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0. Introduction

For a field k¥ and a k-algebra C' let Q})/k denote the module of Kahler differentials, d¢ :
C — Qg the universal derivation, Qf,, = AL(Qg),) for ¢ > 0 and Qf ), = D082
For simplicity of notation, we will write d instead of do. For a submonoid T' of ZT =
{0,1,2,...}, let k[T'] be the monoid ring of I". In this paper we describe Q,’;[F]/k in the case
where characteristic £ = 0 and I' is generated by an arithmetic progression.

For fixed integers m,p,d with m > 2, 1 <p<m-—1, d>1, ged(m,d) = 1 we define
mi = m+id, (i € ZT,0 < i < p), S = {mg,mi,ma,...,mp} and I to be the monoid
generated by the arithmetic progression S. We will write A for k[I'] = k[t™0,¢™ ... t™»].
The ring A is graded by weight if we set wt(f) = 1 and grade the A-modules QY s Dy in
addition setting wt(dt) = 1. It should be clear from the context whether d denotes the
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differential or the common difference of the arithmetic progression. The n-th weight piece of
€2}/, will be denoted by (25 /;)n-

This work is motivated in part by the relation between the QZ[F] Ik and K-Theory, as
discussed for example in [6; appendix]. It is hoped that the results obtained here will at least
partially survive in subrings of k[t] that are not generated by monomials, for example as
considered in [2]. We expect our calculation to yield interesting invariants of the singularity
of k[I'] at the origin or of the monoid I itself.

In Section 3 we compute dimy(Q} /k)n in terms of partitions of n as the sum of integers
from the set S. For general T, dimk(Qi[F] /k)" is likely too fine an invariant to be easily
interpreted. However in the arithmetic progression case we are able to give a combinatorial
interpretation in terms of certain subsets of S that are introduced in Section 2. This was
surprising to us and fails if either the characteristic of £ is non-zero or S is not an arithmetic
progression. In Section 4 we determine the index of regularity of Q) Ik and in Section 5 we
describe an interesting relationship between the Hilbert functions of QY Ik and QY Ik where
Al = kg™ ¢mFL . ¢™P]. Another motivation for this paper was to explain the symmetry
of the Hilbert function of Qh/k/dA proved in [6] in the case where p = m — 1 and d = 1.
In Section 5 we generalize this result to the case p = m — 1,d > 1. Our improved methods
suggest that the symmetry is an accident. In Section 6 we completely describe QY Jk for g > 3,
generalizing the result of [7] to the case p < m — 1. This permits us to determine the Hilbert
function of 9?4 Jk in terms of Q}éx Jk and the Gaussian polynomials. In each section examples
are given to illustrate the results.

1. Presentation of Q}A/k

In addition to the notation fixed in the introduction, let ¢ : R = k[X,, ..., X,] — A be the
k-algebra homomorphism defined by X; — t™i, 0 <1 < p, and let p be the kernel of ¢. For
0 < i < p, define z; = t™, deg(X;) = 1 and wt(X;) = m;. Then p is homogeneous if R is
graded by weight, but not if R is graded by degree.

Recall (from [3; (4.13)]) the presentation for €2} , given by €0} , = Q% /(p, dp), where
(b, dp) is the 2-sided ideal of 2}, generated by {F,dF | F' € p}.

For a = (ag,...,a,) € (ZT)P™, let X = [[?_, X/". The image of a monomial X* € R
of weight n = " ja;m; in A is t". Therefore the n-th weight piece p, of p is generated
by binomials {X® — X® | > a;m; = Y7 bim; = n} as a k-vector space. (An explicit

minimial set of ideal generators for p is given in [5; (4.5)]).

It is more convenient to consider Q1 Ik /dA rather than QY /i s we then have a simpler

presentation. But we should be careful to remember that QY Jk /dA is only a k-vector space,
not an A-module.

1.1. Theorem. Let m,p,d be positive integers with gcd(m, d) = 1 and let A = k[t™0, ™, t™2

..., t™]. For any non-negative integer n, let V, be the k-vector space with basis {t" ™idt™: |

i€[0,p], t"™ € A,n—m; # 0}, and W, the subspace of V,, spanned by {>"5_, a;t" ™ dt™ |
iz @im; =n, a; > 0}. Then (S, /dA), =V, /W,.
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Proof. Since Q}Z/k is the free R-module with basis dXj, ..., dX,, we have that Q}Z/k ®Rr A=
Qp1/ (PQ,,) is a free A-module with basis dzy, ..., dz,. We know that p is generated by
{X2 - XP | YP Jami = >0 bim; = n} and di® = d((t™0)® ... (t™)%) = P a;(t™0)%
o @Ema)eTho L (gme) e dt™ for (ag,...,ap) With 327 jaim; = n.  Since (Q,/dA), is
(Q}E/k/(pﬁh/k, dp)), modulo dt™, the assertion follows. O

1.2. Remark. For large n, dimk(Qz/k)n =1 and dimk(Qi/k)n =0 forallg>2. Ifi,j €T,
j > 0 then t'dt’ # 0 in Qi/k.

Proof. Since the quotient field of A is k(t) and Q) , ®4 k(1) = Q) ®ak(t) = QY ), for all
q > 0, the assertions follow.

Before translating 1.1 into explicit results about Q) Ik e will make some remarks about
partitions.

2. Partitions

In addition to the notation previously introduced, for non-negative integers a, b, let [a, b, d]
denote {a+id | i € ZT,a + id < b}, Floor[a] the largest integer less than or equal to a,
and Ceiling[a] the smallest integer greater than or equal to a. We will write [a, b] instead of
[a,b,1]. Note that in this notation the set S = [m, m + pd, d].

For integers n,r, let S(n,r) be the set of all integers in S that can occur in a partition
of n as a sum of r elements of S, that is,

P P
S(n,r)={m; | n= Zaimi with Zai =r and a; #0}.
i=0 i=0
Let S(n) = U,>15(n, r). Further, the cardinality |S(n, )| of S(n,r) will be denoted by s(n,r)

and P(n) = {r € Z* | S(n,r) # 0}.

For example, if m =6, p =2, d = 1, then S = {6,7,8}, S(14,2) = {6,7,8} since we
have 14 =7+7=6+8, S(18,3) = {6} since 18=6+6+6 is the only way to write 18 as the
sum of three elements of S, and S(17,3) = 0.

The set {m; | 0 < j < p and a; # 0} is called the support of the partition n = >*_ a;m;
of n, and the integer 1 4 (I — s) is called the spread of this partition, where m; and m; are
the largest and smallest element in the support respectively.

For example, if S = {5,7,9,11} then the partition 5 + 5+ 9 + 11 of 30 has support
{5,9,11} and spread 4. Note that if S(n,r) # () then n = rm mod d. A partition of n with
spread 1 is of the form n =rz,z € S.

2.1. Lemma. Let n,r be non-negative integers.

(a) Forx € S, n—ux lies in the monoid generated by S if and only if v € S(n). In particular
Vy has basis {t"™dt™ | m; € S(n)}.

(b) S(n,2)NS(n,r) =0 forr > 2.
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(c) If S(n,r) # O then n has a partition as the sum of r elements of S with either spread
1 or 2, but not both.

(d) There are exactly Ceiling[s(n,2)/2] partitions of n as the sum of two elements of S.
More precisely, n = mgs+m; =mg 1 +my_q1 =------ = Mgy, +my_;, where my and m,
s(n,2)

are the largest and smallest elements of S(n, 2) respectively and j = (Ceiling[T] —1).

(e) If r > 3 then fori=3,...,s(n,r) there is a partition of n as the sum of r elements of
S with spread i. Furthermore these partitions can be chosen to have “nested” supports
(see Example 2.2 below).

(f) For fized v, {n | S(n,r) # 0} = [rm,rm,,d], which is a set of consecutive elements in
the congruence class of rm mod d. Moreover, if n =rm + jd, 0 < j < rp then

S(n,r)=1<8 fp<j<(r—1)p
[Mj—(r—1)p, My, d]  if (r=1)p+1<j<rp.

Ezxplicitly, S(n,r) = [max(m,n — (r — 1)m,), min(m,,n — (r — 1)m), d], which is a set
of consecutive elements of S containing either m or m, (or both).

(g) For fized n, P(n) is a set of consecutive elements in a congruence class mod d.

(h) If S(n,r) # 0 and S(n,r + d) # 0 then m € S(n,r +d) and m, € S(n,r). If S(n,r),
S(n,r +d) and S(n,r + 2d) are all non-empty then S(n,r +d) = S.

Proof. (a) Straightforward from the definitions.
(b) Immediate since S is the minimal set of generators of I'.

(c) Since S(n,r) # 0 we have n = rm + id where 0 < ¢ < rp. Write 1 = ar + 3 with
0<p<r—1. Then, 3 =0 <= n =rm, <= n has a partition with spread 1. If 3 >0
then a < p—1s0 my, mgs1 € S. Therefore n = (r — B)m, + Bmg1 expresses n as the sum
of r elements of S with spread 2.

(d) is straightforward to verify.

(e) If r > 3 we can increase the spread of the partition in the proof of (c) 1 at a time
(by 2 when going from spread 1 to spread 3) by replacements of the type m; + m; —
mi—1 + mj1, 1 <i<j<p—1 which proves (e).

(f) is straightforward to verify.

(g) From (f) we have S(n,7) #0 <= n=rmmoddand rm <n<r(m+pd) < r=
m/n (mod d) and n/(m + pd) < r < n/m, where m' is an inverse mod d of m.

(h) follows from (f). O

2.2. Example. Let m =5,d = 2 and p = 3. Then S = {5,7,9,11} and for n = 32,r = 4,
we have n = 7+74+9+9=74+74+7+11 =5+749+11. The supports of these partitions are
{7,9},{7,11},{5,7,9, 11} respectively. By “nested” we mean that [7,9] C [7,11] C [5, 11],
i.e. the smallest intervals containing the supports are nested.
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2.3. Lemma. Letn andr be non-negative integers and let n =Y %, c;(m~+id) be a partition
of n as the sum of r elements of S. Let ¢ = (co,...,¢,) and b, = (b p,...,b.,) where
b,; = rmj —n. Then b, - ¢ = 0. Furthermore if ms; and m; are the smallest, respectively
largest, elements of S(n,r) then b, s < 0 and b,; > 0.

Proof. We have n = Y * je;my, ¢ > 0 for all 0 < i < p and Y2 j¢; = r. Therefore

O0=rmn—rn=r"0 cmi)—nd 2t jc) =" ,(rm; —n)c; = b, - c. The second part
follows from the fact that the co-ordinates of b, are in an increasing arithmetic progression
and the ¢ have non-negative co-ordinates. U

The notation S(n, ), s(n,r), P(n) introduced in this section will be used later without explicit
reference.

3. The Hilbert function of 934/1:

In this section we use the results on partitions in Section 2 to determine the Hilbert function
of QY e

3.1. Definition. Forn,r positive integers let V, , be the k-vector space with basis {t"~™dt™ |
m; € S(n,r)} and let W, , be the k-subspace of V,,, spanned by {d0_, a;t""™dt™ |a; > 0,

Do =T, i aim; =n}.
Note that V,, =, V,, and W, = > W, , where V,, and W,, are as in 1.1.

3.2. Lemma. Let n,r be positive integers and let b, = (rmg — n,...,rm, —n) as in 2.3.
(2) War € B = {X e A" ™ dt™ € Vi | 5 Aibyg = 0},
(b) V”’]-/Wna]- = 0'
(c) dimy V,, 2/W,, 2 = Floor[s(n, 2) /2] with relations

{t™idt™ + t™dt™ =0 |n=m; +m;, 0<i<j<p}.
(d) Suppose that v > 3. If m; € S(n,r) and b,; # 0 then
{by ™M dt™ — b, "M | my € S(n, 1), § # 6}
is a basis of Wi, .. In particular, equality holds in (a) and

0 ifs(n,r)=1

din Vi W, ={ o)

Moreover, if s(n,r) > 1 then t"~™idt™ is a basis for V,, /W, , provided b,; # 0 (in
particular, by 2.3, m; can be either the largest or the smallest element of S(n,r)).
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Proof. (a) and (b) are immediate from 2.3 and 2.1(a). (c) Follows from 2.1(d).
(d) If s(n,7) =1 then dimy V,,, =1 and W,, # 0, so V,,/W,, =0. If s(n,7) > 1 then

dimy V,, /Wy, < 1 by the “nested” part of 2.1(d) and dimy V},,/W, > 1 by (a) since b, has
at most one co-ordinate equal to 0. Now, the equality in (a) follows. O

Note that 3.2 permits effective computation in QY Jk /dA, not just the computation of Hilbert
functions. It is not difficult to lift this computation to QY Jk and, using the results of Section
6, to Q% Ik However we will not pursue the latter.

3.3. Lemma. Let n,r be positive integers. Then
(a) If P(n) = {r} then (Q},/dA)n = Vi /Wi,

(b) If S(n,r) # 0, S(n,r +d) # 0, and S(n,7) N S(n,r +d) = 0, then (Q,,/dA), =
Vn,r/Wn,r S¥ Vn,r+d/Wn,r+d-

(¢) If s(n,r) > 2, s(n,r+d) >2 and |S(n,r)NS(n,r+d)|=1, then dimk(Q}L‘/k/dA)nzl.

(d) If |S(n,7)NS(n,r+d)|=1 and either s(n,r)=1 or s(n,r+d)=1, then (Qi/k/dA)nzo.

(e) If |S(n,m) N S(n,r +d)| > 2 then (Q}L‘/k/dA)n = 0. In particular, if |P(n)| > 3 then
(24 /dA)n = 0.

Proof. (a) Follows from 1.1, since V,, = V,,,, W, = W,,,.
(b) Vo=V, ® Vouyia and W,,=W,, . ® W, .14 since S(n, s)=0 for s#r,r +d by 2.1(h). The

assertion now follows from 1.1.

(c) Since |S(n,r)NS(n,r+d)| =1 we have r > 3 by 2.1(b) and S(n,s) =0 if s # r,r+d by
2.1(h). Suppose S(n,r) N S(n,r +d) = m;. By 2.1(h), m; is the smallest element of S(n,r)
and the largest of S(n,r 4+ d). By 2.3, b,; # 0 and by14; # 0. Now (c) follows from 3.2(d)
and 1.1.

(d) If |S(n,r) N S(n,r +d)| =1 and s(n,r) = 1 then S(n,r) = {m,} and S(n,r + d) =
S by 2.1(h) and 2.1(f). By 3.2(d) Vi,+a/Whnr+d is one-dimensional with basis ¢"~"»dt™».
Furthermore the canonical map V,, ,4/ Wy 14 — (Qh/k/dA)n is onto. Since S(n,r) = {m,}
we have n = rm, from which it follows that t" ™rdt™ € W, , and hence t" ™»dt™ = 0
in (€,,/dA)n. Therefore (0, /dA), = 0 as claimed. If [S(n,r) N S(n,r +d)| = 1 and
s(n,r +d) =1 then S(n,r) =S and S(n,r + d) = {m}. From this it follows similarly that
(245 /dA)n = 0.

(e) Since |S(n,7) N S(n,r +d)| > 1 we have r > 3 by 2.1(b). By 3.2(d) W,,, = b, W, ,41a =
by, 4. Suppose that m;, m; € S(n,r)NS(n,r+d), i # j. Then b, ;t" ™ dt™ —b, ;t" "™ dt™ €
Wiy and bypg ;2" ™dt™ —byyqt""™idt™ € W, ,44. Since the determinant of the coeffi-
cient matrix is (m; — my)nd # 0, by 1.1, t""™dt™ = t"""idt™ = 0 in Q} ,/dA. Thus
(Q}(‘/k/dA)n = 0 by 3.2(d) and 2.1(h). Finally if |P(n)| > 3 then either |S(n,r) N S(n,r +
d)| > 2 for some r, in which case we have just proved that (Qh/k/dA)n =0, or s(n,r) =
1, S(n,r+d) =S and s(n, 7+ 2d) = 1 for some r. In this case (€2}, /dA), = 0 by 3.3(d). O
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The S(n,r) are described explicitly in 2.1. These sets completely determine the Hilbert
function of Q Ik

3.4. Theorem. Letm,p,d be integers withm > 2, 1 <p<m—1, d > 1, and gcd(m,d) = 1.
Let A = k[tm,tm+e . ™9 gnd let H : Zt — ZF, where H(n) = dimk(Qz/k)n, be the
Hilbert function of Qh/k. Then for any n € Z" we have:

0 if S(n) =10
1+ dimy,(QY . /dA),  if S(n) # 0

(b) Suppose that P(n) = {r}. Then

(a) H(0) =0 and H(n) = {

1 if s(n,r) =1
H(n) =< 1+ Floor[s(n,2)/2] ifr=2 and s(n,2) > 1.
2 if r > 2 and s(n,r) > 1

(c) Suppose that there are distinct integers 1,19 such that O # S(n,m1) C S(n,r2). Then
H(n) = 1. In particular, if |P(n)| > 3 then H(n) = 1.

(d) Suppose that |P(n)| = 2. Then there is an integer r > 2 such that S(n,r) # 0 and

S(n,r+d) #0.
(d1) Suppose that S(n,r) N S(n,r + d) = O (which is necessarily the case if r = 2).
Then if r =2
Hin) = 1+ Floor[s(n,2)/2] if s(n,2+d) =1
~ | 2+ Floor[s(n,2)/2] ifs(n,2+d) >1
and if r > 2
1 ifs(n,r)=1, s(n,r+d)=1
H(n) =< 2 if exactly one of s(n,r), s(n,r+d) is1.
3 ifs(n,r)>1, s(n,r+d)>1

(d2) Suppose that |S(n,r) N S(n,r +d)| =1 (necessarily r > 2). Then

H(n) = 1 if one of s(n,r), s(n,r+d) is 1
12 if both s(n,r) > 1, s(n,r+d)>1.

(d3) Suppose that |S(n,r) N S(n,r+d)| > 1. Then H(n) = 1.

Proof. (a) The final assertion of (a) follows from 1.2.

(b) Follows from 3.2(c), 3.2(d), and 3.3(a).

(c) Follows from 3.3(d) and 3.3(e).

(d) (d1) follows from 3.3(b), 3.2(c), and 3.2(d);

(d2) follows from 3.3(c) and 3.3(d);

(d3) follows from 3.3(e). O
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3.5. Examples. The following examples show that all the cases in 3.4 can occur. For use in
the table we number consecutively the cases in each part of 3.4. For example, 3.4(d1)(case 3)
means (among the cases of 3.4(d1)) r > 2 and s(n,r) =1 = s(n,r + d). This case can occur
only if p =1 by 2.1(h). The hardest to find is 3.4(d2)(case 2).

[(m,p,d)| S ln [ P(n) |r]S(nr) [H (n)| Reason |
4,3,1) | {4,5,6,7} |4 | {1} 1| {4} 1 3 4(b)(case 1)
11 | {2} 21 {4,5,6,7} |3 | 3.4(b)(case 2)
15 | {3} 3144,5,6,7F |2 | 3.4(b)(case 3)
12 1 {2,3} |2|{56,7} 2 | 3.4(d1)(case 1)
31 {4}
13 | {2,3} 2| {6,7} 3 | 3.4(d1)(case 2)
3| {4,5}
16 | {3,4} |3 |{4,5,6,7} |1 3.4(d2)(case 1)
4 | {4}
17| (3,4 |3 [1{4,5,6,7F |1 | 3.4(c) or 3.4(d3)
41 {4,5}
20 | {3,4,5 | 3| {6,7} 1
1(14,5,6,7}
5| {4} 3.4(c)
(3,1,1) | {3,4} 12 | {3,4} |3 | {4} 1 | 3.4(d1)(case 3)
41 {3}
(9,4,1) | {9,...,13} |36 {3,4} |3]{10,...,13} |2 | 3.4(d1)(case 4)
41 {9}
37 (13,41 | 3| {11,12,13} |3 | 3.4(d1)(case 5)
149,10}
(12,6,1) {12,...,18} [ 49 | {3,4F |3]{13,...,18} |2 | 3.4(d2)(case 2)
1[{12,13}

We conclude this section with the following interesting application of 3.2 and 3.3.

3.6. Proposition. Let ' C T' the monoid generated by S* = {mg;, ms1,....,my} C S
and let A' = k[['']. Then, for all n, the induced homomorphism of k-vector spaces wy, :
(a1 ) /dA ) — (Y ,/dA)n is either injective or surjective.

Proof. The notation of Section 2 and Section 3 will be applied to A! by applying ! to the
corresponding notation for A. Then S'(n,r) C S(n,r) for all r,n so P(n) C P(n). If
|P(n)| > 3 then (2} ,/dA), = 0 by 3.3(e) so w, is surjective. From V,, NW,, = W,
we have an inclusion V,! /W, =< V,./W, . It follows from this that if [P(n)| = 1 or if
|P(n)| =2, say P(n) = {r,r+d}, and S(n,r)NS(n,r+d) = 0 (which is the case if r = 2 by
2.1(b)), then w, is injective by 3.3(b). The only case remaining is P(n) = {r,r +d},r > 3
and S(n,r)NS(n,r+d) # 0. If |[S(n,7)NS(n,r+d)| > 1 or if one of S(n,r) or S(n,r+d)is a
singleton, then (Qh/k/dA)n = 0 by 3.2(d),(e) and wy, is surjective. If |S(n,r)NS(n,r +d)| =
1, s(n,r) > 1, and s(n,7 +d) > 1 then dimy(2,/dA), = 1 by 3.3(c). In this case if
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(241/,/dA")n = 0 then w, is an injection; otherwise by 1.1, 2}, /dA" contains non-zero
elements of the form ¢* ™idt™, m; € S'. Any such element maps to a non-zero element in
(Qh/k/dA)n by 3.2(d) and 3.3(c) so w, is surjective. O

3.7. Corollary. For fized non-negative integers m, d and n, with gcd(m,d) = 1, the function
P dimk(Qh/k/dA)n is a unimodal function of p on the interval [1,m — 1].

Proof. Recall that A depends on parameters m,p and d. As p ranges from 1 to m — 1 we get
an increasing sequence of monoids, to which we apply 3.6 in weight n. The assertion is then
immediate from the fact that a composition of k-vector space homomorphisms V; — V5, — V3
cannot be injective or surjective if dimy (V3) < min{dimy V7, dimy V3 }. O

4. The index of regularity of Q1 Ik

The least integer N such that dimy A, = 1 for all n > N is called the conductor or index of
regularity of A. It follows from [4; Ch. 3, (5.24)] that if we define integers ¢ > 1,1 <r <p
by the equation m = gp +r, then the index of regularity of A is gmy+m,_1 —m+1ifr >1
and gm, —m + 1 if r = 1. Similarly, we define the indez of regularity of QY s 10 be the least
integer ngy such that dimy (€} /k)” =1 for all n > ng, which exists by 1.2. In this section we
shall determine ng explicitly.

Let ¢ be an integer with 2 < ¢ < d+ 1. Then
((t+idym —d) — (L + (1 —2)d)mp) =2dm — d (1 + (¢ + (i — 2)d)p)

is positive if ¢ = 0 and decreases as ¢ increases. Therefore we can make the following
definition.

4.1. Definitions. For 2 < ¢ < d+ 1, let iy be the largest integer i (necessarily > 0) such
that the inequality (¢ + (i — 2)d) m, < (¢ + id)m — d holds. Further, let ny = (£ + i,d)m — d
and ry =€+ (ig — 1)d.

These definitions are motivated by the following considerations: S(ng,r, +d) = @ (by the
definition of r4) and S(ng,r, — d) = 0 (by the inequality in 4.1).

4.2. Lemma. For2 <{¢<d+ 1, we have iy = Ceiling [2m;(11_4p] 1

Proof. The inequality in 4.1 <<= i < 2 4+2 - £ <« i < 228 12 Since
i < a <= i< Ceiling[a] — 1 (for 7 an integer and « real), the assertion follows. O

4.3. Remarks. For 2 </ <d+ 1, let i, and n, be as in 4.1.

(i) 4 is a non-increasing function of £ and takes at most two values which are consecutive
integers.
(ii) If 4p = igy1 then ngy = ng +m.
(iii) Suppose that there is an integer [ such that 2 < | < d and 4 = 441 + 1. Then
m =41+ (d—1)m and max{n, | 2 < ¢ < d+ 1} = n;. Otherwise, max{n, |2 < £ <
d + 1} = Ng+1-
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. . . .1 2m—1—Ip . . .
. l — —_— ; =
(iv) Let [ be any integer. Define i Celhng[ —d ] +1, oy = (Il +4d)m — d and

r; =1+ (iy — 1)d. Then n; and r; (but not 4;) depend only on the congruence class of [
modulo d. We chose ¢ with 2 < ¢ < d + 1 for definiteness in our proofs.

4.4. Theorem. Let £ be an integer, 2 < £ < d + 1, let iy and ny be as in 4.1. Then
dimk(Qi‘/k)w = 2 and dimk(Q}L‘/k)n =1 for all n > ny with n = mf (mod d). Moreover,
no =max{n, |2 <L <d+1}+ 1 is the indez of reqularity for Qh/k-

Proof. Since r; > 3 by 4.5(c) below, the assertions follow from 4.6 and 3.4. O

4.5. Lemma. Let ¢ be an integer with 2 < ¢ < d+1 and let iy and 1y be as in 4.1. Then for
an integer i > iy, we have :

(a) m—1< (£+1id—1)p.

(b) 2m —1< (¢ + (i — 1)d)p.

(c) i¢>1 and ry > L. Moreover, i > 2 and ro > 2 + d.

(d) If either (m,p) # (2,1) ori > iy thenm < ({ + (i — 1)d — 1)p.
(e) If (m,p) = (2,1) then S((¢ + id)m, L+ (i — 1)d) = S.

Proof. (a) follows from (b), since d > 1. To prove (b) we may assume ¢ = 4. Then by
substituting the value of i, from 4.2 we get (i, — 1)pd = Ceiling[Qm;}%‘e”]pd > 2m — 1 — {p,
from which (b) follows.

(c) If iy = 0 then from (b) we have 2m — 1 < (¢ — d)p < p which contradicts the assumption
p<m-—1. Soig > 1. If iy =1 then from (b) we have 2m — 1 < 2p which again contradicts
p < m —1. Lastly, r, > £ and 79 > 2 + d by the definition of r,.

(d) Note that p < m — 1 by assumption. If p < m — 1 then (b) = (d) and if p = m — 1,
(b) = m < (£ + (i — 1)d — 1)p. Further, if p = m — 1 and (m,p) # (2,1) then p does
not divide 2m — 1 — ¢p (since p > 1), and so 2’”;%” is not an integer. Therefore m <
l+ @ —1)d-1)p<({l+(GE—-1)d—1)p.

(e) Since (m,p) = (2,1), by (4.2) we have i, =2 if f=2and i, =1if £ > 3. Let r = £ +id
and n = ({+id)m. Then (r—d—-1)p=r—-d—-1>/¢+ (ig—1)d—1 > 2 = m. Since
n=rm = (r — d)m + md, it follows from 2.1(f) that S(n,r —d) = S. O

4.6. Lemma. Let £ be an integer 2 < £ < d+ 1 and let iy, 74, ng be as in 4.1. Then
(a) P(ng) = {re} and S(ng,re) = S. In particular, s(ng,re) > 1.

(b) Let n be an integer with n = mf (mod d) and n > ny. Then there exists an integer r
such that either |S(n,r —d)NS(n,r)| > 1 or one of S(n,r —d), S(n,r) has cardinality
1 and the other equals S.

Proof. (a) Since ng =rem+(m—1dandp <m—-1<(r,—Lp= L+ (i, —1)d—1)p
by 4.5(b), we have S(ng,7,) = S by 2.1(f). From the definition of i, it now follows that
P(’I’Lg) = {’I“g}.

(b) Since n > ny and n = mf (mod d), we have that n = (£ + id)m + jd with ¢ > i,
and 0 < 7 < m — 1. For fixed © > 4y, put r = £ + id. Then n = rm + jd and, since
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0<j<m-1< ({+id)p=rpby 4.5(a), S(n,r) # 0 by 2.1(f). Furthermore, n = rm+ jd =
(r—dm+(G+m)dand 0<j+m<2m—1< £+ (i—1)d)p = (r — d)p by 4.5(b), whence
S(n,r —d) # 0 by 2.1(f). We shall prove that this r is the desired one by considering the
two cases 0 < j < p—1and p <j<m— 1 separately.

Case 1: 0 < j < p-—1. In this case we have S(n,r) = [m, m;,d] by 2.1(f). If S(n,r—d) =S
then we are done. Therefore assume S(n,r —d) # S. Then (m,p) # (2,1) by 4.5(e). Since
n = (r—dm+ (j +m)d, by 2.1(f) we have (r —d—1)p+1 < j+m < (r — d)p and
S(n,r—d) = [mg, my,d] withk=j+m—(r—d—1)p. By 45(d) j—k=(r—d—1)p—m =
(l+(E—1)d—1)p—m>0,s0|S(n,r —d)NS(n,r)| > 1.

Case 2: p<j <m—1. In this case S(n,r) = S by 4.5(a) and 2.1(f), so we are done. [

4.7. Examples. The index of regularity ny can be any congruence class modulo d. This and
Remarks 4.3 are illustrated by the examples in the following tables.

[(m,p,d) [ £ [ ig [ e [ e [ o |
(7,5,3) [ 2] 2 | 5 | 53] 54
39
46
53
60 | 61
16
53
60
67 | 68

[(m.p,d) [ £ ] e | re [ ne |70 |
(7,5,2) [ 2]2]4 [40] 41
3 |33
4140
5 | 47| 48

311
(7,4,2) [ 2] 2
(7a4a3) 312

(7,3,3)

QO DN | WO DO W

NN DN | D DO = =
~J| O T| = | O O1| | WO

The entire Hilbert function of two of the above cases is given in the table below. The box
indicates the index of regularity.

H (m, p,d) ‘ Hilbert function of Q) H

n 0-13 14-27
H(n) {0,0,0,0,0,0,0,1,0,0,1,0,0,1, | 1,0,1,2,0,1,2,1,1,3,2,0,3,2,
(7,5,3) 98-41 2, 53, 54,55
H(n) {1,4,2,2,3,2,2,3,2,2,3,2,2 3 1,2,2,1,2,2,1,1,2,1,1,2,_,1,
H (m,p,d) ‘ Hilbert function of Q}q/k H
n 0-13 14-27
H(n) |0,0,0,0,0,0,0,1,0,1,0,1,0,1, | 1,1,2,1,2,0,3,1,3,2,4,2,3,2,
(7,5,2) 1, 28, . ... 40, 4255
H(n) 3,2,3,2,3,2,2,1,2,1,2,1,2,@, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,
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5. Symmetry and comparison of the case d =1 with d > 1

As usual let A = k[t™ ¢™+4, . t™+P4] and define A’ = k[t™, t™+¢ ¢t for 1 < d' < d.
The notation of Section 2 and Section 3 will be applied to A’ by applying’ to the corresponding
notation for A. For example S’ = [m,m + pd', d'].

In this situation we investigate a curious relationship between the Hilbert functions of
Qh/k/dA and Q1 ,/k/dA’ when p is not “too small” compared to m and show that, if p = m—1,
then the Hilbert function of QY s/ dA is symmetric, a generalization of [6; (8.5)]. We were
initially interested in the case d’ = 1 but essentially the same proof works for d’ > 1.

Let h(n) = dimy (2, /dA), and ' (n) = dimg (2}, ,/dA"),. Given two arithmetic pro-
gressions a, a+d, ..., a+sdand d', a +d', ..., a+ sd, we will say that h and b’ coincide
on [a,a + sd,d] and [a,a' + sd',d'] if h(a +id) = W' (a' +id') for i = 1,2,...,s.

5.1. Theorem. Let I = 2m + d,2m + (2m — 1)d,d], I' = 2m + d',2m + (2m — 1)d', d'],
J=02m+d,2m+ 2m — 1)d] and J' = 2m + d',2m + (2m — 1)d'].

(a) If m/(2+d") <p<m-—1then h and h' coincide on the intervals I and I' respectively.
(b) If 2Zm —1)/3<p<m—1then h(n) =0ifn&J and K'(n') =0 ifn’ ¢ J.
(¢) If m =p+1 then h is symmetric on the interval J and 0 outside J.

Proof. (a) Define o : I' = I by 2m + jd' — 2m + jd for 1 < j < 2m — 1. Then we need only
show that h(o(n')) = W'(n') for n' € I'. If n € I then P(n) = {r|S(n,r) # 0} C {2,2 + d}
(cf. 2.1(g)), and if n’ € I' then P'(n') C {2,2+ d'}. In view of 2.1(b) and 3.4 it suffices to
show that

(i) if n’ € I' then 7(5'(n',2)) = S(o(n'),2) where 7 is the bijection 7 : S" — S defined by
m+ jd — m—+jd, 0 <j <p, and

(i) o{n' € I' | s'(n',2+d)>1})={nel]|sn2+d) >1}.

(i) follows from the equality o(a + b) = 7(a) + 7(b) for all a,b € S’. For (ii) note that
{n|sn,2+d)>1}=[2+d)m+d,2+d)(m+pd)—d,d] and {n|s(n,2+d) > 1} =
[(24d)m+d, (2+d)(m~+pd)—d, d] by 2.1(f). Since o((2+d")m+d') = (2+d)m~+d the proof will
be complete if (2+d')(m~+pd')—d' > 2m+(2m—1)d’ and (2+d)(m~+pd)—d > 2m+(2m—1)d.
These inequalities are equivalent to m/(2 + d') < p and m/(2 + d) < p respectively. The
second follows from the first, which is our hypothesis.

(b) Note that J and J' are the entire intervals containing the arithmetic progressions I and
I' respectively. It is enough to prove the result for h (since the result for A’ is obtained by
putting d = d'). For n < 2m + d = the left endpoint of J, s(n,r) <1 so h(n) = 0 by 3.4. If
£>3then 2m —1—¢p < 2m —1—3p < 0 (by hypothesis). Therefore, by 4.2, i, < 1, and by
4.5(c), ig > 1, s0 i, = 1 for £ > 3, whence r, = £ and ny = (¢ + d)m — d. Furthermore i, = 2
by 4.5(c) and 4.3(i), so 1o = 2+ d, ne = (2+ 2d)m — d. Thus max{n, |2 < ¢ <d+1} =ny
which is the right end point of J. The assertion follows from 4.4.

(c) The midpoint of the interval J is 2m + md. Let p : J — J be the reflection n —
2(2m + md) — n. We have to show that h(p(n)) = h(n) for n € J which follows from the
observations below:
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(i) Let Iy = I and for 3 < ¢ < d+1,let I, = [¢m +d,fm + (m — 1)d,d]. Then U1, is a

disjoint union and h = 0 outside U‘Z;L;Ig.

(ii) p(I2) = I and h(p(n)) = h(n) for n € L.
(iii) For £ > 3, p(Iy) = Iyya—¢ and h(n) =1 for all n € I,.

Proof of (i): The disjointness follows from the fact that ged(m,d) = 1. From the proof of
(b) we have ro =2 +d, no = (2+ 2d)m — d, and, for £ > 3, r;, = £ and ny = ¢m + (m — 1)d.
Therefore, since n, is the right hand end point of I, for 2 < / < d + 1, we have, by 4.4,
h(n) = 0 if n = ¢m (mod d) and n > ny. If n = ¢m (mod d) and n < ¢m + d, then S(n, ) is
either {m} or ), and so h(n) = 0 by 3.4.

Proof of (ii): In view of (a), we may assume that d = 1. This case was proved in [6; (8.5)]
(see 5.2 for further discussion).

Proof of (iii): From p(¢m+d) = (d+4—¢)m+(m—1)d and p(¢m+(m—1)d) = (d+4—£€)m+d
the first part follows. If n € I, then n < (¢ + d)m so P(n) = {¢} by 2.1(g), s(n,¢) > 1 by
2.1(f), and h(n) =1foralln € I,, 3 < ¢ <d+1 by 3.4. O

5.2. Examples. We illustrate 5.1 with several examples (each with d' = 1).
(1) Let (m,p) = (7,5). Then A'(n) is displayed in the following table.

l|n h(n) |
2 5,27 | 1, 1, 2, 2, 3, 2, 2 2 2 1, 1, 1, 1,

If d = 3 then h(n) is displayed in the rows of the following table according as n varies in the
congruence class = ¢m (mod d), 2 < /¢ <4=d+ 1.

ln h(n) |

2 [17,53,3] 1-,-1-,-,2-,-,2,-,-,3,-,-,2-,-,2,-,-,2-,-,2~,-,1-,-,1,- - 1-,-,1,
31 [18,51,3] |-,0,-,-,0,-,-,1,-,-, 1~ 1,- -, 1~ - 1,/ -, 1,-,-,0,-,-,0,-,-,0,-,-, 0,-, -,
4 [19,52,3] -,-,0,-,-,0-,-,0,-,-,0~,-,1-,-,1,-,-,1,-,-,1,-,-,1,-,-,1,-,-,0,-,-,0,-,
[17,53] 1,0,0,1,0,0,2,1,0,2,1,0,3,1,1,2,1,1,2,1,1,2,1,1,2,0,1,1,0,1,1,0,0,1,0,0,1,

Note that h'(n) from the first table is same as the £ = 2 row of the second table, illustrating
5.1(a). In this example A’ is not symmetric (about the midpoint 21 of I’ = [15,27] which is
indicated by the down-arrow ).

(2) Let (m,p) = (7,6). Then, as in the example (1), h'(n) and h(n) for d = 3 are displayed
in the following two tables:

L|n K(n) |
215,27 |1, 1, 2, 2, 3, 3, 3, 3, 3, 2, 2, 1, 1,
n h(n)
[1755353] 1)') E 17': ', 2a'a K 2a'a T 3)') E 37'7 T 3)') K 3a'a T 35'5 K 2a'7 T 2)') Ty 1)') T la

[1875113] ™ 07'7 K 07'7 K 1)') E 17'7_7 ]-7'7 K 17'7 ™ 17') E 17'7 K 0:': K 07'7 ™ 07_7 ™ 07'7 K
[]—9’5253] T 07_7 E 07'7 K O:': I 07_7 ™ 17'7 T 17'7 B 1:': I 17'7 E 17'7'7 17'7 B 07'7 T Oa'v
[17,53] [1,0,0,1,0,0,2,1,0,2,1,0,3,1,1,3,1,1,3,1,1,3,1,1,3,0,1,2,0,1,2,0,0,1,0,0,1,

W NS
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Again h'(n) from the first table is same as the £ = 2 row of the second table, illustrating
5.1(a). This time A’ is symmetric (about the midpoint 21 of I' = [15, 27] which is indicated
by the down-arrow |), illustrating 5.1(c).

In the above two examples the rows corresponding to £ = 3 are equal and so are the rows
¢ = 4. Under the reflection about the midpoint 35 of J = [17,53] the rows £ = 3 and £ = 4
are interchanged, illustrating 5.1(c) part (iii) in the proof.

(3) In the above two examples the row ¢ = 2 contains contributions to h(n) from V,,, /W, .,
r = 2,2+ d. To illustrate this, in view of 5.1(a), it suffices to consider d = 1. For (m,p,d) =
(7,5,1) and (7,6,1), this is displayed in the following tables respectively.

r n dimy, (Vi /Wiy
2 52711, 1, 2, 2, 3, 2, 2 1, 1, 0, 0, 0, 0
3 1527110, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1

W) | [1627] |1, 1, 2, 2, 3, 2, 2, 2, 2 1, 1, 1, 1

r n dimg (Voo /W)

2 152711, 1, 2, 2, 3, 3, 3, 2 2 1, 1, 0, 0
3 1527110, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1
W(n) | 1527 |1, 1, 2, 2, 3, 3, 3, 3, 3, 2, 2 1, 1

In each case the contributions for » = 2 and r = 3 are individually symmetric, but the sum
is symmetric only in the case p = 6. More generally, for any m the sum is symmetric if and
only if p = m — 1. This symmetry seems to be an accident.

5.3. Remark. Even though the Hilbert function h of Q) Ik /dA is symmetric, the Hilbert
function H of QY s, need not be symmetric. This is because the equality H(n) = h(n) +1 of
3.4(a) holds only when A, # 0. An example is (m,p,d) = (7,6, 3).

6. QY for ¢ > 3

The natural homomorphism 7 : A — A/m? of k-algebras induces a homomorphism of A-
modules Q?q/k — QgA/mQ)/k for all ¢ > 0. In this section we show that if ¢ > 3 then this map
is an isomorphism. More generally we have

6.1. Theorem. Let K be a commutative ring in which 2 is invertible and let R = K[X,, ...,
X, be the polynomial ring. Let a be an ideal in R with a C (X, ..., X,)? and X, X5—X,X; €
a whenever a+f=v+06,0<q, 8,7, 0 <p. Let C = R/a = K|zg,...,xp| and let m be the
mazimal ideal of C' generated by xo,...,x,. Then for ¢ > 0 there is an isomorphism of K-
modules ) o)/ =5 AYm/m?) @A (m/m2) and for ¢ > 3, the K -algebra homomorphism
m: C — C/m? induces an isomorphism T, : Q%/K — Q((]C/m2)/K of C-modules.

Proof. Note that C/m? is isomorphic to K ®m/m? as a K-algebra, where the multiplication in
K &m/m? is given by (a,v) - (b,w) = (ab,aw +bv), a,b € K and v,w € m/m?. Let P,([0, p])
be the set of subsets of {0, 1,...,p} of cardinality ¢ and, for I € P,([0, p]), let min(I) denote
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the smallest element of I. For I € P4([0,p]), we write z; = z;, A+ Az;, (€ A%m/m?)) and
der = dz, A---Ndz;, (€ QgC/m2)/K)7 where i; < iy < --- < 4, are the elements of I. If K is a
field of characteristic # 2, then it was proved in [7; Theorem 1] that for all ¢ > 0 there is an
isomorphism 0 : Q) 5y — A?(m/m?) & AT (m/m?) of K-modules such that §(dz;) = z;
and 6(z;,dxr) = z;, A x7. The same proof works in the case of any commutative ring K in
which 2 is invertible. Since Q. is generated by {dz; | I € Py([0,p])} as a C-module, it
follows from 6.2 below that, for ¢ > 3, {dz; | I € P,([0,p])}U{zi,dz; | I € P([0,p]) and 0 <
ip < min(I)} generates Qé/K as a K-module. Under the map 6 o m; this generating set is
mapped onto the K-basis {z; | I € P,([0,p])} U{ziyz; | I € P4([0,p]) and 0 < 4y < min(1)}
of A%(m/m?) ® A% (m/m?). Therefore the map 6§ o 7} is an isomorphism and hence so also
Is 7. g

6.2. Lemma. With the same notation and assumptions as in 6.1, for integers 0 < i, j, a, 3,
7,6 < p we have in Q?(’J/K:

(a) If o < B <y then xodzo A dxg A dry = zgdxe Adrg Adz, = 2,dxe Adzg Adx., = 0.
b) z,dxsg ANdx, Ndrs = —xgdxy, A de, N dxs = xdxg N dxg ANdes = —zsdxy, A dxg A dz.,.

B v B v v B 8 v
(c) wixjdry Adxg Adzy, =0.

Proof. (a) The assertion follows by using induction on v — a and the same arguments as in
[7; (1.2)].

(b) In view of (a), we may assume that «, (3, v, ¢ are distinct and o < # < v < 0. The
assertion follows by using the same arguments as in [7; (1.3)].

(¢) In view of (a) and (b) we may assume that i < j < a < # < 7. Then by (b) we have
2ixjdTo Ndzg N dry = —2;24dx; ANdxg Ndry = —Todz; Adag N dry, = ox;dx; ANdxg A dz,
and z;z;dr, A dxg A dry, = xjr,dre N\ d2g A dr, = —x2,dz; A dzg A dz,. Therefore
2z;xjdry A dxg Adry =0 and so x;x;dx, A dxg A dz, = 0, since 2 is invertible in K. O

6.3. Corollary. Let m,p,d be positive integers with 1 < p < m — 1, ged(m,d) = 1 and
let mi = m+id, 0 < i < p. Let k be a field of characteristic # 2, A = k[t™,... 1™"],
and let m be the mazimal ideal of A generated by t™°, ..., t"™. Then, for ¢ > 0 there is an
isomorphism of k-vector spaces /) =5 A%(m/m?) @ A (m/m?), and, for q > 3, the
k-algebra homomorphism © : A — A/m? induces an isomorphism Q?q/k — Q‘(IA/mQ)/k of
A-modules.

Proof. We use the notation of Section 1. Since p C (Xo,...,Xp)?* and X0 X5 — X, X5 € p
whenever a+ =7+, 0 < a, 3,7, < p, the corollary follows from 6.1. O

6.4. Remark. One can apply 6.1 in situations other than monomial curves, for example, in
the case of the coordinate axes, i.e., C = K[Xj,...,X,]/a where a is the ideal generated by

6.5. The deRham Complex. Recall that the deRham complex

d d d d d d
0= A5 Q) —= Q) —=- =0, = -
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of A/k is a complex of graded k-vector spaces (with degree of the differential d equal to 0)
and is exact (characteristic of k£ is 0 is needed here) at each ¢ > 1 by [6; Theorem (1.2)].
Combining this with the isomorphism in 6.3 we get a complex of graded k-vector spaces

0—A-5 04, -5 0%, -5 A(m/m?) @ At(m/m?) -5 Af(m/m?) & A®(m/m?) - -,

where d maps A?(m/m?) isomorphically onto A4(m/m?) for ¢ > 4. Therefore we have a short
exact sequence of graded k-vector spaces

(6.6) 0— QY /dA -5 Q2 5 A (m/m2) — 0.

From the short exact sequence (6.6) we can determine the Hilbert function of Q2 s, it we
know that for Q) ,/dA and A*(m/m?). The Hilbert function of 2}, , /dA was determined in
3.4 and the determination of the Hilbert function of A®(m/m?) is described below.

6.7. Lemma. With notation and assumptions as in 6.3, for non-negative integers q, n with
g<p+1, andfzq(ﬂ"rk@d) we have

(a) dimg (A%(m/m?)) s the coefficient of T=/4 in the Gaussian polynomial

pra] 0@ o))
¢ lr T (T )Te =) (T-1)

(6.7.1)

(b) The largest weight n for which dimy (A?(m/m?)) #04s Y7 . m; and the smallest

weight 18 Zg;ol m;.
(c) The largest weight n for which (Qi/k)n # 0 is max{3m+ 3d(p— 1), ng — 1} where nqy is
as in 4.4.

Proof. (a) The k-vector space m/m? is graded with basis elements of weights m = mg, m,, ...,
my, respectively and {z; | I € P4([0,p]) (see the proof of 6.1 for this notation) is a k-
basis of A?(m/m?). Therefore dim;(A%m/m?), is the number of partitions of n as the sum
of ¢ distinct elements of {my,...,m,}. As noted in [7], by subtracting mg from the first
integer, m; from the second, ..., m,_1 from the g¢-th, we see that this is the number of
partitions of (n — f)/d as the sum of ¢ non-negative integers, each at most (p+ 1 — ¢), where

f= Zg:_é m; = q(m + @ d). Now the assertion follows from [1; pp. 33, 35].
(b) The elements z,_g11 AZp—gra A+ Axp and Tg Azy A+ - Axgy € A(m/m?) are of largest
and smallest weight respectively.

(c) From (b), 3m+ 3d(p—1) is the maximum n such that (A*(m/m?)), # 0 and by definition
ng — 1 is the maximum n such that dimy(Q} /k/dA)n # 0. Therefore the assertion follows

from (6.6). O

The examples (m, p,d) = (7,5,3) and (7,4, 3) show that either of the two numbers in 6.7(c)
can be the maximum, these pairs are (57,53) and (48, 60) respectively.

The Gaussian polynomials have been much studied, with quite a large literature. The
following is useful for the discussion of the Hilbert function of Q Ik
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6.8. Remark. Let p and ¢ be any non-negative integers with ¢ < p. Then the non-zero

coefficients of [‘Z ] are symmetric and unimodal. The first part is easy and the second part
T
is well-known but deep. For the latter see [8]'.

6.9. Example. For (m,p,d) = (7,5,3), the following table illustrates the use of (6.6) to
compute the Hilbert function of Q7 ,, where h(n) = dimg(Q}, ;/dA)s, Ha(n) = dimy,(Q% ,)n
and \3(n) = dimy(A3(m/m?)),. The row of h(n) is from 5.2. The row of A3(n) is computed
using 6.7 as follows:

[6] _ (T -n)T-1)(T"-1)

= 2 3 4 5 6 7 8 9
3, (T°—1)(T2—1)(T - 1) =1+T+2T°+3T° + 3T +3T° +3T° + 2T " + T° + T

and the coefficient of T% in [g] is A3(31 +30), 0 < i < 9. The Hy(n) row is the sum of the

other two rows by (6.6).

n 16-58

h(n) 0,1,0,0,1,0,0,2,1,0,2,1,0,3,1,1,2,1,1,2,1,1,2,1,1,2,0,1,1,0,1,1,0,0,1,0,0,1,0,0,0,0,0
H,(n)[0,1,0,0,1,0,0,2,1,0,2,1,0,3,2,1,2,2,1,2,3,1,2,4,1,2,3,1,1,3,1,1,3,0,1,2,0,1,1,0,0,1,0
N\s(n) [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,2,0,0,3,0,0,3,0,0,3,0,0,3,0,0,2,0,0,1,0,0,1,0

It is clear from (6.7.1) that the Gaussian polynomial is a product of the cyclotomic polyno-
mials ®,. However, the question remains as to which cyclotomic polynomials occur. Because

[p] = [ P ] , we can assume that ¢ < p/2.
ql,  |p—dl;

6.10. Theorem. Let @, be the cyclotomic polynomial of primitive r-th roots of 1. Let p, q
be positive integers with ¢ < p/2. Then [Z] is the product (without repetition) of the ®,

T
such that r satisfies one of the following two conditions:

(i) » > q and r divides one of the integers p,p—1,...,p—q+1.
f)2<r<qandifp=s. (modr), 0 <s. <r, ¢g=s (modr), 0 <s, <r, then
0<s <s,—1.

Proof. For 1 < i < ¢, let F;(T) = (T?~**' — 1) and G; = (T* — 1). Then F(T) = F;-- - F,
is the numerator of (6.7.1) and G(T') = G, - -- G, is the denominator of (6.7.1). Note that,
since ¢ < p/2, we have F; # G, for all 1 < 4,j < ¢. Throughout the following proof we use
the well-known fact:

(6.10.1) ®, isirreducible and divides X" — 1 if and only if r divides n.

Case 1: r > ¢: In this case ®, does not divide G(T') and divides at most one of Fi,..., F,.
Now, the assertion follows from (6.10.1).

!Thanks to Dom de Caen for telling us about this reference.
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Case 2: r < q: Since X — 1 divides F; and G; for all 1 <17 < ¢, ®; does not divide z] .
T

Write p = a'r + s, and ¢ = ar + s with a’,a € Z*, 0 < 5!, s, < r. Then Floor[g/r] = a an
by (6.10.1) we have

(6.10.2) {G; | @, divides Gs, 1 <i<q} =|{jr|1<j<a} =a.

Sincep—qg+1=(ad —a)r+(s. —s,)+ 1< (a’ —a+1)r, we have

{(@—H)r|0<j<a—1}, if st > s,

"y, ivi — <i<g}=
{p—i+1[rdividesp—i+1,1<i<q} {{(a’—j)r|0§j§a}, if s/ < s,

and so by (6.10.1), we have

. . a if 8 > s
10. ; 1 <i<qg=4% s, = sr,
(6.10.3) {F; | ®, divides F;, 1 < i < g}| {a—l—l, i sl < s
From (6.10.2) and (6.10.3) it follows that ®, divides [p if and only if 0 < ¢/ < s,. O
T

6.11. Example. To illustrate 6.10 consider ¢=10 and p=24. Then we have {r|r satisfies (i)
of 6.10}={11,12, [15,24]}. For r €[2,9] we successively have (p,q)=(24,10)={(0,0), (0,1),
(0,2),(4,0),(0,4),(3,3),(0,2),(6,1)} (mod r). These are the pairs (s}, s,) for r € [2,9] and
so {r | r satisfies (ii) of 6.10 } = {3,4,6,8}. Therefore [?g = 030, DD Dy, D1p [[ 05 i
by 6.10. !
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