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Abstract. We show that the three smallest minimal point sets of PG(4,q), ¢
square, ¢ > 9, that meet all planes are the set of points of a plane, the set of
points in a Baer cone and the set of points in a Baer subgeometry PG(4,,/q).
This implies that PG(4, ,/g) is the unique smallest example of a set of points of
PG(4, ¢) that meets every plane and contains no line. It also implies that PG(4, \/q)
is the unique smallest minimal set of points of PG(4, ¢) that meets all planes and
generates PG(4, q).

1. Introduction

Let ¥ = PG(N, q) be the projective space of dimension N over the finite field GF(q).

A t-blocking set B in PG(N,q), with N > t 41, is a set B of points such that any
(N —t)-dimensional subspace intersects B. A t-blocking set is called trivial when it contains
a t-dimensional subspace. A 1-blocking set in PG(2, ¢) is simply called a blocking set.

The smallest non-trivial ¢-blocking sets have been characterized by the work of Beu-
telspacher [2] and Heim [4]. They proved that the smallest non-trivial ¢-blocking sets in
PG(N,q) are cones with a (¢ — 2)-dimensional vertex and with base a 1-blocking set of
minimum cardinality in a plane, skew to the vertex, of PG(N, q).

For ¢ square, this means that this smallest non-trivial example is a cone with (¢ — 2)-
dimensional vertex and with base a Baer subplane PG(2, ,/g) in a plane PG(2, g) skew to the
vertex. For ¢ = 1, the smallest 1-blocking sets are the smallest blocking sets in a plane [3].
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For the particular case of ¢ = 2 and ¢ square, this is a Baer cone, that is, a cone
with vertex a point and with base a Baer subplane PG(2,,/q) in a plane PG(2,¢), having
cardinality ¢* + ¢\/q + ¢ + 1.

In [5], Heim introduced the problem of finding the size of the second smallest non-trivial

minimal ¢-blocking sets. This problem was studied by Storme and Weiner [6] who proved:
(1) in PG(n,¢?), ¢ = p", h > 1, p prime, p > 3, n > 3, the second smallest non-trivial minimal
1-blocking sets are the second smallest non-trivial minimal blocking sets, with respect to lines,
in a plane of PG(n,q), n > 3;
(2) in PG(n,p®), p = pt, h > 1, py prime, py > 5, p # 5, n > 3, the smallest non-trivial
minimal 1-blocking sets are: (a) a Baer subplane of order p* 4+ p*? + 1 when p is square, (b)
a minimal blocking set of cardinality p®> + p? + 1 in a plane, (¢) a minimal blocking set of
cardinality p® + p? + p+ 1 in a plane, and (d) a subgeometry PG(3, p).

Turning the attention to 2-blocking sets in PG(4, ¢), g square, a subgeometry PG(4, /) in a
4-dimensional subspace of PG(N, q) is a 2-blocking set of cardinality ¢ + 49+ q9+/q+ 1.
We will show that this example, whose cardinality is /q larger than the size of the Baer
cone, is the second smallest non-trivial minimal 2-blocking set in PG(X, ¢), ¢ square, ¢ > 9,
N > 4.
To obtain this goal, the following theorems will be proved.

Theorem 1.1. Every set of at most ¢* + q\/q + q + \/q + 1 points of PG(3,q), q a square
and g > 9, that meets every line contains a plane or a cone over a Baer subplane.

Theorem 1.2. Suppose B is a minimal set of points of PG(4,q), q a square and q > 9, that
meets every plane. If |B| < ¢* + q/q+q++/q+ 1, then either B is the point set of a plane
or B is a cone over a Baer subplane or B is the point set of a subgeometry PG(4,,/q).

This will imply the following result for all dimensions N > 4.

Theorem 1.3. Suppose B is a minimal 2-blocking set of PG(N,q), N > 4, q a square and
qg>9. If|B| < ¢+ q\/q + q++/q+ 1, then either B is the point set of a plane or B is a
cone over a Baer subplane or B is the point set of a subgeometry PG(4,/q).

For ¢ = 4 and ¢ = 9, the problems remain open.

2. Proof of Theorem 1.1

Suppose that B is a set of at most ¢? + qv/q + q + /4 + 1 points of PG(3,¢), ¢ a square
and ¢ > 9, that meets every line. We suppose that B does not contain a plane and we shall
show in a series of lemmas that B contains a cone over a Baer subplane. A line contained
in B will be called a B-line. A line meeting B in exactly one point will be called a tangent.
It suffices to prove Theorem 1.1 for the minimal sets B that meet every line. Therefore we
shall assume that B is a minimal set of points meeting every line. This implies that every
point of B lies on a tangent.

Lemma 2.1. If the plane m = PG(2,q) of PG(4,q), q square, ¢ > 9, meets B in less than
q+2,/q + 1 points, then m N B either contains a line or a Baer subplane.
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Proof. 1t is known that every (non-trivial) blocking set of PG(2, ¢), ¢ a square, ¢ > 9, with
less than ¢ + 2,/g + 1 points contains a Baer subplane, see [1]. O

Lemma 2.2. a) Every plane meets B in at most ¢\/q + q + \/q + 1 points.
b) Every plane contains at most \/q+ 1 B-lines.

Proof. a) Let 7 be a plane. Since we assumed that B contains no plane, there exists a point
P € w\ B. Each of the ¢* lines on P that does not lie in 7 meets B. Hence there exist at
least ¢? points in B that are not in 7. Therefore |7 N B| < |B| — ¢*.

b) Any /g + 2 lines in a plane cover at least

a2+ - (V)

points. Since this number is bigger than the one in part a), the assertion follows. a

Lemma 2.3. FEvery point of B lies on at least one B-line.

Proof. Let P be a point and assume that P does not lie on a B-line. Consider a tangent
t on P. Lemma 2.1 implies that every plane 7 on ¢ meets B in at least ¢ + /¢ + 1 points
with equality if and only if 7 N B is a Baer subplane. Since ¢ lies on ¢ + 1 planes, this gives
|B| > 14+(g+1)(¢++/q). Since |B| < 1+(g+1)(g+/q), it follows that |B| = 1+(q++/q)(¢+1)
and that every plane on t meets B in a Baer subplane. It follows that every line on P is
a tangent or meets B in precisely ,/q¢ + 1 points. Since every plane on P that contains a
tangent on P meets B in a Baer subplane, it also follows that each plane on P either meets
B in a Baer subplane, and thus in ¢ + /g + 1 points or does not contain a tangent and then
meets B in exactly 1+ (¢ + 1),/g points.

Consider a line i on P with ,/g+1 points in B, let b be the number of planes on A which
have ¢ +,/q + 1 points in B and let ¢ be the number of planes on A which have ¢,/q+,/q+1
points in B. Then b+c = ¢+ 1 and bg + c¢\/q = |B| — /7 — 1 = ¢* + ¢\/q + ¢q. This gives
c(v/q4 — 1) = \/q. But ¢ # 4, a contradiction. O

Lemma 2.4. If] is a B-line, then some point of | does not lie on a second B-line.

Proof. We first show that a B-line meets less than 2¢ other B-lines. Assume on the contrary
that this is not true, so that there exist B-lines /; for 2 =1, ..., 2q, that meet [. We shall get
a contradiction by showing that these cover more points than there are in B. Since every
plane contains at most ,/q + 1 B-lines, the lines /; will cover the smallest number of points,
if there are 2,/q planes 7 on [ that all contain exactly /g of the lines /; and if no three lines
l; of one plane 7 will meet in the same point. Consider such a plane 7. In 7\ [, the ,/g lines

l; of m will cover
q
Vg - (*{)
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points of B. Since there are 2,/q planes 7, this gives

Bz a1+2vi (v ()

which is a contradiction.

Thus [ meets less than 2¢ other B-lines. It follows that some point P of [ lies on at most
one more B-line. If there is no other B-line on P then we are done. Therefore assume that
there exists a unique second B-line I’ on P. We shall obtain a contradiction.

The point P lies on a tangent ¢. Consider first the case that ¢ lies in the plane 7 spanned
by [ and I'. Since [ and !' are the only B-lines on P, no plane on t different from = will
contain a line. Thus these ¢ planes meet B in a non-trivial blocking set and contain therefore
at least ¢ + /g + 1 points of B. This gives rise to ¢(q¢ +/g) points in B\ 7. Since 7 contains
at least 2¢ + 1 points of B, it follows that |B| > 2¢ +1 +¢(¢q +,/g), which is a contradiction.

Thus ¢ is not in 7 and similarly, no tangent on P lies in 7. Consider the ¢ — 1 planes 7
on t that do not contain [ nor I’. These planes 7 contain no B-line, since ¢ is a tangent and
since P only lies on the B-lines / and I'. Thus these planes 7 meet B in at least ¢ + /g + 1
points. Counting the number of points of B using the g + 1 planes through ¢, we also see
that at most 2,/q of the planes 7 contain more than ¢ + /g + 1 points of B. Thus at least
g —1—2,/q planes on ¢ meet B in exactly ¢ + /g + 1 points, which must be the points of a
Baer subplane. Since 7 contains no tangent on P, it follows that for each of these ¢ —1—2,/q
planes 7, the line 7 N7 meets B in a Baer subline. The remaining 2,/q planes on ¢ also do
not meet 7 in a tangent, so they meet 7 in a line with at least two points in B. This shows
that 7 has at least

14204207+ (g - 1= 223 = aV/+ i+ 1

points. Thus at most g2 + ¢ points of B lie outside this plane 7.
It is not possible that all lines of 7 on P have at least /g + 1 points in B. Otherwise we
could improve the above bound to

IBNxw|>1+2¢+(¢—1)\/q

which contradicts Lemma 2.2, since ¢ > 9.

Consider a line h of m on P that contains less than /g + 1 points in B. Consider also
a plane 7 on ¢ for which 7 N B is a Baer subplane. Then there are ¢ — /g planes o on h
that meet 7 in a tangent. These planes contain therefore no B-lines. Thus o0 N B either has
at least ¢ +2,/q + 1 points in B or contains a Baer subplane. In both cases, it follows that
o \ h contains at least ¢ + /g points of B. Now, every plane on h different from 7 contains
at least ¢ points of B that do not lie in 7 and at least ¢ —,/q of these contain at least ¢+ ,/q
points of B that lie outside 7. This gives rise to at least

¢+ (¢ = Va)Va

points of B that do not lie in 7. But we have seen that |B\ 7| < ¢ + ¢, a contradiction. O
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Lemma 2.5. All B-lines meet in a common point.

Proof. Let [ be a B-line. We know that [ has a point P lying on no other B-line. First we
show the following:

If ¢ is a tangent on P, then the plane (/,?) contains at most ¢ + 1 + ,/g points of B.

This can be seen as follows. Since P lies only on the B-line [, each of the ¢ planes on ¢
different from (¢,/) meets B in at least ¢+ /g + 1 points. This gives rise to at least ¢(¢+/q)
points of B that do not lie in ([, ). Thus (l,t) meets B in at most |B|—q(¢+,/q) < ¢+1+./q
points.

Now fix a tangent ¢ on P, put 7 := (¢,[) and denote by 7y, ..., 7, the other ¢ planes on
t. Since each of the planes m; meets B in at least ¢ + /g + 1 points, the above counting
argument also shows that each of the planes m; meets B in at most ¢ + 2,/¢ + 1 points. The
preceding argument also shows that not all planes 7 can have more than ¢+ ,/g+1 points in
B, so that we may assume that 7, meets B in exactly ¢ + /¢ + 1 points. And it also shows
that if a plane m; meets B in exactly ¢ +2,/g+ 1 points, then the plane (I, ) only shares the
line [ with B. Then [ must intersect all B-lines. So, from now on, assume that all planes 7;
share less than ¢ + 2,/q + 1 points with B.

By Lemma 2.1, the set m; N B contains a Baer subplane B;. The point P belongs to B;,
because ¢ is a tangent of m; on P.

Since 7 has exactly ¢ +,/¢+ 1 points in B, we have B; = m; N B. Thus P lies on ¢ —/q
tangents of 7. Hence, there exist ¢ — /g planes on [ that meet 7; in a tangent; these planes
will be called T below. Moreover there are \/q + 1 planes on [ that meet 7; in a line g for
which g N B is a Baer subline of Bji; these planes will be called o below.

Now we consider first the case that each of the ¢ — /g planes 7 meets B in at most
q + /q points, that is, apart from the ¢ + 1 points of /, in at most /g — 1 further points in
B. Then for all i = 1,...,¢ and for all planes 7, the line 7 N 7; contains at most ,/q points
in B. Hence, the \/q+ 1 Baer sublines of B; on P must be contained in the ,/g+ 1 planes o.
This shows that each plane o meets each Baer subplane B; in a Baer subline. Consequently,
each plane o meets B in at least ¢ + 1 + ¢,/g points.

Now we consider the case that some plane 7 on [ contains at least ¢+ /¢ + 1 points of B.
We may assume that 7 is this plane. Then the counting argument at the beginning of the
proof shows |7 N B| = ¢+ ,/¢+ 1 and also that each plane 7; meets B in exactly ¢ + /g + 1
points. Thus m; N B is equal to the Baer subplane B;.

The ¢ — /q planes 7 on [ that meet 7, in a tangent have at most ¢ + /¢ + 1 points in B.
Thus each plane 7 can meet at most one of the Baer subplanes B; in a Baer subline on P.
Since there are only ¢ — ,/q different planes 7 but ¢ different planes m;, it follows that there
are at least /g planes m; for which the Baer subplane B; = m; N B is contained in the /g + 1
planes o on [.

Thus, each of the planes o meets B in the ¢ + 1 points of [ and in at least ,/q different
Baer sublines on P. Thus each plane ¢ has at least 2¢ + 1 points in B. As we have seen in
the beginning of the proof, this implies that ¢ contains no tangent on P. Thus each Baer
subplane B; = m; N B must meet ¢ in a Baer subline. As before it follows that each of the
/4 + 1 planes o meets B in at least ¢ + 1 + ¢,/q points.

This now implies that all B-lines meet in a common point. Because we know that each
point of B lies on at least one B-line. Hence, there exist at least |B|/(¢+1) > |/g+1 B-lines.
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Consider one B-line [. By the previous arguments, either [ intersects all B-lines or [ lies on
V4 + 1 planes o3, i = 0,...,,/q, that meet B each in at least ¢\/¢ + ¢ + 1 points. In the
union of the oy, there are at least ¢+ 14 (,/g+1)¢\/q7 = ¢ + ¢,/g+¢+1 > |B| — /g points
of B. So there are at most ,/q points left that can lie outside of one of the planes ;. This
implies that every B-line lies inside one of the planes ;. Hence [ meets every other B-line.
We have shown that the B-lines mutually meet. Thus all B-lines pass through a common
point or all B-lines lie in a common plane. The second case is however not possible, since by
Lemma 2.2, every plane contains at most /g + 1 B-lines. O

Now we are ready to complete the proof. Let V be the point belonging to every B-line. If
7 is the number of B-lines, then |B| = 1 4 rgq, since every point of B lies on a B-line. Since
|B| < ¢*+¢/q+q+/q+1, it follows that r < ¢+ ,/g+1. If we take a tangent to a point P
of B with P # V', then P lies on only one B-line. As in Lemma 2.5, it follows that a tangent
t on P lies in a plane 7 that meets B in the points of a Baer subplane. It follows that V' ¢ .
Since a Baer subplane has ¢ + /¢ + 1 points, we obtain that r = ¢+ /¢ + 1 and that B is a
cone with vertex V' over a Baer subplane. This completes the proof of Theorem 1.1.

3. A characterization of PG(4, ,/q) in PG(4, q)

In this section, we assume that B is a set of at most q2+q\/§+q+ \/@+1 points in PG(4, \/q),
where ¢ is a square and ¢ > 9. We assume that B does not contain a plane or a Baer cone.
We shall show that B consists of the points in a subgeometry PG(4,,/q).

For a point P outside B, we will consider the projection of B in solids S not containing
P. The image is a set of points in S that meets every line of S. By the result of the previous
section, this image will contain a plane or a Baer cone of S. Our first lemma says that the
first case cannot occur.

Lemma 3.1. If P ¢ B, then the projection of B in a solid not on P contains no plane.

Proof. Suppose the statement is not true. That means that the projection contains a plane,
that is, PG(4, ¢) has a solid S on P with the property that every line of S on P meets B.
In particular, the solid S contains at least ¢ 4+ ¢ + 1 points of S. Outside of S there are at
most ¢,/q + /¢ points in B. Consider a point P’ with P’ ¢ SU B.

First we consider the case that the projection of B from P’ onto S contains a plane.
Then there exists a solid S’ on P’ that also meets B in at least ¢ + ¢ + 1 points. Since S
contains all but at most ¢,/q + /g points of B, it follows that the plane 7 := SN .S’ meets B
in at least ¢> +q+1— /9—/1 > ¢ — q,/q points. Since B contains no plane, there exists a
point X € 7\ B. Then X lies on ¢* planes that meet 7 only in X. Each of these planes has
a point in B and every point of B\ 7 lies in exactly ¢* of these planes. This shows that at
least ¢? points of B lie outside of 7. Since 7 meets B in at least ¢ — ¢/q points, we obtain
|B| > 2¢* — ¢,/q, which is a contradiction.

Now we consider the case that the projection of B from P’ onto S contains a Baer cone
C. Thus, each of the lines P'X with X € C meets B. Notice that |C| =1+ (¢+,/g+1)g >
|B| — /q. Hence, it follows that at least ¢* + ¢ + 1 — /g points of C belong to B since the
points of S are fixed under the projection.
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Since we assumed in the beginning of this section that B does not contain a Baer cone,
there exists a point Y € C with Y ¢ B. Consider a solid 7" that does not contain Y and
project B from Y into this solid 7. Then the image of C'\ {Y'} of this projection is either a
Baer subplane (if Y is the vertex of the cone) or the union of /g + 1 concurrent lines (if ¥’
is not the vertex of the cone). In any case, the image of the cone has at most ¢,/q + ¢+ 1
points. Thus the image of C'N B under this projection has at most ¢,/q+ ¢+ 1 points. Thus,
if z := |C'N BY, then the image of B under the projection has at most |B| —z +¢,/g+ ¢+ 1
points.

But the image blocks every line of T' and has therefore at least ¢*>+¢+1 points. It follows
that |B| —z+¢\/g+q¢+1> ¢ +q+1, thatis, z < |B| —¢* + ¢\/7 < 2¢\/9+ ¢+ /7 + L.
But we have seen that > ¢° + ¢ +1 — ,/g. Hence ¢* < 2¢,/q + 2,/q and thus ¢ < 9. O

Lemma 3.2. If P ¢ B and if S is a solid not containing P, then the projection of B from
P on S contains a Baer cone. If T is a set consisting of t points of B, then the image of T
under this projection contains at least t — /q points of this Baer cone.

Proof. By the previous lemma and Theorem 1.1, the image of the projection contains a Baer
cone C' of S. We have |C| = 1+ (¢ + /g + 1)g > |B| — /g, which implies the second
statement. O

Lemma 3.3. Every plane meets B in at most ¢ + \/q + 1 points.

Proof. Consider a plane 7. It contains a point P not in B. Apply the previous lemma to P.O

Lemma 3.4. If P ¢ B, then one line on P has \/q+ 1 points in B and these form a Baer
subline, and every other line on P meets B in at most one point.

Proof. Consider the projection of B from P to a solid S not containing P. This projection
contains a Baer cone C. Let V be the vertex of the Baer cone. We may assume that we have
chosen S in such a way that V € B.

Let [ be a line contained in C (then V € [). The plane 7 := ([, P) contains a point of B
on each line through P and thus 7 meets B in at least ¢ + 1 points. We claim that 7 N B
meets every line of 7. Assume to the contrary that 7 has a line not containing a point of B.
Let P’ be the intersection of this line and the line PV. Then P’ ¢ B so P' # V and thus
P' ¢ S. Projecting B from P’ onto S, we obtain a point set containing a Baer cone C’. Since
7 has at least ¢ + 1 points in B, Lemma 3.2 shows that the line [ = 7 NS contains at least
g+ 1—,/q points in C’. Since each line of S meets a Baer cone of S'in 1, \/g+ 1 or ¢ + 1
points and since ¢ +1 — /g > /g + 1, it follows that [ is a line of C’. But then every line of
7 on P’ meets B, a contradiction.

This shows that m N B meets every line of 7. It follows from Lemma 3.3 and Lemma 2.1
that m N B either contains a B-line or that 7 N B is a Baer subplane of 7.

If for one of the lines | C C, the plane 7 = (I, P) meets B in a Baer subplane, then P lies
on a Baer subline of this Baer subplane and the application of Lemma 3.2 proves the claim.

Assume therefore that for all choices of the ¢ 4+ /g + 1 lines [ C C, the plane 7 = ([, P)
contains a B-line. All these planes 7 contain the line PV. Hence some point of the line PV
must lie on at least two lines that are contained in B. This contradicts Lemma 3.3. O
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Lemma 3.5. No line is contained in B.

Proof. Assume that the line [ is contained in B. Let P be a point of B that is not in /. Then
the plane 7 := (P,l) meets B in at least ¢ + 2 points and the set 7 N B contains the line [.
By Lemma 3.3 we have [BN7| < ¢+1+,/g. It follows that some line of 7 meet B in exactly
two points. This contradicts Lemma 3.4. O

Lemma 3.6. The set B is a subgeometry isomorphic to PG(4,./q).

Proof. We know that every line that has more than one point in B meets B in /g + 1 points.
Consider the incidence structure consisting of the points of B and the lines that meet B in
\/q+ 1 points. Of course two points of this incidence structure are on a unique line and every
line of this incidence structure has \/g + 1 > 3 points. It also satisfies the axiom of Pasch
(or Veblen and Young). In fact, if Iy, ls, 3,14 are four lines, no three on a point and any two
meet except possibly for /3 and l4, then I3 and I, must meet in PG (4, ¢). But the intersection
point lies on two lines that meet B in /g + 1 points, so the intersection point must be in B
(Lemma 3.4). Thus the incidence structure is PG(4, ,/q). O

The preceding lemma completes the proof of Theorem 1.2.

4. 2-Blocking sets in PG(N, q), N > 4, g square

Now we prove Theorem 1.3.

Proof. We proceed by induction on N. The theorem is valid for N = 4. Assume N > 4 and

assume that the theorem is true for N — 1 dimensions.

Suppose there is a point P ¢ B lying on a secant. If no such point exists, then B is a
plane.

Project from P onto a hyperplane S. Let the projection be B'. Then B’ is a 2-blocking
set in S of size |B'| < ¢*+ ¢\/q+q+ /¢ + 1. So, by the induction hypothesis, B’ contains a
plane or a Baer cone. This all implies that there is a hyperplane 7; through P containing at
least ¢> + g + 1 points of B.

Project now from a point P’ € 71 U B onto 7.

Case 1. The projection contains a plane 7.
Then in (7', P') lie at least ¢> + ¢ + 1 points of B and so in the plane 7" = (7, P') N m; lie
at least ¢* — ¢\/q + ¢ — \/q + 1 points.

Suppose this plane 7" does not lie in B. Then take a point P” € 7"\ B. If we project
from P”, the projection has at most 2¢,/q + ¢ + 2,/¢ + 1 points. But the projection must
have at least g2 + ¢ + 1 points since the smallest 2-blocking set is a plane.

Hence, the plane 7" is contained in B.

Case 2. The projection contains a Baer cone.

At most /g points cannot be projected onto the Baer cone. So at least P+qg+1-— \/q points
of 71 N B lie on a Baer cone C. Assume there is a point Y of the Baer cone not in B.
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By using the arguments of the proof of Lemma 3.1, after projection from Y, the cone is
projected onto at most ¢,/q + ¢ + 1 points.

At most ¢,/q + 2,/q points of B do not lie on C. Hence, the projection has at most
2q\/q+q+2,/q+ 1 points. This gives the same contradiction as above. This shows that the
Baer cone C' is contained in B.

Case 3. The projection is a subgeometry PG(4,,/q).

Then all points of 71N B lie in this subgeometry o = PG(4, \/q). So B shares at least ¢>+¢+1
points with o.

Suppose Y € o\ B. Project from Y/, then the projection of PG(4, ,/q) contains at most
4+/q + q + /q + 1 points.

At most ¢,/q + ,/q points of B do not lie in o; so the projection has at most 2¢,/q + ¢ +
2,/q + 1 points. This again is false. Hence, 0 = B. O
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