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Abstract. The purpose of this short note is to give counter examples for the
unsolvability of the Fermat- and Steiner-Weber-problem by compass and ruler. The
used point sets made it possible to obtain for the Fermat-problem polynomials of
the degree 3 and 4. Thus, for these counter examples Galois theory and computer
algebra is not necessary. In the second part is given a counter example for the
construction of the true length of Steiner trees in the three-dimensional space.

1. Notations

Let n points P; be given. The point M, for wich the sum )" | ||P;M|| is minimal is said to
be the Fermat point of the given point set. The minimal spanning tree between these points
is called the Steiner tree.

2. The Fermat point in the Euclidean plane for 3 and 4 points

The constructions of the Fermat point for 3 and 4 points are simple. For a convex quadri-
lateral we obtain the Fermat point by the intersection of the diagonals.

In the case of a triangle Figure 1 describes the construction. The triangles BAP;, C BP;,
ACP, are equilateral. These constructions and facts of the history of these problems are
described by Schreiber in [3].
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3. The Fermat point in the Euclidean plane for arbitrary finite point sets

Theorem 1. The construction of the Fermat point, in general, is impossible for 5 and more
points of the plane.
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Proof. Let n points P, ..., P, (Fig. 3) be given with

odd n even n

P, = (0,V?2) P, = (0,/1.5)
P, = (0,—V?2) P, = (0, —V/1.5)
P3:(07) P3:(O:1)

P, =(0,-1) P, =(0,-1)
P5:(250) P5 (2: ) Pﬁa
and if n > 5 resp. n > 6 then

Py, = (0,0) Py =(2,0)
Poiy1 = (2,0) Py; = (0,0)
(i< (d<i<y)

Let M = (z,0) be the Fermat point. Then, f(z) = Y. | [[PM]|| can be calculated by the
formulas

fl@)=2(Va2+1+Vz2+2) + resp. fl@)=2(Va2+1+22+1,5) +
2—z+(n—-05) 2(2—2z)+ (n—6)
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A necessary condition for a minimum is f’'(z) = 0. The derivatives are given by

2z 2z 2x 2x
() = + -1 and "(x) = + —
J() 2 +1 2+ 2 ['() Vaz+1 V2 +2

To solve the equations we put cosa = m and cos f = \/ﬁ' Thus we get

—2cosa—2cosf—1=0 and —2cosa—2cos 3 —2=0,
1+2
cosa:—%osﬁ and cosa = —(1 + cos 3).
Hence tan a = —% yields

tanﬂ——£ \/_——\/_tana and tanﬂ-—ﬂ \/_ =+1.5tana.

Squaring equations and using

) 1—cos’z sinx .y )
tan rT=——" tanx = sin“x +cos“rx =1
cos?x cos X
we now obtain
1—cos’3 (1—(%)2) and 1—6082ﬂ_15(1—(1+cosﬁ)2)
cos?3 (Lt2eosB 2 cos? T (1+cosB):

The substitution cos f = x and some elementary operations give the needed equations
noted in the variable x.

5 points in the plane 6 points in the plane
quartic Azt + 423 —32° +4x+1=0 0.5z +23+22x+1=0
monic quartic | 2% +423 - 1222 + 642 +64=0 | 2* + 223+ 42 +2=0
reduced quartic | z* — 1822 + 962 — 15 =0 z* — 622 +40x —3 =0
resolvent cubic | z° — 48z — 8064 = 0 23— 1536 =0

By FEisenstein’s theorem it is easy to see, that the quartics and the resolvent cubics are
irreducible over Q. Consequently, the quartics do not have constructible solutions. Therefore,
the abscissa of the minimal point M and finally the point M is not constructible. a

4. The Fermat point in the Euclidean three-dimensional space

Theorem 2. In general it is impossible to construct the minimal point for 4 and more points
of the Fuclidean three-dimensional space by strict usage of compass and ruler.
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Let 4 points corresponding to Figure 4 with the coordinates
P, =(0,-1,0); P, = (0,1,0); Ps = (1,0,0); P, = (1,0,1)

be given.
The following properties of the Fermat point M we will use by the computation of its
coordinates.

1. The Fermat point M belongs to the z-z-plane.
2. The bisecting lines of the angles P,M P, and P;M P, belong to the same straight line.
3. ZPQMPl - 4P3MP4
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Let M(z,0,2) be the minimal point. At first we turn AP, M P, with the angle 7 in the
z-xz-plane corresponding to Figure 5. Now we are able to construct the minimal point if and
only if the angle ¢ is constructible. To simplify the calculation we turn the figure with the
angle ¢ so that P, P, belongs to the z-axis (Fig. 6). The equations for the diagonales P,P; ,
P, P, are given by

_1_Sin90.$+1 and Z:_cosg0+sing0+1.$_1.

cos @ cos p — sin @

z =
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Additional z = 0 holds. The transformation of the system of equations gives

l—sinp cosp+sinp+1
cosp  cosp—sing

coinciding with property 3. By substituting

sing = z and cos ¢ = /1 —sin? p = /1 — 22

we have the quartic
8t —4a® — T’ + 20 +1=(z—1)(82% + 42 — 32— 1) = 0.

The root £ = 1 does not solve the construction. Therefore the solution needed is a root of
the cubic polynomial

8z + 422 -3z —-1=0.

This polynomial has the approximate roots

z1 ~ —0,776 (8x1 =~ —6,208)
o &2 —0, 287 (82 ~ —2, 296)
73 = 0, 562 (83 ~ 4,496)

Since the values 8x1;8x9;8x3 are not integer the roots are not rational and consequently not

constructible. By the condition 0 = —lgossil;d’x + 1 we get the minimal point with

V= (cosap-cosw. _cosp - sing

1—singp ' 1—singp )
Since sin ¢ is not constructible, the minimal point for the given point set is also not con-
structible with compass and ruler. For more than 4 points we use the same point set as in
K

the plain. If we rotate P3P, around the z-axis with the angle 7 we get points out of the

z-xz-plane. The proof of Theorem 1 analogously holds. O

5. The Steiner tree in the Euclidean three-dimensional space

Theorem 3. Generally the construction of the true length of all parts of the Steiner tree is
impossible for 4 or more points of the Euclidean three-dimensional space.

Let the tetrahedron P, P, P3P, with the points

—1 1 1 1 2v/3
Pl - (OaTaO)aPZ_(OaZaO);P?:_ (1:Z,O)aP4_ (LZ?T)

be given.
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The triangles P, P,(Q); and PyP3(Q), are equilateral. We will consider the path between P, P,
and P;P,. The Steiner points S, Sy are connected with exactly 3 other points of the Steiner
tree. Figure 8 describes the construction in the plane.

Q Q

We obtain the tree in the space analogously if we rotate the triangles in such a way that Q;Q-
belongs to the plane of AP,P;(Q)s and of AP, P,(),. That means, we have to determine the
angle a for the rotation of AP, P,Q; around the axis P, P, and the angle 3 for the rotation
of AP,P;(Q, around the axis P;P;. Thus we get the formulas

1 1

V3 1
—Y° _ —tana ——=—— —tanp
1+ cosf 1+§cosa

for the z-y-plane and the x-z-plane. Simple transformations give

1 1
cosf=—cota—1 ———— =tanpf.

V3 4 + /3 cos «
With tan g = VI h g get

cos 3

1 \/1—(%00’5@—1)2

4+\/§cosa_ %cota—l
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and squaring the equation gives

2 1
(—cota — gcot2 @) (3 cos® o+ 8v3cosa + 17) = 1.

V3

Now we substitute v/3cosa = z and cot o = 7/ 3f12. Thus we obtain

2 x2 1 2?2

(G Vi—a -5 g g +serin=t

Through simple transformations the octic polynomial is given as
132® + 20827 + 12322° + 29122° + 1542" — 96482® — 101522 + 81 = 0.
Replacing x by f(—:,’ and multiplying by 137, we now obtain the monic polynomial

X8 4+ 208X7 + 16016X° + 492128 X° + 338338 X* — 275556528 X3 —
3769366536 X% + 5082629877.

Since the polynomial is seperable we can use the fact that the Galois group of f(x) in Z, is
a subgroup of the Galois group in Z. If f(z) has a factorisation

fl@)=(E"+ ...+ an) .- (@™ + ...+ bp)

then the Galois group contains a permutation consistung of m and n cycles. The factorisations
in Z, give:

1) p=7 128 + 527 + 02% 4 02° + 523 + 222 + Oz + 3
(1z + 2)(12? + 63 + 6)(12° + 42* + 62° + 12 + 4z + 2)

(2) p=23 128 + 127 + 825 + 202° + 8z + 923 + 1022 + 0z + 16
(z' 4+ 14) (127 + 102° + 62° + bzt + 72® + 322 + 14z + 11)

3) p=T79 128 + 5027 + 582° + 372% + 60z* + 542° + 4322 + Oz + 4
is irreducible over Zrq.

Thus the Galois group of f(z) contains an 8-cycle, a 7-cycle and a transposition. These
permutations generate the symmetric group Sg. Consequently the polynomial is not solvable
by radicals and so the roots are not constructible. Numerical calculations demonstrate the
fact that the considerd tree is the shortest of the three possible spanning trees. O
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