Beitrage zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 41 (2000), No. 1, 257-266.

Quasi-Frobenius Modules

Adil G. Naoum Layla S. M. Al-Shalgy

Department of Mathematics, College of Science
University of Baghdad, Baghdad, Iraq

Department of Mathematics, College of Education (Iben Al-Haitham)
University of Baghdad, Baghdad, Iraq

Abstract. Let R be a commutative ring with 1, and let M be a faithful R-module.
We say that M is a quasi-Frobenius (in short QF) module if Hompg (P, M) is either
zero or a simple R-module for each simple R-module P. In this paper we give
some charakterizations of QF modules and we study the relation between QF
modules and multiplication modules.

Introduction

Let R and S be two rings with identities and let M be an R-S-bimodule. Following
G. Azumaya [3], we say that M is a quasi-Frobenius (briefly QF) R-S-module if

(1) M is faithful on both R and S,

(2) Hompg (P, M) (respectively Homg(Q, M)) is either zero or a simple S-module (re-
spectively zero or a simple R-module) for each simple R-module P (respectively S-
module Q).

Equivalently, a faithful R-S-bimodule M is QF if and only if annp,(I) (respectively
annpz(J)) is either zero or a simple S-module (respectively zero or a simple R-module) for
each maximal ideal I of R (respectively J of S).

In this paper we will say that an R-module M is QF if M is a QF R-R-bimodule. On
the other hand, a ring R is called a quasi-Frobenius ring if R is an Artinian left or right
self-injective ring [5].

Let us observe that every QF ring is a QF R-module. However the converse is false,
for example Z as a Z-module is QF but Z as a ring is not QF.

One of our main concerns in this paper is to generalize some of the basic properties
of QF rings to modules in case R = S and R being a commutative ring with identity. We
also study QF modules when S = Endg(M).
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1. Preliminary results

We begin with the following simple remarks.

1.1. Remarks.
(1) If R is an integral domain then every torsion-free R-module is QF.

(2) If the ring R has no non-zero nilpotent elements, then R is a QF R-module.

Proof. (1) is obvious.

(2) Let P be a simple R-module and assume that Hompg(P, R) # 0, then R contains an
ideal say I which is isomorphic to P. Since R has no non-zero nilpotent element, then
one can show easily that I = eR for some idempotent e in R. Hence Homp(P, R) =

Hompg(eR, R) = eR is a simple R-module. Hence R is a QF R-module. d

A more interesting example of a QF module is given in the following theorem.

1.2. Theorem. Let R be a Dedekind domain and let K be the field of quotients of R. Let
L be an R-submodule of K containing R such that L/R is a faithful R-module. Then L/R
is a QF R-module.

Proof. Let P be a simple R-module, then P = R/I for some maximal ideal I of R. Since
R is a Dedekind domain, then I is an invertible ideal of R.

We show that (LN I71)/R is a simple R-module unless it is zero. Let J/R be an
R-submodule of (LN I~Y)/R, then RC J C LNI~! and hence IR C IJ C I(LNI71)
which implies that I C IJ C R since LN I~! C I~'. Therefore by the maximality of I,
either IJ = I or IJ = R. Thus either J = Ror J =1"! and hence J = LN I~L

The proof will be completed by showing that Homg(R/I,L/R) = (LNI17Y)/R. So
we define a map o : LN I~ — Homg(R/I,L/R) by a(x) = a, for all z € LNI~1, where
az : R/I — L/R by az(r+ 1) = xr + R for all r € R. One can check easily that « is a
well-defined R-homomorphism. In fact « is an epimorphism. For if f € Homg(R/I, L/R)
then, since R/I is a cyclic R-module generated by 1+ I, we look at f(1+ ) as an element
of L/R,let f(14+1) =2+ R for some z € L. Then

IfA+D)=fI+1)=fI)=0=I(z+R).

Therefore I C R, that is z € I~ and hence z € LNI~! and it is clear that f = o,. Thus
« is an epimorphism which implies that (L N I~')/kera =& Homg(R/I, L/R). Moreover,
it is easily checked that kera = R. Hence (L N I~!)/R = Hompg(R/I,L/R). Therefore
Hompg(R/I, L/R) is a simple R-module which completes the proof. O

The following are special cases of 1.2.

1.3. Corollary. If R is a Dedekind domain and K is the field of quotients of R, then
K/R is a QF R-module.

1.4. Corollary. Let p any prime number in Z, and let Q, = {p“—n | a,n € Z}. Let
Qp/Z = Zpss. Then Zyo is a QF Z-module.
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Proof. Tt is easily checked that Z,~ is a faithful Z-module. Hence by 1.2, Z,~ is a QF
Z-module. U

Note that Z,~ in 1.4 is an Artinian but not Noetherian Z-module.

2. Some characterizations of quasi-Frobenius modules

Consider the following two characterizations for quasi-Frobenius rings.

(1) An Artinian ring R is a QF ring if and only if anng(anng(I)) = I for each simple
ideal I of R, [5, Th. 3.4].

(2) An Artinian ring R is a QF ring if and only if every simple R-module is reflexive, [10,
Th. 2.1].

We give in this section similar characterizations for QF modules. We start by the following
theorem.

2.1. Theorem. Let M be a faithful R-module. Then M is a QF R-module if and only if
annps(anng(U)) = U for each simple R-submodule U of M.

Proof. Assume that M is a QF R-module and let U be a simple R-submodule of M. Then
U = R/I for some maximal ideal I of R. Now annps(anng(U)) = annps(anng(R/I)) =
annps(I). But M is a QF R-module, then anny () is a simple R-module unless it is zero.
But annps(I) = annys(anng(U)) D U # 0, therefore anny,(I) # 0 is a simple R-module
containing U. Hence annys(I) = U.

For the converse, let P be a simple R-module such that Hompg(P, M) # 0. Then
P = R/I for some maximal ideal I of R. Then

Hompg(P, M) = annyps(I) & annys (anng(P)) = P.
Therefore Hompg (P, M) is a simple R-module and hence M is a QF R-module. O

Next we recall that an R-module M is said to be fully stable if for each R-submodule N
of M, f(N) C N for each R-homomorphism f: N — M, [1].

As a consequence of 2.1, we have
2.2. Corollary. Every faithful fully stable R-module is QF.

Proof. Let M be a faithful fully stable R-module. Then annjs(anng(x)) = (x) for each
x € M by [1, Cor. 3.5]. In particular annys(anng(U)) = U for each simple R-submodule
U of M. Therefore M is QF by 2.1. O

Note that the converse of 2.2 may not be true in general, for instance Z as a Z-module is
QF but not fully stable since anng(anng(2)) = Z # (2).

Recall that a ring R is called a self-injectice ring if for each ideal I of R and for each
R-homomorphism f : I — R, there exists an element r € R such that f(z) = rz for each
x € I, [2]. Hence we have
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2.3. Corollary. Let R be a self-injective ring. Then R as an R-module is QF.

Proof. Since R is a self-injective ring, then it can be easily checked that R is a fully stable
R-module, and hence the result follows by 2.2. 0

Let M and X be two R-modules, X is called M -reflexive if the natural map ¢ : X — X**
is an R-isomorphism where X* = Hompg(X, M), and ¢ is defined by (¢(z))(f) = f(x) for
all z € X and f € X*, see [8]. And recall that an R-module M is called distinguished if
annps(I) # 0 for each ideal I of R, see [3].

Using these concepts we extend in the following two theorems the second characteri-
zation of QF rings which is mentioned in the introduction.

2.4. Theorem. Let M be a distinguished QF R-module. Then every simple R-module is
M -reflexive.

Proof. Let P be a simple R-module. Since M is distinguished, then P*=Hompg (P, M)#0
by [13]. But M is QF, therefore P* is a simple R-module. And again since M is distin-
guished and QF, then P** is a simple R-module. Thus both P and P** are simple R-
modules and ¢ : P — P** is a non-zero R-homomorphism, therefore ¢ is an R-isomorphism
and hence P is M-reflexive. a

Note that the condition in 2.4 that M is distinguished, cannot be dropped, as it is shown
in the following example.

The Z-module Z is QF. However, if P is any simple Z-module, then P = Z, for some
prime number p, and

P* = Homgz(P,Z) =2 Homg(Z,,Z) =0

which implies that P** = 0 and hence P 2 P**, that is, P is not Z-reflexive. Note that Z
is not a distinguished Z-module.

Let A, B and M be any R-modules, a bilinear map o : A x B — M is called regular if
a(a,b) =0 for all @ € A implies b = 0 and «a(a,b) = 0 for all b € B implies a = 0, see [3].

The following theorem gives a converse of 2.4, under a certain condition.

2.5. Theorem. Let M be a faithful R-module. Assume that for each simple R-module P,
P** = P and P* contains a maximal submodule (where P* = Hompg (P, M)). Then M is
a QF R-module.

Proof. Let P be a simple R-module. We have to show that P* is simple. Note that
annp(P*) is an R-submodule of P, it is either 0 or P because of the simplicity of P. If
annp(P*) = P, then f(z) =0 for all z € P and all f € P* and this implies that P* =0
which is a contradiction since P** = P by hypothesis. Hence annp(P*) = 0. Therefore
it can be easily checked that the pairing (z, f) — f(x) for all x € P and all f € P*
is a regular bilinear map of P x P* into M. Now, let U be a maximal submodule of
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P*, then P*/U is a simple R-module. Let V = annp(U), then V' = annp..(U) since
P = P**. But annp««(U) = Hompg(P*/U, M) by [7, Prop.23.12, p.184]. Therefore
V = Hompg(P*/U,M) = (P*/U)*. Since V is an R-submodule of P, then either V = 0
or V=P. If V=0, then (P*/U)* = 0 and hence (P*/U)** = 0. But by hypothesis
P*/U = (P*/U)** and P*/U is simple, therefore a contradiction. Hence V = P. That is
f(x) =0 for all z € P and all f € U. Therefore f = 0 for all f € U (by the regularity of
the pairing (z, f) — f(z) for all z € P and all f € P*). Thus U = 0 and hence P* is a
simple R-module. Therefore M is a QF R-module. O

Note that the condition in the previous theorem, that P* contains a maximal submodule,
holds for example in case P* is a finitely generated [9] or a projective [2] R-module.

3. Quasi-Frobenius modules and multiplication modules

Recall that an R-module M is said to be a multiplication module if for each submodule N
of M there exists an ideal I of R such that N = IM, see [6].

In this section we investigate the relation between multiplication modules and quasi-
Frobenius modules. We begin with the following proposition.

3.1. Proposition. Fvery faithful multiplication module over a QF ring is a QF module.

Proof. Let R be a QF ring and let M be a faithful multiplication R-module. Then
according to [5], R is an Artinian ring and hence M is a cyclic R-module by [4, Prop. 4].
But M is faithful, therefore M = R. Since R is a QF ring, then R is a QF R-module.
Hence M is a QF R-module. O

We note that if we weaken the condition “R is a QF ring” in 3.1 to R being merely a
Noetherian ring and use an extra condition on M we get that M is a QF module as in the
following proposition.

3.2. Proposition. Let R be a Noetherian ring and let M be a faithful multiplication
R-module such that for each simple R-module P, P** = P, where P* = Hompg(P,M).
Then M s a QF R-module.

Proof. M being a faithful multiplication R-module and R a Noetherian ring, then M is a
Noetherian R-module, see [6]. Now, if P is any simple R-module, then P is cyclic and hence
a finitely generated multiplication module. Moreover EM is a finitely generated submodule
of M, where E = [ann M : ann P]. Therefore by [12, Th.3.4], P* = Hompg(P, M) is a
finitely generated R-module. Thus P* contains maximal submodules and hence by 2.5, M
is a QF R-module. O

Because of the fact that a faithful multiplication R-module M is Noetherian if and only if
R is a Noetherian ring, see [6], the following is an immediate consequence of 3.2.

3.3. Corollary. If M is a Noetherian faithful multiplication R-module such that for each
simple R-module P, P = P**, then M is a QF R-module.
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For our next result the following remark is needed.

Remark. IF R is any ring and M is a faithful R-module, then R is isomorphic to a
subring of Endg(M).

Proof. Is obvious. O

And the following concept is also needed. Given an R-module M, a subring D of Endr (M)
is said to be a dense subring of Endg (M), if given any finite set {x1, x3, ..., z,} of elements
of M and any element f of Endg(M), there exists an element d of D such that f(z;) = d(z;)
foralli=1,2,...,n, see [3].

Now we have the following proposition.

3.4. Proposition. If M is a QF R-module such that R is dense in Endr(M), then M is
a QF Endg(M)-module.

Proof. Put S = Endr(M). Let U be a simple S-module such that Homg (U, M) # 0.
Then U can be considered as an S-submodule of M. And by the last remark U is an
R-submodule of M. Since R is dense in S, then it can be easily seen that U is a simple
R-module. Hence Hompg(U, M) is a simple R-module because M is a QF R-module.
Moreover if f € Homg(U, M), x € M and r € R, then

flrx) = f(A(2)) = A (f (@) = 7(f(2))

(where A, : M — M is such that A\.(z) = rz for all r € R and z € M). Hence f €
Hompg (U, M) and thus Homg(U, M) C Hompg(U,M). The simplicity of Hompg(U, M)
implies that Hompg (U, M) = Homg(U, M). Therefore Homg(U, M) is a simple R-module
and hence a simple S-module. Thus M is a QF S-module. O

As an immediate consequence of 3.4 we have the following

3.5. Corollary. Let M be a multiplication QF R-module. Then M is a QF S-module
where S = Endr(M).

Proof. Since M is a faithful multiplication R-module, then by [11, Prop. 1.5], R is dense
in S and hence the result follows by 3.4. O

Now, we need the following lemma.

3.6. Lemma. Let M be a finitely generated faithful multiplication R-module and let N be
an R-submodule of M. Then N is a simple R-module if and only if there exists a simple
ideal I of R such that N = IM.

Proof. Since M is a multiplication R-module, then there exists an ideal I of R such that
N = 1M, see [6].

Assume that N is simple. Let J be a non-zero ideal of R such that J C I, then
JM C IM. But IM is a simple R-module and JM # 0, hence JM = IM, then by [14,
Cor.of Th.9] J = I. Thus [ is a simple ideal.
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Conversely: Suppose that I is a simple ideal and let K be a non-zero R-submodule
of N, then there exists a non-zero ideal J of R such that K = JM. Then JM C IM and
according to [14, Cor. of Th.9], this implies that J C I. Thus J = I and hence K = N
which completes the proof. O

We are now ready to give the following result.

3.7. Theorem. Let M be a finitely generated faithful multiplication R-module. Then the
following statements are equivalent:

(1) annps(anng(N)) = N for each simple R-submodule N of M,
(2) anng(anng(l)) = I for each simple ideal I of R.

Proof. Let I be a simple ideal of R, then N = I M is a simple R-module by 3.6, and

annys (anng(N)) = annys(anng(IM))
= annys (anng (7)) (since M is faithful)
D anng(anng(I))M  (since for any ideal J, annps(J) D anng(J)M ).
Now, assume (1), then annys(anng(N)) = N and N = IM D anng(anng(l))M. Hence
I D annp(anng(])) by [14, Cor. of Th.9]. But anng(anng(/)) D I, and thus (2) follows.
Conversely: Assume (2), and let N be a simple R-submodule of M, then by 3.6, there
exists a simple ideal I of R such that N = IM. By (2), anng(anng(/)) = I. Then
annys (anng(N)) = ann s (anng(IM))
= annps(anng (7)) (since M is faithful)
D anng(anng(l))M = IM = N.

But N C anng(anng(V)), therefore (1) follows. a

The following are some consequences of 3.7.

3.8. Corollary. A finitely generated faithful multiplication R-module is QF if and only if
anng(anng(I)) = I for each simple ideal I of R.

Proof. 1Is obvious by 2.1 and 3.7. O

3.9. Corollary. If R is a self-injective ring and M 1is a finitely generated faithful multi-
plication R-module, then M is a QF R-module.

Proof. Since R is a self-injective ring, then by [1, Prop. 3.4], anng(anng (1)) = I for each
cyclic ideal I of R, in particular for each simple ideal I of R. Therefore M is a QF
R-module by 3.8. O

We end this section by the following example.

3.10. Example. Let X be an infinite set and let R = PX be the power set of X. For
all A,B € R, define A+ B=AUB/ANB and AB = AN B. Then R is a Boolean ring.
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Let I be an ideal of R generated by all singletons in X. In fact I is the set of all finite
subsets of X (I is not finitely generated). I is a pure ideal and hence I is a multiplication
ideal, that is a multiplication R-module. Note that the simple R-modules are generated
by singletons and each simple R-module contains only two elements. Let P be a simple R-
module. Clearly I contains a copy of P and hence Hompg (P, I) # 0. Moreover Hompg (P, I)
is simple. In fact Hompg(P,I) = P since I contains a unique copy of P. Hence I is a QF
R-module.

4. Quasi-Frobenius bimodules

Let R and S be two commutative rings with identities. We consider in this section QF
R-S-modules.

Because of the fact that the endomorphism ring of a multiplication module is a com-
mutative ring, see [11], we start with the following proposition.

4.1. Proposition. Let M be a multiplication QF R-module and let S = Endg(M). Then
M is a QF R-S-module.

Proof. Since M is a multiplication QF R-module, then by 3.5, M is a QF S-module. Let
I be a maximal ideal of R such that annps (/) # 0, then annps(7) is a simple R-module.
Note that annps (/) is an R-submodule of M, therefore it is an S-submodule of M (since
R is dense in S because M is a faithful multiplication R-module, see [11, Th.1.5]). In
fact annpz (1) is a simple S-submodule of M, for if U is an S-submodule of annys(I), then
U is an R-submodule of annps(I) (since R is dense in S), and hence either U = 0 or
U = annps(I). Thus annps(I) is a simple S-module.

Now, let L be a maximal ideal of S such that annps(L) # 0, anny, (L) is a simple
S-submodule. Let V be an R-submodule of annp, (L), then rz € V for all r € R and
x € V. Let f € S, then there exists ¢ € R such that f(x) = tx (since R is dense in S).
Therefore f(x) € V for all f € S and € V. Hence V is an S-submodule of annps (L),
which implies that either V' = 0 or V = annjs(L). Hence annys (L) is a simple R-module
and this completes the proof. O

Now, we consider the following concept:

Let M be an R-S-module. A left R-module A and a right S-module B are said to form an
orthogonal pair with respect to M, if there exists a regular bilinear map of A x B into M.

Next we give the following two lemmas:

4.2. Lemma. Let M be a QF R-S-module, let X be an R-module and Y be an S-module
which form an orthogonal pair with respect to M. Then:

(1) If X is simple, then X* =Y.

(2) If Y is simple, then X = Y*.

Proof. (1) Let « : X XY — M be a regular bilinear map. For each y € Y, define
ay : X - M by ay(z) = a(z,y) for all z € X. It can be easily seen that o, is a well-
defined R-homomorphism, and hence o, € X*. Define A : Y — X* such that A\(y) = o, for
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all y € Y. Clearly A is an S-homomorphism. Moreover, if A(y) = 0 for some y € Y, then
a, = 0 and therefore a(z,y) = 0 for all z € X which implies that y = 0 by the regularity
of a. Therefore Y is isomorphic to an S-submodule of X*. But M is a QF R-S-module
and X* # 0 (since a, € X™*), hence X* is a simple S-module, therefore X* =Y. Similarly
for (2). O

4.3. Lemma. Let M be a QF R-S-module. Let U be a simple R-submodule of M and V
be a simple S-submodule of M. Then:

(1) S/anng(V) is a simple S-module.

(2) R/anng(V) is a simple R-module.

Proof. (1) Define A : (S/anng(U)) x U — M by A(a+anng(U),z) = za for alla € S and
all z € U. It can easily be checked that X is a regular bilinear map. Therefore S/ anng(U)
and U form an orthogonal pair with respect to M. Hence 4.2 implies that U* = S/ anng(U)
and thus U* # 0. But M is a QF R-S-module, then U* is a simple S-module. Therefore
S/ anng(U) is a simple S-module. Similarly for (2). O

Finally, we have the following proposition.

4.4. Proposition. Let M be a QF R-S-module. Then anny,(anng(U)) = U for each
simple R-submodule U of M and annps(anng(V)) = V' for each simple S-submodule V
of M.

Proof. Let U be a simple R-submodule of M. Then annjys (anng(U)) = Homg (S/anng(U),
M) by [1]. But by 4.3, S/ anng(U) is a simple S-module and since M is a QF R-S-module,
then Homg(S/ anng(U), M) is a simple R-module and since it contains U, it is equal to U.
The second part is proved similarly. O

References

[1] Abbas, M. S.: On Fully Stable Modules. Ph.D. Thesis, University of Baghdad 1990.

[2] Anderson F. W.; Fuller, K. R.: Rings and Categories of Modules. Springer-Verlag,
New York Heidelberg Berlin 1973.

(3] Azumaya, G.: A duality Theory for Injective Modules (Theory of Quasi-Frobenius
Modules). Amer. J. Math. 81 (1959), 249-287.

[4] Barnard, A.: Multiplication Modules. J. Algebra 71 (1981), 174-178.

[5] Dieudonné, J.: Remarks on Quasi-Frobenius Rings. Illinois J. Math. 2 (1958), 346
354.

[6] El-Bast, Z. A.; Smith, P. F.: Multiplication Modules. Comm. Algebra 16 (1988),
755-779.

[7] Faith, C.: Algebra II: Ring Theory. Springer Verlag, Berlin Heidelberg New York
1976.



266 A.G.Naoum, L. S. M. Al-Shalgy: Quasi-Frobenius Modules

[8] Huger, G.; Zimmermann, M.: Quasi-Frobenius Moduln. Arch. Math. (Basel) 24
(1973), 379-386.

[9] Kasch, F.: Modules and Rings. Academic Press, New York and London 1982.

[10] Morita, K.; Tachikawa, H.: Character Modules, Submodules of a Free Module and
Quasi-Frobenius Rings. Math. Z. 65 (1956), 414-428.

[11] Naoum, A. G.: On the Ring of Endomorphisms of a Multiplication Module. Period.
Math. Hungar. 29 (1994), 277-284.

[12] Naoum, A. G.; Al-Hashimi, B.; Kider, J. R.: On the Module of Homomorphisms
of Finitely Generated Multiplication Modules I. Period. Math. Hungar. 22 (1991),
97-105.

[13] Naoum, A. G.; Al-Shalgy, L. S. M.: Distinguished Modules. To appear.

[14] Smith, P. F.: Some Remarks on Multiplication Modules. Arch. Math. (Basel) 50
(1988), 223-235.

Received March 10, 1997



