2-Blocking Sets in PG(4, q), q Square

Klaus Metsch¹ L. Storme²

Mathematisches Institut, Arndtstr. 2, D-35392 Giessen, Germany e-mail: Klaus.Metsch@math.uni-giessen.de

University of Gent, ZWC, Galglaan 2, 9000 Gent, Belgium e-mail: ls@cage.rug.ac.be, http://cage.rug.ac.be/~ls

Abstract. We show that the three smallest minimal point sets of PG(4, q), q square, q > 9, that meet all planes are the set of points of a plane, the set of points in a Baer cone and the set of points in a Baer subgeometry $PG(4, \sqrt{q})$. This implies that $PG(4, \sqrt{q})$ is the unique smallest example of a set of points of PG(4, q) that meets every plane and contains no line. It also implies that $PG(4, \sqrt{q})$ is the unique smallest minimal set of points of PG(4, q) that meets all planes and generates PG(4, q).

1. Introduction

Let $\Sigma = PG(N, q)$ be the projective space of dimension N over the finite field GF(q).

A t-blocking set B in PG(N, q), with $N \geq t + 1$, is a set B of points such that any (N - t)-dimensional subspace intersects B. A t-blocking set is called trivial when it contains a t-dimensional subspace. A 1-blocking set in PG(2, q) is simply called a blocking set.

The smallest non-trivial t-blocking sets have been characterized by the work of Beutelspacher [2] and Heim [4]. They proved that the smallest non-trivial t-blocking sets in PG(N, q) are cones with a (t - 2)-dimensional vertex and with base a 1-blocking set of minimum cardinality in a plane, skew to the vertex, of PG(N, q).

For q square, this means that this smallest non-trivial example is a cone with (t-2)-dimensional vertex and with base a Baer subplane $PG(2, \sqrt{q})$ in a plane PG(2, q) skew to the vertex. For t=1, the smallest 1-blocking sets are the smallest blocking sets in a plane [3].

¹Supported by the FWO Research Network WO.011.96N

²Research Associate of the Fund for Scientific Research of Flanders (Belgium)

For the particular case of t=2 and q square, this is a *Baer cone*, that is, a cone with vertex a point and with base a Baer subplane $PG(2, \sqrt{q})$ in a plane PG(2, q), having cardinality $q^2 + q\sqrt{q} + q + 1$.

- In [5], Heim introduced the problem of finding the size of the second smallest non-trivial minimal t-blocking sets. This problem was studied by Storme and Weiner [6] who proved:
- (1) in $PG(n, q^2)$, $q = p^h$, $h \ge 1$, p prime, p > 3, $n \ge 3$, the second smallest non-trivial minimal 1-blocking sets are the second smallest non-trivial minimal blocking sets, with respect to lines, in a plane of PG(n, q), $n \ge 3$;
- (2) in PG (n, p^3) , $p = p_0^h$, $h \ge 1$, p_0 prime, $p_0 \ge 5$, $p \ne 5$, $n \ge 3$, the smallest non-trivial minimal 1-blocking sets are: (a) a Baer subplane of order $p^3 + p^{3/2} + 1$ when p is square, (b) a minimal blocking set of cardinality $p^3 + p^2 + 1$ in a plane, (c) a minimal blocking set of cardinality $p^3 + p^2 + p + 1$ in a plane, and (d) a subgeometry PG(3, p).

Turning the attention to 2-blocking sets in PG(4, q), q square, a subgeometry PG(4, \sqrt{q}) in a 4-dimensional subspace of PG(N, q) is a 2-blocking set of cardinality $q^2 + q\sqrt{q} + q + \sqrt{q} + 1$.

We will show that this example, whose cardinality is \sqrt{q} larger than the size of the Baer cone, is the second smallest non-trivial minimal 2-blocking set in PG(N, q), q square, q > 9, N > 4.

To obtain this goal, the following theorems will be proved.

Theorem 1.1. Every set of at most $q^2 + q\sqrt{q} + q + \sqrt{q} + 1$ points of PG(3,q), q a square and q > 9, that meets every line contains a plane or a cone over a Baer subplane.

Theorem 1.2. Suppose B is a minimal set of points of PG(4,q), q a square and q > 9, that meets every plane. If $|B| \le q^2 + q\sqrt{q} + q + \sqrt{q} + 1$, then either B is the point set of a plane or B is a cone over a Baer subplane or B is the point set of a subgeometry $PG(4,\sqrt{q})$.

This will imply the following result for all dimensions $N \geq 4$.

Theorem 1.3. Suppose B is a minimal 2-blocking set of PG(N,q), $N \ge 4$, q a square and q > 9. If $|B| \le q^2 + q\sqrt{q} + q + \sqrt{q} + 1$, then either B is the point set of a plane or B is a cone over a Baer subplane or B is the point set of a subgeometry $PG(4, \sqrt{q})$.

For q = 4 and q = 9, the problems remain open.

2. Proof of Theorem 1.1

Suppose that B is a set of at most $q^2 + q\sqrt{q} + q + \sqrt{q} + 1$ points of PG(3,q), q a square and q > 9, that meets every line. We suppose that B does not contain a plane and we shall show in a series of lemmas that B contains a cone over a Baer subplane. A line contained in B will be called a B-line. A line meeting B in exactly one point will be called a tangent. It suffices to prove Theorem 1.1 for the minimal sets B that meet every line. Therefore we shall assume that B is a minimal set of points meeting every line. This implies that every point of B lies on a tangent.

Lemma 2.1. If the plane $\pi = PG(2,q)$ of PG(4,q), q square, q > 9, meets B in less than $q + 2\sqrt{q} + 1$ points, then $\pi \cap B$ either contains a line or a Baer subplane.

Proof. It is known that every (non-trivial) blocking set of PG(2, q), q a square, q > 9, with less than $q + 2\sqrt{q} + 1$ points contains a Baer subplane, see [1].

Lemma 2.2. a) Every plane meets B in at most $q\sqrt{q} + q + \sqrt{q} + 1$ points.

b) Every plane contains at most $\sqrt{q} + 1$ B-lines.

Proof. a) Let π be a plane. Since we assumed that B contains no plane, there exists a point $P \in \pi \setminus B$. Each of the q^2 lines on P that does not lie in π meets B. Hence there exist at least q^2 points in B that are not in π . Therefore $|\pi \cap B| \leq |B| - q^2$.

b) Any $\sqrt{q} + 2$ lines in a plane cover at least

$$(\sqrt{q}+2)(q+1) - \binom{\sqrt{q}+2}{2}$$

points. Since this number is bigger than the one in part a), the assertion follows.

Lemma 2.3. Every point of B lies on at least one B-line.

Proof. Let P be a point and assume that P does not lie on a B-line. Consider a tangent t on P. Lemma 2.1 implies that every plane π on t meets B in at least $q + \sqrt{q} + 1$ points with equality if and only if $\pi \cap B$ is a Baer subplane. Since t lies on q+1 planes, this gives $|B| \geq 1 + (q+1)(q+\sqrt{q})$. Since $|B| \leq 1 + (q+1)(q+\sqrt{q})$, it follows that $|B| = 1 + (q+\sqrt{q})(q+1)$ and that every plane on t meets B in a Baer subplane. It follows that every line on P is a tangent or meets B in precisely $\sqrt{q} + 1$ points. Since every plane on P that contains a tangent on P meets B in a Baer subplane, it also follows that each plane on P either meets B in a Baer subplane, and thus in $q + \sqrt{q} + 1$ points or does not contain a tangent and then meets B in exactly $1 + (q+1)\sqrt{q}$ points.

Consider a line h on P with $\sqrt{q}+1$ points in B, let b be the number of planes on h which have $q+\sqrt{q}+1$ points in B and let c be the number of planes on h which have $q\sqrt{q}+\sqrt{q}+1$ points in B. Then b+c=q+1 and $bq+cq\sqrt{q}=|B|-\sqrt{q}-1=q^2+q\sqrt{q}+q$. This gives $c(\sqrt{q}-1)=\sqrt{q}$. But $q\neq 4$, a contradiction.

Lemma 2.4. If l is a B-line, then some point of l does not lie on a second B-line.

Proof. We first show that a B-line meets less than 2q other B-lines. Assume on the contrary that this is not true, so that there exist B-lines l_i for $i=1,\ldots,2q$, that meet l. We shall get a contradiction by showing that these cover more points than there are in B. Since every plane contains at most $\sqrt{q}+1$ B-lines, the lines l_i will cover the smallest number of points, if there are $2\sqrt{q}$ planes π on l that all contain exactly \sqrt{q} of the lines l_i and if no three lines l_i of one plane π will meet in the same point. Consider such a plane π . In $\pi \setminus l$, the \sqrt{q} lines l_i of π will cover

$$\sqrt{q}q - \binom{\sqrt{q}}{2}$$

points of B. Since there are $2\sqrt{q}$ planes π , this gives

$$|B| \ge q + 1 + 2\sqrt{q}\left(\sqrt{q}q - \binom{\sqrt{q}}{2}\right)$$

which is a contradiction.

Thus l meets less than 2q other B-lines. It follows that some point P of l lies on at most one more B-line. If there is no other B-line on P then we are done. Therefore assume that there exists a unique second B-line l' on P. We shall obtain a contradiction.

The point P lies on a tangent t. Consider first the case that t lies in the plane π spanned by l and l'. Since l and l' are the only B-lines on P, no plane on t different from π will contain a line. Thus these q planes meet B in a non-trivial blocking set and contain therefore at least $q + \sqrt{q} + 1$ points of B. This gives rise to $q(q + \sqrt{q})$ points in $B \setminus \pi$. Since π contains at least 2q + 1 points of B, it follows that $|B| \geq 2q + 1 + q(q + \sqrt{q})$, which is a contradiction.

Thus t is not in π and similarly, no tangent on P lies in π . Consider the q-1 planes τ on t that do not contain l nor l'. These planes τ contain no B-line, since t is a tangent and since P only lies on the B-lines l and l'. Thus these planes τ meet B in at least $q+\sqrt{q}+1$ points. Counting the number of points of B using the q+1 planes through t, we also see that at most $2\sqrt{q}$ of the planes τ contain more than $q+\sqrt{q}+1$ points of B. Thus at least $q-1-2\sqrt{q}$ planes on t meet B in exactly $q+\sqrt{q}+1$ points, which must be the points of a Baer subplane. Since π contains no tangent on P, it follows that for each of these $q-1-2\sqrt{q}$ planes τ , the line $\tau \cap \pi$ meets B in a Baer subline. The remaining $2\sqrt{q}$ planes on t also do not meet π in a tangent, so they meet π in a line with at least two points in B. This shows that π has at least

$$1 + 2q + 2\sqrt{q} + (q - 1 - 2\sqrt{q})\sqrt{q} = q\sqrt{q} + \sqrt{q} + 1$$

points. Thus at most $q^2 + q$ points of B lie outside this plane π .

It is not possible that all lines of π on P have at least $\sqrt{q}+1$ points in B. Otherwise we could improve the above bound to

$$|B \cap \pi| \ge 1 + 2q + (q-1)\sqrt{q}$$

which contradicts Lemma 2.2, since q > 9.

Consider a line h of π on P that contains less than $\sqrt{q}+1$ points in B. Consider also a plane τ on t for which $\tau \cap B$ is a Baer subplane. Then there are $q-\sqrt{q}$ planes σ on h that meet τ in a tangent. These planes contain therefore no B-lines. Thus $\sigma \cap B$ either has at least $q+2\sqrt{q}+1$ points in B or contains a Baer subplane. In both cases, it follows that $\sigma \setminus h$ contains at least $q+\sqrt{q}$ points of B. Now, every plane on h different from π contains at least q points of B that do not lie in π and at least $q-\sqrt{q}$ of these contain at least $q+\sqrt{q}$ points of B that lie outside π . This gives rise to at least

$$q^2 + (q - \sqrt{q})\sqrt{q}$$

points of B that do not lie in π . But we have seen that $|B \setminus \pi| \leq q^2 + q$, a contradiction. \square

Lemma 2.5. All B-lines meet in a common point.

Proof. Let l be a B-line. We know that l has a point P lying on no other B-line. First we show the following:

If t is a tangent on P, then the plane $\langle l, t \rangle$ contains at most $q + 1 + \sqrt{q}$ points of B.

This can be seen as follows. Since P lies only on the B-line l, each of the q planes on t different from $\langle t, l \rangle$ meets B in at least $q + \sqrt{q} + 1$ points. This gives rise to at least $q(q + \sqrt{q})$ points of B that do not lie in $\langle l, t \rangle$. Thus $\langle l, t \rangle$ meets B in at most $|B| - q(q + \sqrt{q}) \leq q + 1 + \sqrt{q}$ points.

Now fix a tangent t on P, put $\pi := \langle t, l \rangle$ and denote by π_1, \ldots, π_q the other q planes on t. Since each of the planes π_i meets B in at least $q + \sqrt{q} + 1$ points, the above counting argument also shows that each of the planes π_i meets B in at most $q + 2\sqrt{q} + 1$ points. The preceding argument also shows that not all planes π can have more than $q + \sqrt{q} + 1$ points in B, so that we may assume that π_1 meets B in exactly $q + \sqrt{q} + 1$ points. And it also shows that if a plane π_i meets B in exactly $q + 2\sqrt{q} + 1$ points, then the plane $\langle l, t \rangle$ only shares the line l with B. Then l must intersect all B-lines. So, from now on, assume that all planes π_i share less than $q + 2\sqrt{q} + 1$ points with B.

By Lemma 2.1, the set $\pi_i \cap B$ contains a Baer subplane B_i . The point P belongs to B_i , because t is a tangent of π_i on P.

Since π_1 has exactly $q + \sqrt{q} + 1$ points in B, we have $B_1 = \pi_1 \cap B$. Thus P lies on $q - \sqrt{q}$ tangents of π_1 . Hence, there exist $q - \sqrt{q}$ planes on l that meet π_1 in a tangent; these planes will be called τ below. Moreover there are $\sqrt{q} + 1$ planes on l that meet π_1 in a line q for which $q \cap B$ is a Baer subline of R_1 ; these planes will be called σ below.

Now we consider first the case that each of the $q-\sqrt{q}$ planes τ meets B in at most $q+\sqrt{q}$ points, that is, apart from the q+1 points of l, in at most $\sqrt{q}-1$ further points in B. Then for all $i=1,\ldots,q$ and for all planes τ , the line $\tau\cap\pi_i$ contains at most \sqrt{q} points in B. Hence, the $\sqrt{q}+1$ Baer sublines of B_i on P must be contained in the $\sqrt{q}+1$ planes σ . This shows that each plane σ meets each Baer subplane B_i in a Baer subline. Consequently, each plane σ meets B in at least $q+1+q\sqrt{q}$ points.

Now we consider the case that some plane τ on l contains at least $q + \sqrt{q} + 1$ points of B. We may assume that π is this plane. Then the counting argument at the beginning of the proof shows $|\pi \cap B| = q + \sqrt{q} + 1$ and also that each plane π_i meets B in exactly $q + \sqrt{q} + 1$ points. Thus $\pi_i \cap B$ is equal to the Baer subplane B_i .

The $q - \sqrt{q}$ planes τ on l that meet π_1 in a tangent have at most $q + \sqrt{q} + 1$ points in B. Thus each plane τ can meet at most one of the Baer subplanes B_i in a Baer subline on P. Since there are only $q - \sqrt{q}$ different planes τ but q different planes π_i , it follows that there are at least \sqrt{q} planes π_i for which the Baer subplane $B_i = \pi_i \cap B$ is contained in the $\sqrt{q} + 1$ planes σ on l.

Thus, each of the planes σ meets B in the q+1 points of l and in at least \sqrt{q} different Baer sublines on P. Thus each plane σ has at least 2q+1 points in B. As we have seen in the beginning of the proof, this implies that σ contains no tangent on P. Thus each Baer subplane $B_i = \pi_i \cap B$ must meet σ in a Baer subline. As before it follows that each of the $\sqrt{q}+1$ planes σ meets B in at least $q+1+q\sqrt{q}$ points.

This now implies that all *B*-lines meet in a common point. Because we know that each point of *B* lies on at least one *B*-line. Hence, there exist at least $|B|/(q+1) > \sqrt{q}+1$ *B*-lines.

Consider one B-line l. By the previous arguments, either l intersects all B-lines or l lies on $\sqrt{q}+1$ planes σ_i , $i=0,\ldots,\sqrt{q}$, that meet B each in at least $q\sqrt{q}+q+1$ points. In the union of the σ_i , there are at least $q+1+(\sqrt{q}+1)q\sqrt{q}=q^2+q\sqrt{q}+q+1\geq |B|-\sqrt{q}$ points of B. So there are at most \sqrt{q} points left that can lie outside of one of the planes σ_i . This implies that every B-line lies inside one of the planes σ_i . Hence l meets every other B-line.

We have shown that the B-lines mutually meet. Thus all B-lines pass through a common point or all B-lines lie in a common plane. The second case is however not possible, since by Lemma 2.2, every plane contains at most $\sqrt{q} + 1$ B-lines.

Now we are ready to complete the proof. Let V be the point belonging to every B-line. If r is the number of B-lines, then |B|=1+rq, since every point of B lies on a B-line. Since $|B| \leq q^2 + q\sqrt{q} + q + \sqrt{q} + 1$, it follows that $r \leq q + \sqrt{q} + 1$. If we take a tangent to a point P of B with $P \neq V$, then P lies on only one B-line. As in Lemma 2.5, it follows that a tangent t on P lies in a plane π that meets B in the points of a Baer subplane. It follows that $V \notin \pi$. Since a Baer subplane has $q + \sqrt{q} + 1$ points, we obtain that $r = q + \sqrt{q} + 1$ and that B is a cone with vertex V over a Baer subplane. This completes the proof of Theorem 1.1.

3. A characterization of $PG(4, \sqrt{q})$ in PG(4, q)

In this section, we assume that B is a set of at most $q^2 + q\sqrt{q} + q + \sqrt{q} + 1$ points in $PG(4, \sqrt{q})$, where q is a square and q > 9. We assume that B does not contain a plane or a Baer cone. We shall show that B consists of the points in a subgeometry $PG(4, \sqrt{q})$.

For a point P outside B, we will consider the projection of B in solids S not containing P. The image is a set of points in S that meets every line of S. By the result of the previous section, this image will contain a plane or a Baer cone of S. Our first lemma says that the first case cannot occur.

Lemma 3.1. If $P \notin B$, then the projection of B in a solid not on P contains no plane.

Proof. Suppose the statement is not true. That means that the projection contains a plane, that is, PG(4,q) has a solid S on P with the property that every line of S on P meets B. In particular, the solid S contains at least $q^2 + q + 1$ points of S. Outside of S there are at most $q\sqrt{q} + \sqrt{q}$ points in S. Consider a point S with S with S consider a point S with S consider a point S consider a point S with S consider a point S consider a point

First we consider the case that the projection of B from P' onto S contains a plane. Then there exists a solid S' on P' that also meets B in at least q^2+q+1 points. Since S contains all but at most $q\sqrt{q}+\sqrt{q}$ points of B, it follows that the plane $\pi:=S\cap S'$ meets B in at least $q^2+q+1-q\sqrt{q}-\sqrt{q}\geq q^2-q\sqrt{q}$ points. Since B contains no plane, there exists a point $X\in\pi\setminus B$. Then X lies on q^4 planes that meet π only in X. Each of these planes has a point in B and every point of $B\setminus\pi$ lies in exactly q^2 of these planes. This shows that at least q^2 points of B lie outside of π . Since π meets B in at least $q^2-q\sqrt{q}$ points, we obtain $|B|\geq 2q^2-q\sqrt{q}$, which is a contradiction.

Now we consider the case that the projection of B from P' onto S contains a Baer cone C. Thus, each of the lines P'X with $X \in C$ meets B. Notice that $|C| = 1 + (q + \sqrt{q} + 1)q \ge |B| - \sqrt{q}$. Hence, it follows that at least $q^2 + q + 1 - \sqrt{q}$ points of C belong to B since the points of S are fixed under the projection.

Since we assumed in the beginning of this section that B does not contain a Baer cone, there exists a point $Y \in C$ with $Y \notin B$. Consider a solid T that does not contain Y and project B from Y into this solid T. Then the image of $C \setminus \{Y\}$ of this projection is either a Baer subplane (if Y is the vertex of the cone) or the union of $\sqrt{q} + 1$ concurrent lines (if Y is not the vertex of the cone). In any case, the image of the cone has at most $q\sqrt{q} + q + 1$ points. Thus, the image of $C \cap B$ under this projection has at most $q\sqrt{q} + q + 1$ points. Thus, if $x := |C \cap B|$, then the image of B under the projection has at most $|B| - x + q\sqrt{q} + q + 1$ points.

But the image blocks every line of T and has therefore at least q^2+q+1 points. It follows that $|B|-x+q\sqrt{q}+q+1\geq q^2+q+1$, that is, $x\leq |B|-q^2+q\sqrt{q}\leq 2q\sqrt{q}+q+\sqrt{q}+1$. But we have seen that $x\geq q^2+q+1-\sqrt{q}$. Hence $q^2\leq 2q\sqrt{q}+2\sqrt{q}$ and thus q<9.

Lemma 3.2. If $P \notin B$ and if S is a solid not containing P, then the projection of B from P on S contains a Baer cone. If T is a set consisting of t points of B, then the image of T under this projection contains at least $t - \sqrt{q}$ points of this Baer cone.

Proof. By the previous lemma and Theorem 1.1, the image of the projection contains a Baer cone C of S. We have $|C| = 1 + (q + \sqrt{q} + 1)q \ge |B| - \sqrt{q}$, which implies the second statement.

Lemma 3.3. Every plane meets B in at most $q + \sqrt{q} + 1$ points.

Proof. Consider a plane π . It contains a point P not in B. Apply the previous lemma to P. \square

Lemma 3.4. If $P \notin B$, then one line on P has $\sqrt{q} + 1$ points in B and these form a Baer subline, and every other line on P meets B in at most one point.

Proof. Consider the projection of B from P to a solid S not containing P. This projection contains a Baer cone C. Let V be the vertex of the Baer cone. We may assume that we have chosen S in such a way that $V \in B$.

Let l be a line contained in C (then $V \in l$). The plane $\pi := \langle l, P \rangle$ contains a point of B on each line through P and thus π meets B in at least q+1 points. We claim that $\pi \cap B$ meets every line of π . Assume to the contrary that π has a line not containing a point of B. Let P' be the intersection of this line and the line PV. Then $P' \notin B$ so $P' \neq V$ and thus $P' \notin S$. Projecting B from P' onto S, we obtain a point set containing a Baer cone C'. Since π has at least q+1 points in B, Lemma 3.2 shows that the line $l=\pi \cap S$ contains at least $q+1-\sqrt{q}$ points in C'. Since each line of S meets a Baer cone of S in $1, \sqrt{q}+1$ or q+1 points and since $q+1-\sqrt{q}>\sqrt{q}+1$, it follows that l is a line of C'. But then every line of π on P' meets B, a contradiction.

This shows that $\pi \cap B$ meets every line of π . It follows from Lemma 3.3 and Lemma 2.1 that $\pi \cap B$ either contains a B-line or that $\pi \cap B$ is a Baer subplane of π .

If for one of the lines $l \subseteq C$, the plane $\pi = \langle l, P \rangle$ meets B in a Baer subplane, then P lies on a Baer subline of this Baer subplane and the application of Lemma 3.2 proves the claim.

Assume therefore that for all choices of the $q + \sqrt{q} + 1$ lines $l \subset C$, the plane $\pi = \langle l, P \rangle$ contains a B-line. All these planes π contain the line PV. Hence some point of the line PV must lie on at least two lines that are contained in B. This contradicts Lemma 3.3.

Lemma 3.5. No line is contained in B.

Proof. Assume that the line l is contained in B. Let P be a point of B that is not in l. Then the plane $\pi := \langle P, l \rangle$ meets B in at least q+2 points and the set $\pi \cap B$ contains the line l. By Lemma 3.3 we have $|B \cap \pi| \leq q+1+\sqrt{q}$. It follows that some line of π meet B in exactly two points. This contradicts Lemma 3.4.

Lemma 3.6. The set B is a subgeometry isomorphic to $PG(4, \sqrt{q})$.

Proof. We know that every line that has more than one point in B meets B in $\sqrt{q}+1$ points. Consider the incidence structure consisting of the points of B and the lines that meet B in $\sqrt{q}+1$ points. Of course two points of this incidence structure are on a unique line and every line of this incidence structure has $\sqrt{q}+1\geq 3$ points. It also satisfies the axiom of Pasch (or Veblen and Young). In fact, if l_1, l_2, l_3, l_4 are four lines, no three on a point and any two meet except possibly for l_3 and l_4 , then l_3 and l_4 must meet in PG(4,q). But the intersection point lies on two lines that meet B in $\sqrt{q}+1$ points, so the intersection point must be in B (Lemma 3.4). Thus the incidence structure is $PG(4,\sqrt{q})$.

The preceding lemma completes the proof of Theorem 1.2.

4. 2-Blocking sets in PG(N,q), N > 4, q square

Now we prove Theorem 1.3.

Proof. We proceed by induction on N. The theorem is valid for N=4. Assume N>4 and assume that the theorem is true for N-1 dimensions.

Suppose there is a point $P \notin B$ lying on a secant. If no such point exists, then B is a plane.

Project from P onto a hyperplane S. Let the projection be B'. Then B' is a 2-blocking set in S of size $|B'| < q^2 + q\sqrt{q} + q + \sqrt{q} + 1$. So, by the induction hypothesis, B' contains a plane or a Baer cone. This all implies that there is a hyperplane π_1 through P containing at least $q^2 + q + 1$ points of B.

Project now from a point $P' \notin \pi_1 \cup B$ onto π_1 .

Case 1. The projection contains a plane π' .

Then in $\langle \pi', P' \rangle$ lie at least $q^2 + q + 1$ points of B and so in the plane $\pi'' = \langle \pi', P' \rangle \cap \pi_1$ lie at least $q^2 - q\sqrt{q} + q - \sqrt{q} + 1$ points.

Suppose this plane π'' does not lie in B. Then take a point $P'' \in \pi'' \setminus B$. If we project from P'', the projection has at most $2q\sqrt{q} + q + 2\sqrt{q} + 1$ points. But the projection must have at least $q^2 + q + 1$ points since the smallest 2-blocking set is a plane.

Hence, the plane π'' is contained in B.

Case 2. The projection contains a Baer cone.

At most \sqrt{q} points cannot be projected onto the Baer cone. So at least $q^2 + q + 1 - \sqrt{q}$ points of $\pi_1 \cap B$ lie on a Baer cone C. Assume there is a point Y of the Baer cone not in B.

By using the arguments of the proof of Lemma 3.1, after projection from Y, the cone is projected onto at most $q\sqrt{q} + q + 1$ points.

At most $q\sqrt{q} + 2\sqrt{q}$ points of B do not lie on C. Hence, the projection has at most $2q\sqrt{q} + q + 2\sqrt{q} + 1$ points. This gives the same contradiction as above. This shows that the Baer cone C is contained in B.

Case 3. The projection is a subgeometry $PG(4, \sqrt{q})$.

Then all points of $\pi_1 \cap B$ lie in this subgeometry $\sigma = PG(4, \sqrt{q})$. So B shares at least $q^2 + q + 1$ points with σ .

Suppose $Y \in \sigma \setminus B$. Project from Y, then the projection of $PG(4, \sqrt{q})$ contains at most $q\sqrt{q} + q + \sqrt{q} + 1$ points.

At most $q\sqrt{q} + \sqrt{q}$ points of B do not lie in σ ; so the projection has at most $2q\sqrt{q} + q + 2\sqrt{q} + 1$ points. This again is false. Hence, $\sigma = B$.

References

- [1] Ball, S.; Blokhuis, A.: On the size of a double blocking set in PG(2, q). Finite Fields Appl. 2 (1996), 125–137.
- [2] Beutelspacher, A.: Blocking sets and partial spreads in finite projective spaces. Geom. Dedicata 9 (1980), 130–157.
- [3] Bruen, A. A.: Blocking sets and skew subspaces of projective space. Canad. J. Math. 32 (1980), 628–630.
- [4] Heim, U.: On t-blocking sets in projective spaces. Preprint.
- [5] Heim, U.: Proper blocking sets in projective spaces. Discrete Math. 174 (1997), 167–176.
- [6] Storme, L.; Weiner, Zs.: On 1-blocking sets in PG(n, q), $n \geq 3$. Submitted to the proceedings of the conference Geometric and Algebraic Combinatorics (Oisterwijk, The Netherlands) (August 15–20, 1999).

Received April 23, 1999