, N, L be Mackey functors on $\mathcal{A}(G)$. A pairing $M \times N \to L$ is a family of bilinear maps $M(S) \times N(S) \to L(S)$: $(x,y) \to x \cdot y$ $(S \in \mathcal{A}(G))$ such that for each G-map $f: G/H = S \to T = G/K$ we have

$$L^*f(x,y) = (M^*fx) \cdot (N^*fy) \qquad (x \in M(T), \ y \in N(T));$$

$$x \cdot (N_*fy) = L_*f((M^*fx) \cdot y) \qquad (x \in M(T), \ y \in N(S));$$

$$(M_*fx) \cdot y = L_*f(x \cdot (N^*fy)) \qquad (x \in N(S), \ y \in N(T)).$$

A Green functor $V: \mathcal{A}(G) \to \underline{R\text{-mod}}$ is a Mackey functor together with a pairing $V \times V \to V$ such that for each object S, the map $V(S) \times V(S) \to V(S)$ turns V(S) into an associative R-algebra such that f^* preserves units.

If V is a Green functor, a left V-module is a Mackey functor M together with a pairing $V \times M \to M$ such that M(S) is a left V(S)-module for every $S \in \mathcal{A}(G)$.

1.9. Remarks. The Mackey functor as defined in 1.6 is equivalent to the earlier definitions in [2], [3], [7] defined for finite and profinite groups G as functors from the category \hat{G} of G-sets to \underline{R} -mod. Observe that if $(M_*, M^*) = M$ is a Mackey functor (bifunctor) $\hat{G} \to \underline{R}$ -mod (see [7]), we can get $\tilde{M} : \mathcal{A}(G) \to \underline{R}$ -mod by putting $\tilde{M}(G/H) = M_*(G/H) = M^*(G/H)$ on objects while a morphism $G/H \xleftarrow{\alpha} G/L \xrightarrow{\beta} G/K$ in $\mathcal{A}(G)$ is mapped onto $M(G/H) \xleftarrow{M_*(\alpha)} M(G/L) \xleftarrow{M} M(G/K)$ in \underline{R} -mod. Then M is compatible with composition of morphisms.

Conversely, let $\tilde{M}: \mathcal{A}(G) \to \underline{R\text{-mod}}$ be given and for $(\alpha, \beta) \in \mathcal{A}(G)(G/H, G/K)$, let $\tilde{M}^*(\alpha)$ and $\bar{M}_*(\beta)$ be as defined in 1.7. Then, we can extend \tilde{M} additively to finite G-sets to obtain Mackey functors as defined in [2], [3], [7].

1.10. Universal example of a Green functor. Define $\bar{V}(G/H) := \mathcal{U}(G, G/H)$, $\mathcal{U}(H, G/G) := \bar{V}(H)$. Now, consider $\mathcal{U}(G, G/H) = \mathcal{U}(G, G/G \times G/H)$, as a morphism set in $\mathcal{A}(G)$. Then, the composition of morphisms

$$\mathcal{U}(G, G/G \times G/K) \times \mathcal{U}(G, G/H \times G/K) \to \mathcal{U}(G, G/G \times G/H)$$

defines an action of \bar{V} on morphisms.

1.11. Theorem. [4] $\bar{V}: \mathcal{A}(G) \to \underline{\mathbb{Z}\text{-}mod}$ is a Green functor, and any Mackey functor $M: \mathcal{A}(G) \to \mathbb{Z}\text{-}mod$ is a $\bar{V}\text{-}mod$ ule.

2. An equivariant higher K-theory for G-actions

- **2.1.** Let G be a compact Lie group, X a G-space. We can regard X as a category \underline{X} as follows. The objects of \underline{X} are elements of X and for $x, x' \in X$, $\underline{X}(x, x') = \{g \in G | gx = x'\}$.
- **2.2.** Let X be a G-space, \mathcal{C} an exact category in the sense of Quillen [9]. i.e. \mathcal{C} is an additive category embeddable as a full subcategory of an Abelian category \mathcal{O} such that \mathcal{C} is equipped with a class \mathcal{E} of exact sequences

$$0 \to M' \to M \to M'' \to 0 \tag{I}$$

such that

- (i) \mathcal{E} is the class of sequences (I) in the \mathcal{C} that are exact in \mathcal{O} .
- (ii) \mathcal{C} is closed under extensions in \mathcal{O} that is, if (I) is an exact sequence in \mathcal{O} and $M', M'' \in \mathcal{C}$ then $M \in \mathcal{C}$.

Let $[\underline{X}, \mathcal{C}]$ be the category of functors $\underline{X} \to \mathcal{C}$. Then $[\underline{X}, \mathcal{C}]$ is an exact category where a sequence $0 \to \zeta' \to \zeta \to \zeta'' \to 0$ is exact in $[\underline{X}, \mathcal{C}]$ if and only if

$$0 \to \zeta'(x) \to \zeta(x) \to \zeta''(x) \to 0$$

is exact in \mathcal{C} . In particular for X = G/H in $\mathcal{A}(G)$, $[G/H, \mathcal{C}]$ is an exact category.

- **2.3. Example.** The most important example of $[\underline{G/H}, \mathcal{C}]$ is when \mathcal{C} is the category $\underline{M}(\mathbb{C})$ of finite dimensional vector spaces over the field \mathbb{C} of complex numbers. Here, the category $[\underline{G/H}, \underline{M}(\mathbb{C})]$ can be identified with the category of G-vector bundles on the compact G-space G/H where for any $\zeta \in [G/H, \underline{M}(\mathbb{C})]$. $x \in G/H$, $\zeta(x) \in \underline{M}(\mathbb{C})$ is the fibre $\hat{\zeta}_x$ of the vector bundle $\hat{\zeta}$ associated with ζ . Indeed, $\hat{\zeta}$ is completely determined by $\zeta_{\bar{e}}$ where $\bar{e} = eH$ (see [10]).
- **2.4. Definition.** For X = G/H and all $n \ge 0$, define $K_n^G(X, \mathcal{C})$ as the n^{th} algebraic K-group of the exact category $[\underline{X}, \mathcal{C}]$ with respect to fibre-wise exact sequence introduced in 2.2.
- **2.5. Theorem.** (i) For all $n \geq 0$, $K_n^G(-, \mathcal{C}) : \mathcal{A}(G) \to \mathbb{Z}$ -mod is a Mackey functor, (ii) $K_0^{\mathcal{C}}(-, \mathcal{C}) : \mathcal{A}(G) \to \mathbb{Z}$ -mod is a Green functor and $K_n^G(-, \mathcal{C})$ is a $K_0^G(-, \mathcal{C})$ -module for all $n \geq 0$.

Before proving 2.5, we first briefly discuss pairings and module structures on higher K-theory of exact categories.

2.6. Let $\mathcal{E}, \mathcal{E}_1, \mathcal{E}_2$ be three exact categories and $\mathcal{E}_1 \times \mathcal{E}_2$ the product category. An exact pairing $\mathcal{E}_1 \times \mathcal{E}_2 \to \mathcal{E}$: $(M_1, M_2) \to M_1 \circ M_2$ is a covariant functor from $\mathcal{E}_1 \times \mathcal{E}_2 \to \mathcal{E}$ such that $\mathcal{E}_1 \times \mathcal{E}_2((M_1, M_2), (M'_1, M'_2)) = \mathcal{E}_1(M_1, M'_1) \times \mathcal{E}_2(M_2, M'_2) \to \mathcal{E}(M_1 \circ M_2, M'_1 \circ M'_2)$ is bi-additive and bi-exact, that is, for a fixed M_2 , the functor $\mathcal{E}_1 \to \mathcal{E}$ given by $M_1 \to M_1 \circ M_2$ is additive and exact and for fixed M_1 , the functor $\mathcal{E}_2 \to \mathcal{E} : M_2 \to M_1 \circ M_2$ is additive and exact. It follows from [12] that such a pairing gives rise to a K-theoretic product $K_i(\mathcal{E}_1) \times K_j(\mathcal{E}_2) \to K_{i+j}(\mathcal{E})$ and in particular to natural pairing $K_0(\mathcal{E}_1) \circ K_n(\mathcal{E}_2) \to K_n(\mathcal{E})$ which could be defined as follows.

Any object $M_1 \in \mathcal{E}$ induces an exact functor $M_1 : \mathcal{E}_2 \to \mathcal{E} : M_2 \to M_1 \circ M_2$ and hence a map $K_n(M_1) : K_n(\mathcal{E}_2) \to K_n(\mathcal{E})$. If $M_1' \to M_1 \to M_1''$ is an exact sequence in \mathcal{E} , then we have an exact sequence of exact functors $M_1^{'*} \to M_1^* \to M_1^{'*}$ from \mathcal{E}_2 to \mathcal{E} such that for each object $M_2 \in \mathcal{E}_2$ the sequence $M_1'(M_2) \to M_1^*(M_2) \to M_1^{'*}(M_2)$ is exact in \mathcal{E} and hence by a result of Quillen [9] induces a relation $K_n(M_1'^*) + K_n(M_1'^*) = K_n(M_1^*)$. So the map $M_1 \to K_n(M_1) \in \text{Hom}(K_n(\mathcal{E}_2), K_n(\mathcal{E}))$ induces a homomorphism $K_0(\mathcal{E}_1) \to \text{Hom}(K_n(\mathcal{E}), K_n(\mathcal{E}))$ and hence a pairing $K_0(\mathcal{E}_1) \times K_n(\mathcal{E}) \to K_n(\mathcal{E})$.

If $\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E}$ and the pairing $\mathcal{E} \times \mathcal{E}$ is naturally associative (and commutative), then the associated pairing $K_0(\mathcal{E}) \times K_0(\mathcal{E}) \to K_0(\mathcal{E})$ turns $K_0(\mathcal{E})$ into an associative (and commutative) ring which may not contain the identity.

Now, suppose that there is a pairing $\mathcal{E} \circ \mathcal{E}_1 \to \mathcal{E}_1$ which is naturally associative with respect to the pairing $\mathcal{E} \circ \mathcal{E} \to \mathcal{E}$, then the pairing $K_0(\mathcal{E}) \times K_n(\mathcal{E}_1) \to K_n(\mathcal{E}_1)$ turns $K_n(\mathcal{E}_1)$ into a $K_0(\mathcal{E})$ -module which may or may not be unitary. However, if \mathcal{E} contains a unit i.e. an object E such that $E \circ M = M \circ \mathcal{E}$ are naturally isomorphic to M for each \mathcal{E} -object M, then the pairing $K_0(\mathcal{E}) \times K_n(\mathcal{E}_1) \to K_n(\mathcal{E}_1)$ turns $K_n(\mathcal{E}_1)$ into a unitary $K_0(\mathcal{E})$ -module.

Proof of 2.5. (i) It is clear from the definition of $K_n^G(G/H,\mathcal{C})$ that for any $G/H \in \mathcal{A}(G)$, $K_n^G(G/H,\mathcal{C}) \in \underline{\mathbb{Z}\text{-mod}}$. Now suppose that $(G/H \xleftarrow{\alpha} G/L \xrightarrow{\beta} G/K) \in \mathcal{A}(G)(G/H,G/K)$, then $G/H \xleftarrow{\alpha} G/L \xrightarrow{\beta} G/K$ goes to

$$K_n^G(G/H, \mathcal{C}) \longleftarrow K_n^G(G/L, \mathcal{C}) \longleftarrow K_n^G(G/K, \mathcal{C})$$

in \underline{R} -mod $(K_n^G(G/K,\mathcal{C}))$. If we write K_n^G for $K_n^G(-,\mathcal{C})$, then

$$K_n^G(G/H \leftarrow (G/L)\dot{\cup}(G/L') \rightarrow G/K)$$

$$=K_n^G(G/H \leftarrow G/L \rightarrow G/K) + K_n^G(G/H \leftarrow G/L' \rightarrow G/K)$$
.

Hence $K_n^G(-,\mathcal{C})$ is a Mackey functor.

(ii) From the discussion in 2.6, it is clear that if we put $\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E} = [G/H, \mathcal{C}]$, then

$$K_0^G(G/H,\mathcal{C}) \times K_0^G(G/H,\mathcal{C}) \to K_0^G(G/H,\mathcal{C})$$

turns $K_0^G(G/H,\mathcal{C})$ into a commutative ring with identity. Also,

$$K_0^G(G/H,\mathcal{C}) \times K_n^G(G/H,\mathcal{C}) \to K_n^G(G/H,\mathcal{C})$$

turns

$$K_n^G(G/H, \mathcal{C})$$
 into $K_0^G(G/H, \mathcal{C})$ -modules

Hence the result.

- **2.7.** Examples. (i) In general $[G/H, \mathcal{C}] = \text{category of } H$ -representations in \mathcal{C} . Hence $[G/G, \mathcal{C}] = \text{category of } G$ representations in \mathcal{C} . If $\mathcal{C} = \underline{M}(\mathbb{C})$, the category of finite dimensional vector spaces over the complex numbers \mathbb{C} , $K_0^G(G/G, \underline{M}(\mathbb{C}))$ is the complex representation ring denoted by $R_{\mathbb{C}}(G)$ or simply R(G) in the literature.
- (ii) If $C = \underline{M}(R)$:= category of finitely generated R-modules, where R is a Noetherian ring compatible with the topological structure of G, then $K_n^G(G/H, \underline{M}(R)) \simeq G_n(RH)$.
- (iii) If $C = \underline{P}(R) = \text{category of finitely generated projective } R\text{-modules}$, we have

$$K_n^G(G/H, \underline{P}(R)) = G_n(H, R)$$
 and

when R is regular, $G_n(R, H) \simeq G_n(RH)$.

3. Induction theory for equivariant higher K-functors

In this section, we discuss the induction properties of the equivariant K-functors constructed in Section 2 leading to the proof of Theorem 3.10 below.

3.1. Definition. Let G be a compact Lie group. A finite family $\Sigma = (G/H)_{j \in J}$ is called an inductive system. Such a system yields two homomorphisms $p(\Sigma)$ (induction map) and $i(\Sigma)$ (restriction maps) defined by

$$p(\Sigma): \bigoplus_{j \in J} M(G/H_j) \to M(G/G)$$

$$(x_j|_{j \in J}) \mapsto \sum_{j \in J} p(H_j)_*(x_j)$$

$$i(\Sigma): M(G/G) \to \bigoplus_{j \in J} M(G/H_j)$$

$$x \mapsto (p(H_j)^*x|j \in J)$$

Note that p(H) denotes the unique morphism $G/H \to G/G$. Σ is said to be projective if $p(\Sigma)$ is surjective and Σ is said to be injective if $i(\Sigma)$ is injective. Note that the identity [id] of $\mathcal{U}(G, G/K \times G/H)$ has the form (see 1.3)

$$[id] = \sum_{\alpha} n_{\alpha} [\alpha : G/L_{\alpha} \to G/K \times G/H]. \tag{I}$$

3.2. Let S(K, H) be the set of α over which the summation (I) is taken and let $\alpha = (\alpha(1), \alpha(2))$ be the component of α , where $\alpha(1) : G/L_{\alpha} \to G/K$; $\alpha(2) : G/L_{\alpha} \to G/H$. Define induction map

$$p(\Sigma, G/H): \bigoplus_{j\in J} (\bigoplus_{\alpha\in S(H_j,H)} M(G/L_\alpha)) \to M(G/H)$$

by

$$(x(j,\alpha)) \mapsto (\sum_{j \in J} (\sum_{\alpha \in S(H_j,H)} n_{\alpha} \alpha(2)_* x(j,\alpha))$$

and restriction maps

$$i(\Sigma, G/H): M(G/H) \to \bigoplus_{i \in J} (\bigoplus_{\alpha \in S(H_i, H)} M(G/L_\alpha)$$

by

$$x \to (\alpha(2)^* x | (\alpha \in (S(H_j, H) \ j \in J)).$$

3.3. Theorem. Let $M = K_n^G(-, \mathcal{C})$, $V = K_0^G(-, \mathcal{C})$ be respectively Mackey and Green functors $\mathcal{A}(G) \to \mathbb{Z}$ -mod defined in 2.5. If Σ is projective for V, then for each homogeneous space G/H, the induction map $p(\Sigma, G/H)$ is split surjective and the restriction map $i(\Sigma, G/H)$ is split injective.

Proof. Since $p(\Sigma)$ is surjective for V, there exist elements $x_j \in V(G/H_j)$ such that $\Sigma(H_j)_*x_j = 1$. Define a homomorphism

$$q(\Sigma, G/H): M(G/H) \to \bigoplus_j (\bigoplus_{\alpha} M(G/L_{\alpha}))$$

by

$$q(\Sigma, G/H)x = \alpha(1)^*x_j \cdot \alpha(2)^*x$$
 such that $\alpha \in S(H_j, h)$,

 $j \in J$. Then $p(\Sigma, G/H)q(\Sigma, G/H)$

$$= \Sigma_{j}(\Sigma_{\alpha}n_{\alpha}\alpha(2)_{*}(\alpha(1)^{*}x_{j} \cdot \alpha(2)^{*}x))$$

$$= \Sigma_{j}(\Sigma_{\alpha}n_{\alpha}\alpha(2)_{*}\alpha(1)^{*}x_{j})x$$

$$= \Sigma_{j}(H)^{*}p(H_{j})_{*}x_{j} \cdot x$$

$$= \Sigma_{j}(H)^{*}(\Sigma_{j}(H_{j})_{*}x_{j})x$$

$$= p(H)^{*}(1)x = 1 \cdot x = x .$$

So, $p(\Sigma, G/H)q(\Sigma, G/H)$ is the identity. Hence $q(\Sigma, G/H)$ is a splitting for $p(\Sigma, G/H)$. We can also define a splitting $j(\Sigma, G/H)$ for $i(\Sigma, G/H)$ by $j(\Sigma, G/H): \bigoplus_{j} (\bigoplus_{\alpha} (MG/L_{\alpha})) \to M(G|H)$ where

$$x(j,\alpha) \mapsto \Sigma_j(\Sigma_\alpha n_\alpha \alpha(2)_* \alpha(1)^* x_j \circ x(j,\alpha))$$
.

- **3.4. Remarks**. As will be seen below (3.6), $V = K_0^G(-, \mathcal{C})$ has "defect sets" D(V) and so $\Sigma = \{G/H | H \in D(V)\}$ is projective for V. It would then mean that an induction theorem for $K_0^G(-, \mathcal{C})$ implies a similar theorem for $K_n^G(-, \mathcal{C})$.
- **3.5. Definition**. A finite set E of conjugacy classes (H) is an induction set for a Green functor V if $\oplus V(G/H) \rightarrow V(G/G)$ given by

$$(x(H)) \to \Sigma p(H)_* x(H)$$
 is surjective.

Define $E \leq F$ iff for each $(H) \in E$, there exists $(K) \in F$ such that $(H) \leq (K)$ i.e. H is subconjugate to K. Then < is a partial ordering on induction sets.

3.6. Lemma. Every Green functor V possesses a minimal induction set D(V), called the defect set of V.

For proof see [4]. Hence $K_0^G(-,\mathcal{C})$ has defect sets.

3.7. Let V be a Green functor and M be a V-module. Define homomorphisms

$$p_1, p_2: \bigoplus_{i,j \in J} \bigoplus_{\alpha \in S(i,j)} M(G/L_\alpha) \to \bigoplus_{k \in J} M(G/H_i)$$

by

$$p_2(x(i,j,\alpha)) = \sum_{i \in J} \sum_{\alpha \in S(i,j)} \eta_\alpha \alpha(2)_* x(i,j,\alpha)$$

and

$$p_1(x(i,j,\alpha)) = \sum_{i \in J} \sum_{\alpha \in S(i,j)} \eta_{\alpha} \alpha(1)_* x(i,j,\alpha)$$

where $S(i,j) = S(H_i, H_j)$ and $\alpha \in S(i,j)$ is in the decomposition of $[id] \in \mathcal{U}(G, G/H_i \times G/H_j)$.

3.8. Theorem. Let $M = K_n^G(-, \mathcal{C})$. Then there exists an exact sequence

$$\bigoplus_{i,j\in J} (\bigoplus_{\alpha\in S(i,j)} M(G/L_{\alpha}) \xrightarrow{p_2-p_1} \bigoplus_{k\in J} M(G/H_k) \xrightarrow{p} M(G/G) \to 0.$$

Proof. We have seen in 3.3 that p is surjective through the construction of a splitting homomorphism q such that pq=identity. We now construct a homomorphism q_1 such that $(p_2 - p_1)q_1 + qp$ = id from which exactness follows.

Since p_2 is defined as $\bigoplus_{k\in J} p(\Sigma G|H_k)$ we define $q_1 = \bigoplus_{k\in J} q(G/H_k)$ and obtain as in the proof of 3.3 that p_2q_1 = identity. One can also show that $p_1q_1 = qp$. Hence the result.

3.9. Definition. A subgroup C of G is said to be cyclic if powers of a generator of C are dense in G. If p is a rational prime, then a subgroup K of G is called p-hyperelementary if there exists an exact sequence $1 \mapsto C \to K \to P \to 1$ where P is a finite p-group and C a cyclic group such that the order of C/C_0 is prime to p. Here C_0 is the component of the identity in C. It is called hyperelementary if it is p-hyperelementary for some p.

Let \mathcal{H} be the set of hyperelementary subgroups of G. We now have the following result which is the goal of this section and typifies results that can be obtained.

3.10. Theorem. Let $M = K_n^G(-, \underline{M}(\mathbb{C}))$. Then $\bigoplus_{\mathcal{H}} M(G/H) \to M(G/G)$ is surjective (i.e. M satisfies hyper-elementary induction) i.e. M(G/G) can be computed in terms of p-hyperelementary subgroups of G).

Proof. It suffices to show that if $V = K_0^G(-, \underline{M}(\mathbb{C}))$ then $\bigoplus_{H \in \mathcal{H}} V(G/H) \to V(G/G)(I)$ is surjective since $K_n^G(-, \underline{M}(\mathbb{C}))$ is a V-module.

Now it is clear from example 2.7 that $K_0^G(G/G, \underline{M}(\mathbb{C}))$ is the complex representation ring R(G). Moreover, it is known (see [11]) that R(G) is generated as an Abelian group by modules induced from hyperelementary subgroups of G. This is equivalent to the surjectivity of $\bigoplus_{H \in \mathcal{H}} V(G/H) \to V(G/G)$.

4. Remarks on possible generalizations

4.1. Let \mathcal{B} be a category with finite sums, a final object and finite pull-backs (and hence finite products).

A Mackey functor $M: \mathcal{B} \to \mathbb{Z}$ -mod is a bifunctor $M = (M_*, M^*), M_*$ covariant, M^* contravariant such that $M(X) = M_*(X) = M^*(X)$ for all $X \in \mathcal{B}$ and

(i) For any pullback diagram

$$\begin{array}{ccc} A' & \xrightarrow{p_2} & A_2 \\ \downarrow_{p_1} & & \downarrow_{f_2} & \text{in } \mathcal{B} \\ A_1 & \xrightarrow{f_1} & A \end{array}$$

the diagram

$$\begin{array}{ccc} M(A') & \xrightarrow{p_2*} & M(A_i) \\ \uparrow p_1^* & & \uparrow f_2^* \\ M(A_i) & \xrightarrow{f_2*} & M(A) \end{array}$$

(ii) M^* transforms finite coproducts in \mathcal{B} over finite products in \mathbb{Z} -mod.

4.2. Example. Now suppose that G is a compact Lie group. Let \mathcal{B} be the category of G-spaces of the G-homotopy type of G-CW-complexes (e.g. G-ENR spaces, see [4] or [8]). Then \mathcal{B} is a category with finite coproducts (topological sums), final object and finite pullbacks (fibred products) (see [1]). Hence a Mackey functor is defined on \mathcal{B} along the lines of 4.1.

Hence, in a way analogous to what was done in [2] or [3] we could define for $X, Y \in \mathcal{B}$, the notion of Y-exact sequences in the exact category $[\underline{X}, \mathcal{C}]$ (where \mathcal{C} is an exact category) and obtain $K_n^G(X, \mathcal{C}, Y)$ as the n^{th} algebraic K-group of $[\underline{X}, \mathcal{C}]$ with respect to Y-exact sequences.

We could also have the notion of an element $\zeta \in [\underline{X},\mathcal{C}]$ being Y projective and obtain a full subcategory $[\underline{X},\mathcal{C}]_Y$ of Y-projective functors in $[\underline{X},\mathcal{C}]$ so that we could obtain $P_n^G(X,\mathcal{C},Y)$ as the n^{th} algebraic K-group of $[X,\mathcal{C}]_Y$ with respect to split exact sequences and then show that $K_n^G(-,\mathcal{C},Y), P_n^G(-,\mathcal{C},Y) \colon \mathcal{B} \to \mathbb{Z}$ -mod are Mackey functors and that $K_0^G(-,\mathcal{C},Y) \colon \mathcal{B} \to \mathbb{Z}$ -mod is a Green functor and $K_n^G(-,\mathcal{C},Y), P_n^G(-,\mathcal{C},Y)$ are $K_0^G(-,\mathcal{C},T)$ -modules in a way analogous to what was done in [2], [3].

It is hoped to explore these possibilities for further results in a future paper.

References

- [1] Allday, G.; Puppe, V.: Cohomological Methods in Transformation Groups. Cambridge University Press 1993.
- [2] Dress, A.; Kuku, A. O.: A convenient setting for equivariant higher algebraic K-theory. Lecture Notes in Math. 966, Springer Verlag 1982, 59–68.
- [3] Dress, A.; Kuku, A. O.: The Cartan map for equivariant higher algebraic K-groups. Comm. Algebra 9 (7) (1981), 727–746.
- [4] tom Dieck, T.: Transformation Groups. Walter de Gruyter, Berlin 1987.
- [5] Kuku, A. O.: K-theory of group-rings of finite groups over maximal orders in division algebras. J. Algebra **91** (1984), 18–31.
- [6] Kuku, A. O.: Equivariant K-theory and the cohomology of profinite groups. Lecture Notes in Math. 1046, Springer Verlag 1984, 234–244.
- [7] Kuku, A. O.: Axiomatic theory of induced representations of finite groups. Les cours du CIMPA, Nice 1985.
- [8] Lück, W.: Transformation groups and Algebraic K-Theory. Lecture Notes in Math. 1408, Springer Verlag 1989.
- [9] Quillen, D. G.: *Higher algebraic K-theory I.* Lecture Notes in Math. **341**, Springer Verlag 1974, 77–139.
- [10] Segal, G.: Representation ring of a compact Lie group. Inst. Hautes Études Sci. Publ. Math. **34** (1968), 113–128.
- [11] Segal, G.: Equivariant K-theory. Inst. Hautes Études Sci. Publ. Math. 34 (1968).
- [12] Waldhausen, F.: Algebraic K-theory of generalised free products. Ann. of Math. 108 (1978), 135–236.