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Introduction

The aim of this paper is to construct an equivariant higher K-theory for compact Lie group
actions in a way analogous to the ones constructed in [2], [3] for finite groups and [6] for
profinite groups.

In Section 1, we discuss the category A(G) of homogeneous spaces on which Mackey
functors are defined. In Section 2 we define the higher K-groups K¢(G/H,C), n > 0 for
any exact category C and show that K¢(—,C) : A(G) — Z-mod is a Mackey functor and
that K¢(—,C) are K§(—,C)-modules. In Section 3, we explore induction techniques in the
style of [4] to show that K¢(G/G, M (C)) (all n > 0) are hyperelementary computable where
M (C) is the category of finite dimensional vector spaces over the complex numbers.

In a final section, we briefly discuss possible generalisations of the foregoing to the cate-
gory of G-spaces of G-homotopy type of G-CW complexes.

Notations and Conventions

Let C be an exact category in the sense of Quillen [9]. Then for all n > 0 we write K,(C)
for the Quillen K-groups m,,1(BQC). If B is any small category, we denote by [B,C] the
category of covariant functors from B to C. Unless otherwise stated, G' denotes a compact
Lie group, and maps between G-spaces are G-equivariant. If H is a closed subgroup of G, we
write Ng(H) or just NH for the normaliser of H in G. Also we write R(G) for the complex
representation ring of G.
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1. Mackey functors on the category .A(G) of homogeneous spaces

1.1. Let G be a compact Lie group, X a G-space. The component category mo(G,X) is
defined as follows: Objects of my(G, X) are homotopy classes of maps o : G/H — X where
H is a closed subgroup of G. A morphism from [a] : G/H — X to [f] : G/K — X is a
G-map o : G/H — G /K such that So is G-homotopic to a.

Note that since Hom(G/H, X) ~ X*# where ¢ — ¢(eH), we could consider objects of
7o(G, H) as pairs (H, ¢) where ¢ € my(X) = the set of path components of X#.

1.2. A G-ENR (Euclidean Neighbourhood Retract) is a G-space that is G-homeomorphic
to a G-retract of some open G-subset of some G-module V. Let Z be a compact G-ENR,
f:Z — X aG-map. For a: G/H — X in my(G, X), we identify « with the path component
X into which G/H is mapped by a.

Put Z(f,a) = Z" N f~1(X) := subspace of Z¥ mapped under f into X. The action
of NoH/H on Z¥ induces an action of NoH/H on Z(f,«a) i.e. Z(f,«) is an Aut(a)-space
(see [4]). Note that Aut(a) = {0 : G/H — G/H|ao ~ a} and N,(H)pg, the isotropy group
of a € mo(X*H) is isomorphic to Aut(a).

1.3. Let {Z;} be a collection of G-ENR, f; : Z; - X, G-maps. Say that f; : Z; — X is
equivalent to f; : Z; — X if and only if for each o : G/H — X in 7y(G, X), the Euler
characteristic x(Z(f;, «)/Aut(a)) = x(Z(f;, @) /Aut(c)).

Let U(G, X) be the set of equivalence classes [f : Z — X]| where addition is given by
(fo:Zo— X]|+[fi: Z1 = X]|=[fo+ f1 : Zo + Z1 — X]; the identity element is ¢ — X;
and the additive inverse of [f : Z — A]is [fop: Z x A — Z — X], where A is a compact
G-ENR with trivial G-action and x(A) = —1 (see [4]).

Then U(G, X) is the free Abelian group generated by [o], a € 7o(G, X) ie. [f: Z —
X] = ¥n(o)[e], where G/H x E™ C Z is an open n-cell of Z, and the restriction of f to
G/H x E™ defines an element [a] of U(G, X).

The cell is called an n-cell of type . Let n(a) = 3(—1)"n(«, 1) where n(a, i) = number
of i-cells of type a (see [4]).

If X is a point, write U(G) for U(G, X).

1.4. For a compact Lie group G, the category A(G) is defined as follows: 0bA(G) :=
homogeneous spaces G/H. The morphisms in A(G)(G/H,G/K) are the elements of the
Abelian group U(G,G/H x G/K) and have the form o : G/L — G/H x G/K which can be

represented by diagram {G/H&G/Lg G/K}, so that U(G,G/H x G/K) = free Abelian

group on the equivalence classes of diagrams G/H < G/L LNe /K where two such diagrams
are equivalent if there exists an isomorphism o : G/L — G/L' such that the diagram

G/L
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commutes up to homotopy.
Composition of morphisms is given by a bilinear map

U(G,G/H, x G/Hy) x U(G,G/Hy x G/H3) - U(G,G/H, x G/Hj)

where the composition of (o, 31) : A = G/H; x G/Hs and (f,,7) : B — G/Hy x G/ Hj yields
a G-map (aa,vy) : C — G/H; x G/Hs, where 7, & are maps 7 : C — Band a: C — A,
respectively.

1.5. Remarks. (i) Each morphism G/H «+—G/L i>G’/K is the composition of special
types of morphisms

G/H<G/L%G/L and G/L<XG/L-5G/K .

(ii) Let 7o (or G) be the homotopy category of the orbit category or (G), that is, the objects of
7o (or G) are the homogeneous G-spaces G/H and morphisms are homotopy classes [G/L —
G/K] of G-maps G/L — G/K. We have a covariant functor my (or G) — A(G) given by

G/LEG/K] —» (G/L<XG/L % G/K) and a contravariant functor m (or G) — A(G)
given by _
[G/H — G/L] - (G/H + G/L-%G/L)

(iii) Addition is defined in A(G)(G/H,G/K) =U(G,G/H x G/K) by
(G/H + G/L - G/K)+ (G/H + G/L' - G/K)

= (G/H + (G/L)U(G/L") = G/K)
where (G/L)U(G/L') is the topological sum of G/L and G/L'.
1.6. Let R be a commutative ring with identity. A Mackey functor M from A(G) to R-mod
is a contravariant additive functor. Note that M is additive if

M : A(G)(G/H,G/K) — R-mod(M(G/K), M(G/H))

is an Abelian group homomorphism.

1.7. Remarks. M comprises of two types of induced morphisms
(i) If a: G/H — G/K is a G-map, regarded as an ordinary morphism
a : G/H<i G/H -+ G/K of A(G), we have an induced morphism

M(a) = M* (@) = o : M(G/K) — M(G/H)

(ii) If @ in (i) is induced from H C K, i.e. a(gH) = gK, call o* the restriction morphism.

(iii) If we consider o as a transfer morphism o' : G/H + G/K — G/K in A(G), then we
have
M(a') =: M,(a) =: o, : M(G/H) = M(G/K)

and call a, the induced homomorphism associated to c.
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1.8. Let M,N,L be Mackey functors on A(G). A pairing M x N — L is a family of
bilinear maps M (S) x N(S) — L(S): (z,y) = z-y (S € A(G)) such that for each G-map
f:G/H=S—T=G/K we have

L f(z,y) = (M"fz)- (N"fy) (v € M(T), y € N(T));
z- (Nufy) = L f(M*fz)-y) (v € M(T), y € N(5));
(M.fz)-y=L.f(x-(N"fy)) (v € N(S), y€ N(T)).

A Green functor V : A(G) — R-mod is a Mackey functor together with a pairing V' xV — V
such that for each object S, the map V(S) x V(S) — V(S) turns V(S) into an associative
R-algebra such that f* preserves units.

If V is a Green functor, a left V-module is a Mackey functor M together with a pairing
V x M — M such that M(S) is a left V(S)-module for every S € A(G).

1.9. Remarks. The Mackey functor as defined in 1.6 is equivalent to the earlier definitions
in [2], [3], [7] defined for finite and profinite groups G as functors from the category G of G-
sets to R-mod. Observe that if (M,, M*) = M is a Mackey functor (bifunctor) G — R-mod
(see [7]), we can get M : A(G) — R-mod by putting M(G/H) = M,(G/H) = M*(G/H) on
objects while a morphism G/H «*~ G/L - G/K in A(G) is mapped onto

M(G/H) 1\<4_(a) M(G/L) M)M(G/K) in R-mod. Then M is compatible with composition

of morphisms.

Conversely, let M : A(G) — R-mod be given and for (o, 8) € A(G)(G/H,G/K), let
M*() and M,(f) be as defined in 1.7. Then, we can extend M additively to finite G-sets
to obtain Mackey functors as defined in [2], [3], [7].

1.10. Universal example of a Green functor. Define V(G/H) = U(G,G/H),
U(H,G/G) = V(H). Now, consider U(G,G/H) = U(G,G/G x G/H), as a morphism
set in A(G). Then, the composition of morphisms

UG,G/GxG/K)xU(G,G/H x G/K) - U(G,G/G x G/H)

defines an action of V' on morphisms.

1.11. Theorem. [4] ‘Z: A(G) — Z-mod is a Green functor, and any Mackey functor
M : A(G) = Z-mod is a V-module.

2. An equivariant higher K-theory for G-actions

2.1. Let G be a compact Lie group, X a G-space. We can regard X as a category X as
follows. The objects of X are elements of X and for z, 2’ € X, X(z,z') ={g € G|gz = 2'}.

2.2. Let X be a G-space, C an exact category in the sense of Quillen [9]. i.e. C is an additive
category embeddable as a full subcategory of an Abelian category O such that C is equipped
with a class £ of exact sequences

0->M —>M-—->M =0 (I)
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such that
(i) &€ is the class of sequences (I) in the C that are exact in O.

(ii) C is closed under extensions in O that is, if (I) is an exact sequence in O and M', M" € C
then M € C.

Let [X,C] be the category of functors X — C. Then [X,C] is an exact category where a
sequence 0 — (' — ¢ — ¢" — 0 is exact in [X, C] if and only if

0= () = ((z) = ("(z) = 0

is exact in C. In particular for X = G/H in A(G), [G/H,C] is an exact category.

2.3. Example. The most important example of [G/H,C]| is when C is the category M (C)
of finite dimensional vector spaces over the field C of complex numbers. Here, the category
[G/H, M(C)| can be identified with the category of G-vector bundles on the compact G-space
G/H where for any ¢ € [G/H,M(C)]. x € G/H, ((z) € M(C) is the fibre (, of the vector
bundle ¢ associated with (. Indeed, ¢ is completely determined by (; where € = eH (see

[10]).

2.4. Definition. For X = G/H and alln > 0, define KS¢(X,C) as the n'* algebraic K-group
of the exact category [X, C] with respect to fibre-wise exact sequence introduced in 2.2.

2.5. Theorem. (i) For alln >0, K%(—,C) : A(G) — Z-mod is a Mackey functor,
(i) K§(—,C) : A(G) — Z-mod is a Green functor and KS(—,C) is a K§(—,C)-module for
alln > 0.

Before proving 2.5, we first briefly discuss pairings and module structures on higher K-theory
of exact categories.

2.6. Let £,&1,& be three exact categories and & x & the product category. An exact
pairing & x & — & : (My, My) — My o M, is a covariant functor from & x & — £ such
that & x E((My, My), (M7, M3)) = E (M, M{) x Ey( My, M) — E(M;y o My, M o M) is
bi-additive and bi-exact, that is, for a fixed M,, the functor & — &€ given by M; — M; o M,
is additive and exact and for fixed M, the functor & — &£ : My — M; o M, is additive
and exact. It follows from [12] that such a pairing gives rise to a K-theoretic product
K;(&1) x Kj(&) — K;4+;(€) and in particular to natural pairing Ko(&;1) o K, (&) — K, (€)
which could be defined as follows.

Any object M; € £ induces an exact functor M; : £ — € : My — M; o M, and hence
a map K, (M) : K,,(&) — K,(€). If M] — M; — M/ is an exact sequence in &, then we
have an exact sequence of exact functors M,* — M; — M,* from &, to £ such that for each
object M, € &, the sequence M!(My) — M;(My) — M, *(M,) is exact in £ and hence by a
result of Quillen [9] induces a relation K, (M;*) + K, (M;*) = K,(M}). So the map M; —
K, (M) € Hom(K, (&), K,(£)) induces a homomorphism Ky(&;) — Hom(K, (), K,(£))
and hence a pairing Ky(&) x K, (&) — K, ().

If & = & = & and the pairing £ x £ is naturally associative (and commutative), then
the associated pairing Ko(£) x Ko(€) = Ko(€) turns Ko(€) into an associative (and com-
mutative) ring which may not contain the identity.
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Now, suppose that there is a pairing £ o & — &; which is naturally associative with
respect to the pairing £ o & — &£, then the pairing Ko(€) x K, (&) — K, (&1) turns K, (&1)
into a Ky(€)-module which may or may not be unitary. However, if £ contains a unit i.e. an
object E such that Eo M = M o & are naturally isomorphic to M for each £-object M, then

the pairing Ko(€) x K, (&) — K,(&1) turns K,,(&;) into a unitary Ky(E)-module.

Proof of 2.5. (i) Tt is clear from the definition of K¢(G/H,C) that for any G/H € A(G),
K% (G/H,C) € Z-mod. Now suppose that (G/H&G/L&G/K) € A(G)(G/H,G/K),
then G/H <+ G/L&G/K goes to

in R-mod(K¢(G/K,C). If we write KS for K&(—,C), then
K{(G/H «+ (G/L)U(G/L") = G/K)

=KZ(G/H + G/L - G/K)+ KS(G/H + G/L' - G/K) .

Hence K%(—,C) is a Mackey functor.
(ii) From the discussion in 2.6, it is clear that if we put & = & = € = [G/H, ], then

K¢ (G/H,C) x K§(G/H,C) — K¢ (G/H,C)
turns K§(G/H,C) into a commutative ring with identity. Also,
K¢ (G/H,C) x K (G/H,C) — KJ(G/H,C)

turns
KS(G/H,C) into K§(G/H,C)-modules

Hence the result.

2.7. Examples. (i) In general [G/H,C| = category of H-representations in C. Hence
[G/G,C] = category of G representations in C. If C = M(C), the category of finite dimensional

vector spaces over the complex numbers C, K§(G/G, M(C)) is the complex representation
ring denoted by R¢(G) or simply R(G) in the literature.

(ii) If C = M(R) := category of finitely generated R-modules, where R is a Noetherian ring

compatible with the topological structure of G, then K¢(G/H, M(R) ~ G,,(RH).
(iii) If C = P(R) = category of finitely generated projective R-modules, we have

KF(G/H,P(R)) = G.(H, R) and

when R is regular, G, (R, H) ~ G,(RH).
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3. Induction theory for equivariant higher K-functors

In this section, we discuss the induction properties of the equivariant K-functors constructed
in Section 2 leading to the proof of Theorem 3.10 below.

3.1. Definition. Let G be a compact Lie group. A finite family ¥ = (G/H);cs is called an
inductive system. Such a system yields two homomorphisms p(X) (induction map) and i(X)
(restriction maps) defined by

p(%): @ M(G/H;) — M(G/G)
(zjljer) E p(H) (z4)
i(X): M(G/G) — @M(G/H)

jeJ

)
r — (p(Hj)*z|j € J)

Note that p(H) denotes the unique morphism G/H — G/G. X is said to be projective if p(X)
is surjective and X is said to be injective if i(X) is injective. Note that the identity [id] of
U(G,G/K x G/H) has the form (see 1.3)

[id] = ¥onela: G/Ly, — G/K x G/H]. (I)
3.2. Let S(K,H) be the set of o over which the summation (I) is taken and let a@ =

(a(1), @(2)) be the component of o, where «(1) : G/L, — G/K; «(2):G/L, — G/H.
Define induction map

p(Z,G/H) : @jes(®aesq;,mM(G/La)) = M(G/H)

by
($(], O{)) = (EjEJ(EaES(Hj,H)naa(Q)*x(ja O[))

and restriction maps
i(3,G/H) : M(G/H) — @jes(@aesm;,;yM (G /L)
by
z— (a2)'z|(a € (S(H;,H) jeJ).

3.3. Theorem. Let M = K&(—,C), V = K§(—,C) be respectively Mackey and Green func-
tors A(G) — Z-mod defined in 2.5. If 3 is projective for V, then for each homogeneous space
G/H, the induction map p(X,G/H) is split surjective and the restriction map (X, G/H) is
split injective.

Proof. Since p(X) is surjective for V, there exist elements z; € V(G /H,) such that 3(H,),z,; =1.
Define a homomorphism

¢(X,G/H) : M(G/H) = @;(®M(G/La))
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b
’ ¢(2,G/H)x = a(1)"z; - a(2)"z such that o € S(Hj, h),

j € J. Then p(X,G/H)q(X,G/H)

i(E
(X

J

aNa(2):(a(1)"z; - a(2) 7))
aNa(2).a(l)*z))x
p(H)"p(H;).x;) - @
p(H)*(Ep(Hj)szj)z
=pH)(Mz=1-z=

So, p(X,G/H)q(X,G/H) is the identity. Hence ¢(3,G/H) is a splitting for p(X, G/H).
We can also define a splitting j(3, G/H) for (X, G/H) by j(X,G/H) : ®;(®a(MG/Ly)) —
M (G|H) where

1 M MM

z(J, @) = 3, (Zanea(2).a(1)*z; 0 2(j, ) .

3.4. Remarks. As will be seen below (3.6), V = K§(—,C) has “defect sets” D(V) and so
Y. ={G/H|H € D(V)} is projective for V. It would then mean that an induction theorem
for K§(—,C) implies a similar theorem for K&(—,C).

3.5. Definition. A finite set E of conjugacy classes (H) is an induction set for a Green
functor V if ®V(G/H) — V(G/G) given by
(x(H)) — Xp(H).x(H) is surjective .

Define E < F iff for each (H) € E, there exists (K) € F such that (H) < (K) i.e. H is
subconjugate to K. Then < is a partial ordering on induction sets.

3.6. Lemma. FEvery Green functor V possesses a minimal induction set D(V), called the
defect set of V.

For proof see [4]. Hence K& (—,C) has defect sets.

3.7. Let V be a Green functor and M be a V-module. Define homomorphisms
pLp2: © @& M(G/Ly) — k@JM(G/Hz‘)
€

1,J€J a€S(i,5)

by
p2(x(i,j: a)) = Z Z 77a04(2)*x(75,j, a)
i€J aeS(i,j)
and
pl(x(i,j: CM)) = Z Z Waa(l)*x(i,j, Oj)
i€J a€S(i,j)

where S(i,7) = S(H;, H;) and o € S(4,7) is in the decomposition of [id] € U(G,G/H; x
G/Hj).

3.8. Theorem. Let M = K¢ (—,C). Then there ezists an ezact sequence

®ijes(Bacs(i)M(G/La) "= @resM(G/Hy) == M(G/G) = 0
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Proof. We have seen in 3.3 that p is surjective through the construction of a splitting
homomorphism ¢ such that pg=identity. We now construct a homomorphism ¢; such that
(p2 — p1)g1 + gp = id from which exactness follows.

Since p, is defined as @resp(XG|Hy) we define ¢ = Gresq(G/Hy) and obtain as in the
proof of 3.3 that psq; = identity. One can also show that p;g; = gp. Hence the result.

3.9. Definition. A subgroup C of G is said to be cyclic if powers of a generator of C' are
dense in G. If p is a rational prime, then a subgroup K of G is called p-hyperelementary if
there exists an eract sequence 1 — C — K — P — 1 where P is a finite p-group and C
a cyclic group such that the order of C/Cy is prime to p. Here Cy is the component of the
identity in C'. It is called hyperelementary if it is p-hyperelementary for some p.

Let H be the set of hyperelementary subgroups of G. We now have the following result which
is the goal of this section and typifies results that can be obtained.

3.10. Theorem. Let M = K% (—, M(C)). Then ®3M(G/H) — M(G/G) is surjective
(i.e. M satisfies hyper-elementary induction) i.e. M(G/G) can be computed in terms of
p-hyperelementary subgroups of G).

Proof. 1t suffices to show that if V = K§(—, M(C)) then & V(G/H) — V(G/G)(I) is

HEH
surjective since K¢ (—, M(C) is a V-module.

Now it is clear from example 2.7 that K§(G/G, M(C) is the complex representation
ring R(G). Moreover, it is known (see [11]) that R(G) is generated as an Abelian group by
modules induced from hyperelementary subgroups of G. This is equivalent to the surjectivity
of H%{ V(G/H) = V(G/G).

4. Remarks on possible generalizations

4.1. Let B be a category with finite sums, a final object and finite pull-backs (and hence
finite products).
A Mackey functor M : B — Z-mod is a bifunctor M = (M,, M*), M, covariant, M*
contravariant such that M(X) = M,(X) = M*(X) for all X € B and
(i) For any pullback diagram
AT B4,
Im 1 inB
A o4
the diagram
M(A) 25 M(A)
T pi T
M(4) 5 M(4)

(ii) M* transforms finite coproducts in B over finite products in Z-mod.
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4.2. Example. Now suppose that G is a compact Lie group. Let B be the category of G-
spaces of the G-homotopy type of G-CW-complexes (e.g. G-ENR spaces, see [4] or [8]). Then
B is a category with finite coproducts (topological sums), final object and finite pullbacks
(fibred products) (see [1]). Hence a Mackey functor is defined on B along the lines of 4.1.

Hence, in a way analogous to what was done in [2] or [3] we could define for X, Y € B, the
notion of Y-exact sequences in the exact category [X,C| (where C is an exact category) and
obtain K% (X,C,Y) as the n'* algebraic K-group of [X,C] with respect to Y-exact sequences.

We could also have the notion of an element ¢ € [X,C] being Y projective and ob-
tain a full subcategory [X,Cly of Y-projective functors in [X,C| so that we could obtain
PS(X,C,Y) as the n' algebraic K-group of [X,C]y with respect to split exact sequences
and then show that K%(—,C,Y), P%(—,C,Y): B — Z-mod are Mackey functors and that
K§(—,C,Y) : B— Z-modis a Green functor and K¢(—,C,Y), P%(—,C,Y) are K§(—,C,T)-
modules in a way analogous to what was done in [2], [3].

It is hoped to explore these possibilities for further results in a future paper.
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