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1. Introduction

In 1955, J.-P. Serre remarked [12, p.243] that it was not known whether there exist finitely
generated projective modules over k[zi,...,x,], k a field, which are not free. This remark
turned into the “Serre Conjecture”, stating that indeed there were no such modules. Proven
independently in 1976 by D. Quillen [11] and by A. A. Suslin [13], it became subsequently
known as the Quillen-Suslin Theorem (QS).

Several algorithms have been given for QS [9, 3, 4]. Given a suitable presentation of a
finitely generated projective module over k[zi,...,z,], k a field, these algorithms produce
a free basis for the module. Such algorithms might be of interest in applications of QS to
problems within as well as outside mathematics. See [15] for applications of QS to problems in
control theory. To mention an application to the solution of linear systems of equations with
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polynomial coefficients, one may interpret the theorem as follows. Let A be an n x m-matrix
with entries in R = k[z1,...,z,], and let

A-y=0

be a system of linear equations. Define a module P via the presentation

R™ 2 pr >y P > 0,

and suppose that P is a projective R-module. Then the Quillen-Suslin Theorem implies that
the solution space of the system Ay = 0 has a free basis, and an algorithm for the theorem
will compute such a free basis.

This paper contains a new algorithm for QS. It is a variant of the algorithm in [9], and
appears implicitly in [7], which contains a more general algorithm for the Quillen-Suslin
Theorem for seminormal monoid rings, based on results in [5]. (See also [14].)

All rings which appear are either subrings of polynomial rings over a field, quotients of
polynomial rings, or localizations thereof. Thus, all required computations can be carried
out using the theory of Grobner bases, as described in [1], [2], [8]. Since the study of projec-
tive modules is properly part of algebraic K-theory, the present paper may be considered a
contribution to the computational side of that subject.

Following is a precise statement of the result.

Theorem 1.1. Let k be a field, and P a finitely generated R = k[z1, ..., x.]-module, given
as the kernel or cokernel of a matriz with entries in R. Then there is an algorithm to test
whether P is projective, in which case it computes a free basis for P.

In order to put the result of the present paper in context we describe briefly the algorithm
in [9]. It proceeds by induction on the number of variables. In the case of a polynomial ring
in one variable, one can use the Smith normal form algorithm. Suppose the theorem is true
for all polynomial rings in less than or equal to r variables over any field. Now consider the
polynomial ring

Rly] = klzy, ...,z ][y]

in 7 4+ 1 variables. The first step in [9] is to reduce the problem to the case of a stably free
module. Recall that, for a ring S, a projective S-module P is stably free, if P & S™ = S™ for
some non-negative integers n and m. Using Grobner basis techniques, one can compute a free
resolution for an arbitrary projective S-module. All the cokernels of the maps in the resolution
are projective, so, in particular, the cokernel of the last map in the resolution is stably free.
With an algorithm to find free bases for stably free modules, one can now construct a shorter
free resolution for P. Proceeding inductively, one obtains a free resolution

0 —— R" > R™ > P > 0

of P, from which one can compute a free basis. If P is stably free, then we can assume that
the matrix in Theorem 1.1 is unimodular, that is, has a left inverse. Given such a unimodular
matrix, its left inverse can be computed with standard Grébner basis methods (see [9, pp.
236-237)).
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The next step in the algorithm is to reduce the problem to that of finding a free basis for
the localized modules Py, over the rings

k[mla s ,-TT]M[:U],

for a suitable finite collection of maximal ideals M of k[z1,...,z,]. These free bases for the
local modules are then “patched together” to obtain a basis for the module P.

In this paper we present an alternative algorithm for the local problem, that is, to find a
free basis for the module Py over k[xy, ...,z |m[y], for a maximal ideal M C k[z1,...,z,].
We conclude the paper with an example.

2. The local algorithm

Proposition 2.1. Let P be a finitely generated klz1,...,x,, y|-module, given as the kernel
or cokernel of a matriz C with entries in k[z1,...,x.,y]. Let M be a mazimal ideal of
klx1,...,z.;]. Then there is an algorithm which tests whether Py is projective, in which case
it computes a free basis for it.

The conceptual basis for the algorithm is a version of Roberts’ Theorem (even though we
will not explicitly use it).

Theorem 2.2. ([14, Theorem 3.2]) Let R be a commutative local ring with mazimal ideal
M. Let A be an R-algebra, and let P be a finitely generated A-module. Let S be a central
multiplicative set of A which is reqular on A and on P. Let n be a nonnegative integer.
Assume

(1) If f € S, then A/fA is finite over R.
(2) GL,(As)\ GL,(As)/GL,(A) = {1}, where A = A/ MA.
(3) There is an R-subalgebra B C Ag with As = A+ B and MB C J(B), where J(B) is
the Jacobson radical of B.
(4) Ps= A% and P = A",
Then P = A™.

Let R = k[z1,...,2.Jm and A = R[y]. To simplify notation, denote the localization of P
at M again by P. Let S C A be the multiplicative set of polynomials, which, when viewed
as a polynomial in y, have leading coefficient a unit in R. Taking quotients modulo M, we

obtain the commutative diagram
A—— AS

Lo

A —— Ag.
Here A = A/MA = K'[y] is a polynomial ring in one variable over the field k' =
klxy,...,z,;]/ M. Furthermore, the localization Ag can be described as

As = (k[z1, ...,z |mly])s = k() [21, . . 2] 5
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where M is the extension of the maximal ideal M to the polynomial ring over the larger
field k(y). Since there are finitely many maximal ideals Ny,..., Ny of k(y)[z1,. .., z,] lying
over M, it follows that Ag is a semi-local ring. Furthermore, it is the localization of a
polynomial ring in r variables, which will allow us to apply our induction hypothesis later
on. Consequently,

Ag = Hk(y)[xl,...,x,,]//v,.

is a product of fields, each of which contains &’. The kernel of the right-hand vertical projec-
tion is equal to the intersection of the A, which is the Jacobson radical of Ag.

Outline of the proof of Proposition 2.1. We will only present the proof for a module
presented as the kernel of a matrix with polynomial entries. The proof for a cokernel is entirely
similar. The proof proceeds by induction on the number of variables of A. A polynomial
ring in one variable over a field is a PID, so we can apply the Smith normal form algorithm
to C to check whether P is projective, and to compute a free basis for it. Now assume the
proposition is true for polynomial rings in r variables over a field. Suppose we are given the
following presentation:

0 > P > klzy, ...,z y]™ AN klxzy, ...,z y]"

of P.

First assume that Py, is projective. Using the reduction algorithm in [9] we can assume
that Py is stably free. If we reduce modulo the maximal ideal M we get a projective module
Py over the principal ideal domain k'[y]. Using the Smith normal form algorithm, we find a

free basis uy,...,u; for Py over A. Extending scalars from A to Ag, we obtain a free basis
U1, ..., U of (Pp)s over Ag. Now lift the elements @, ..., 4; to elements uy,...,u; € Py C
(Pp)s, using normal forms with respect to a Grobner basis for M C k[z1, ..., z,].

To simplify notation, denote Py, by P. The module Ps over Ag has the same presentation
matrix C' as P. Since Ag is the localization of a polynomial ring in r variables, Ps is free
by induction, and we can find a free basis vy,...,v;. Let v1,...,7; be the induced basis of
Pg over the product of fields Ag. Let W be a base change matrix that transforms the basis
{v;} into the basis {@;}. It is possible to lift W to a matrix W over Ag, which restricts
to an invertible matrix on the image of C. Transforming the basis {v1,...,v;} via W, we
obtain another free basis of Pg, again denoted by {v;}, which maps to the basis {u;} over
Ag. Hence the differences u; — v; lie in the radical of Ps. We can now transform the v; into
a free Ag-basis of Ps which is actually contained in P C Pg, so they also form a free A-basis
of P.

If P = P, is not projective, then the algorithm fails to either find a free basis for P or
for Ps. Thus, it can be used to test Py, for projectivity.

Proof. To begin the proof, assume that P is projective. Using the reduction algorithm in [9]
we can assume further that P is in fact stably free, that is, C' has a right inverse

D:A" —— A™
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such that C'D is the identity on A™. Let S be the multiplicative subset of A consisting of
those elements which are monic when viewed as polynomials in y. Consider the ring

Ag = (k[z1, ..., 2| mly])s = k(W) [21, ... 2] 5
Let

0 » P y Am —< 5 An > 0
be the presentation of Pg obtained from C' by extending scalars to Ag. Our goal is to find a
free basis for Ps. Since C has a right inverse, we have an effective decomposition

AT 2 ker(C) @ Ag = Ps @ A%,
given by z = (x — DCx) + DCxz for all z € AZ. There is a commutative diagram

klzy, ...,z |ly] —— k(y)[z1,..., 2]

l l

k[.’L‘l,...,ﬂ')T]M[y] — As.

Thus, the module Pgs is extended from k(y)[z1,...,z,|. By induction, we can find a free basis
for projective modules over this ring. Thus, we can extend P to this ring, find a free basis,
and then extend to Ag. In this way we obtain a free basis vq,...,v; of Ps.

We now construct the elements u; € P C Ps. First we reduce the above presentation
matrix C' over A modulo M to obtain a presentation matrix over

klz1,. ..,z mly]/ M = K'y].

Since k'[y] is a principal ideal domain, we can use the Smith normal form algorithm to find
an invertible matrix U such that

— I 0

U - ( ! 0) ,

where I is an (m X m)-identity matrix. Then the last ¢ = n — m rows of U~ form a free
basis @y, ..., u; for P.

We now choose a term order for k[x1,. .., z,] and compute a Grobner basis for the ideal
M C klz1,...,z,]. Now compute normal forms in k[zi,...,x,] for the polynomials in the
entries of 4;. Using these normal forms we obtain elements

m
Upy ..., up €A™,

which map onto the basis for P. We modify the u; by elements in M - A™, so that they lie
in P as follows. If we replace u; by u; — DC'u;, then

Thus, we have elements u; € P C Ps which map onto the initial free basis {u;} of P.
Now consider the basis {u;} of Ps. Since Ag is a product of fields we can compute base
change matrices in each component and use the Chinese Remainder Theorem to assemble
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them to a base change matrix W € GL;(Ag) which maps {7} to {#;}. We compute normal
forms of the polynomials making up the entries of W with respect to the Grobner basis of
M. Using these normal forms we can lift W to a matrix

W AT —— AT

Now replace W by W — DCW. The new W still reduces to the old W, and, furthermore,
C(W — DCW) = 0. While this new W need not be invertible, it restricts to an invertible
transformation on Ps. Now replace the basis vq, ..., v; of Ps by the basis Wwy, ..., Wv,. Then
for this new basis {v;} of Ps we have that @; = 7; for all i. Consequently, the differences
u; — v; lie in the radical of Ps. Using the division algorithm we decompose u; — v; as the sum

ui — v = fi — gi,

where f; € A™, and the degrees of the denominators of the entries in g; are greater than or
equal to the degrees of the numerators. Then

ui — fi = vi — gi,

so that v; — g; is denominator-free (with respect to elements in S). Replace v; by v; — g;.
The new v; are still linearly independent since they map to a free basis modulo the Jacobson
radical of Ag. If we now further alter the v; by replacing them with

V; — DC’UZ',

then the new wv; are still linearly independent and lie in P C Ps. Furthermore, they differ
from the initial basis for Ps by elements in rad(Ag)Ps, hence they form a free basis for Ps.
Also, we still have that %; = 7; is a free basis for P over A.
Now consider the free A-submodule P’ of P generated by vy,...,v;. Since 7; = 1;
generates P, it follows that
P =P +rad(A)P.

Nakayama’s Lemma implies that P’ = P. Hence we have found a free basis for p.
If P is not projective, then the algorithm fails to find a free basis for either P or Pg. [

3. An example

Consider the polynomial ring Q[z,y]. Let M be the maximal ideal of Q[z]| generated by
x — 1, and let P = Py, be the stably free A = Q[x](;—1)[y]-module given by the kernel of the
unimodular row C = (z?y+1,z+y— 2, 22y). Notice that D = (1,0, —x/2)* is a right inverse
of C.

First we find elements @; which form a free basis of Ps. Reducing C' modulo (z — 1), we
obtain C' = (y+ 1,y — 1, 2y). Computing the Smith normal form of C yields

(1,0,0) = CU
1 —y+1 -1
.| 0 wrl -l
—— 0 1
2
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So, the last two columns of U form a free basis 4, = (—y+ 1,y +1,0)%, iy = (—1,—1,1)"
for P.

Now lift these to elements u; = (—y + 1,y + 1,0)%, us = (=1, —1,1)" over A, and then
modify them so that they lie in P by replacing each u; by u; — DCu;:

t
—
up = (y+2+x2y2—x2y—xy—x—y2,y+1,7(x2y2—x2y+2y+1—:cy—x—y2))

1 t
Uy = (—2+x2y+x+y—2xy,—1,§(2—x3y+x—x2—$y+2$29)) :

Next, using Gaussian elimination, we find

1 —r—y+2 —2xy
V= 0 1 0 ,
-

with CV = (1,0,0). Thus, the last two columns of V,

T t
V1 = (—x—y+2,1,§(a¢+y—2)) )

and
Vg = (—Qxy, 0, ny + 1)t,

2
basis of Ps. (Notice that {v,v,} is actually a free basis for P. We continue with the example,
however, in order to demonstrate the algorithm.)
A base change matrix W, which maps {7;} to {@;}, is
1

1 t
form a free basis of Pg, and 7] = (—y +1,1,-(y— 1)) , Uy = (—29,0,y + 1)t form a free

=~ —y+1 -1
2 vt
L +1 1
5 Y

29+1  y—1 9
2y 2y

which has determinant 1. Lifting W to Ag, we obtain the same matrix W. Now replace W
with W =W — DCW =
T2y —z+y—Adzy—2) y+2+2%y’—2ly—2zy—y® Py+z+y—4dzy—2

~1/2 y+1 1 :
W31 Ws o Wss
with
1
Wi, = @(4y +2 — %y + zy + 2y — 2y’ + 427%y?),

)

1
Wap = ooy 1= +2% =20y —ay + 2% + 20,

1
Wiy = 5(4 — 2y + 2 — 2? — xy + 42%y).
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Although W is not invertible, when restricted to Pgs, it gives an invertible transformation.
Next, replace v; with

W’Ul =

(6y+4w73w2y2 —3z2—16xy—Tx3y+1422y— 3y’ +23 +w3y2+5wy2+z4y)

N[

% (3z+3y—mz—a:y) ,
;—yl(21—8;1/—2—15$2y2+12$y—2$3y—3z2y+4y2—313y3+14$3y2+3my2—3my3+z4y—7a:4y2+5$2y3+$5y2+z4y3)
and v9 with
—22y—523y? —zy? +522y% —24-zty> + 23y taty
W’Ug = zy—1—22y
%(—5zcy—w—|—5w4y2+7w2y—z3y+z2y2—5z3y2+4—x5y2—$4y—$2)
Notice that the following differences lie in the radical of Ps:

Uy — v =
(—4y+4+7w3y+5w2y2—16$2y+3w2+14wy+y2—5$y2—6x—x4y—w3y2—$3)

1
) (—y+2—3w+w2+wy)
ﬁ (21—83}—13x2y2+10zy—2w3y—w2y+4y2 —2-5x3y3 +16x3y2 —zy? —zyd+ 2ty —Txiy2 +52293 +w5y2+w4y3)

N =

% (7w3y+6w2y7w2y27w2+4wy2 710wy+2w+4y7y274)
1
=(z-1)- 5(zty—2)
1

iy (w4y2 +x3y—6x3y? +x3yd —x2y—4a2y>+1022y2 —2zy—3 zy2+wy3+2f4y2+8y)

and
z2y+5x3y2 +xy’ -5y’ —zty? —23y
Ug — Vg = —zy+xly
%(2$—2+4$y—5z2y—5$4y2—z2y2+5z3y2+$5y2+$4y)
(29—
(z‘ Y 41‘y+x—|—y)my
= (.’17 — 1) . Ty
%(w4y274w3y2+w3y+w2y2+w2y74a)y+2)

So, ignoring the denominator-free part of u; — v; and us — v9, respectively, we have g; =

—1\¢
(O, 0, x_2> and g, = (0,0,0)". Then vy = vy — g5 and replacing v; with v; — g; yields
—<yY

% (6y—|—4x—|—m3—3z2y2—312—161‘y—7x3y—|—14z2y—3y2+x3y2+5xy2+m4y)
1
V1 = 5(3m+3y7x2fxy)
% (8—|—15;n2y—121‘—}-21‘3—1—31:2—4y+3x3y2—14x3y—3xy+3zy2—z4+7x4y—5x2y2—m5y—z4y2)
To move v, back to P = ker C, replace v; with vy — DCv;. Then

(6w+6y—16wy—3$2y2 +3y2 +5ry? +1402y—Tr3y—5x2 +$3—3y2+$4y)

v = %(3z+3y7z27zy)

N

i (8—12z+15z2y—14x3y—3zy+x2 +4x3+ 31y +323y% —4y+7xty—532y2 — i —2dy—24y?)
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and
—2zy—5ady? —wy?+52%y* —2+aty’ +ady+aty

Vo = zy—1—=22y
% (=5zy—z+53ty? +722y—23y+2?y? —523y? +4—2%y? —zty—2?)

lie in P and form the desired free basis.
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