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Abstract. A method for deciding linear disjointness and freeness of finitely gen-
erated extension fields is given. The techniques used are based on a classical de-
scription of linear disjointness and on the Chow form. The required Grébner basis
techniques do not depend on tag variables. Finally, the solution obtained can also
be used to solve the implicitization problem without involving tag variables.

1. Introduction

Let k(w) := k(wi,...,w;) be a field finitely generated over a ground field k, k(z) :=
k(x1,...,xm) and k(y) := k(yi,...,y,) subfields of k(w), k(z) = k(z1,...,2,) an inter-
mediate field of £ and k(z) N k(y). In [9] a method for solving the following problems is
given:
1. Decide if k(x) and k(y) are linearly disjoint over k(z).
2. Decide if k(x) and k(y) have a subfield k(z') in common such that k(z) and k(y) are
linearly disjoint over k(z') (where 21, ..., 2, € k(w)).
3. For k(z) and k(y) being linearly disjoint (necessarily over their intersection (see [9,
Prop. 15])) construct generators for k(z) N k(y) over k.

4. Decide if k(z) is free from k(y) over k(z).
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The present paper gives an alternate solution to the above problems which is based
on the classical descriptions of linear disjointness and freeness as given in [18]. By means
of the Chow form we obtain a solution which in contrast to the method described in [9]
does not make use of so-called tag variables. Grobner basis computations involving many
variables tend to be costly. Therefore we do without these additional variables and make use
of extensions of the ground field instead. The idea of extending the ground field in order to
avoid additional variables also occurs in the context of the inversion of birational maps ([13])
and the functional decomposition of rational mappings ([10]), for instance.

In Section 5 we describe how the same technique can also be applied to solve the implic-
itization problem in computer aided geometric design without making use of tag variables.

In a short annotation we point out that in a sense the use of Grobner basis techniques for
deciding linear disjointness was suggested in [18] already. Therefore it might be appropriate
to take Weil’s work into account when dealing with the history of Grobner bases.

2. Freeness, linear disjointness, and the Chow form

The key to the constructive solution of the above problems is the ideal!

B/ =1p € k(x)[Z1,..., 2] : p(y1,-- -, Yn) = 0}.
To illustrate its importance we remind of the following characterization of linear disjointness:

Recall 1. [18, Ch. I, §6, Theorem 3| Let k' < k(z). Then k(x) and k'(y) are linearly disjoint
over k' if and only if Py k) has a basis in K'[Z] = K'[Z1, ..., Zy)].

In order to use this result to obtain a solution for the first of the above stated problems we
also need

Recall 2. [18, Ch. I, §7, Lemma 2] Let 3 < k[Z] be an ideal. Then, of all the subfields k' of
k such that J has a basis with coefficients in k there is a smallest field ko, contained in all
the others.

In the sequel this field kg is referred to as the minimal field of definition of J. Using this
terminology we immediately obtain the following three conceptual steps for solving the first
of the above problems by applying Recall 1 to &' = k(2):

1. Construct a basis of By /k(a)-

2. Derive a finite generating set of B(,) k) With all coefficients being contained in the
minimal field of definition of P,y x(s). Denote the set of coefficients in this basis by B.

3. Now k(z) and k(y) are linearly disjoint over k(z) if and only if B C k(z) (cf. [10] for
deciding field membership without tag variables).
The second and third problem can be solved in the same manner: To check whether there is

a common subfield k(z') of k(x) and k(y) with k(z) and k(y) being linearly disjoint over k(z’)
we simply have to verify whether the above set B (which by definition is a subset of k(x)) is

'In [9] this ideal is denoted by Ji(y)/k(z)- However, as the definition depends on the generating set y, we
adopt the notation of [18].
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contained in k(y). Similarly, for the third problem we apply Recall 1 to &' := k(z) Nk(y): If
the fields k(x) and k(y) happen to be linearly disjoint, the set B is necessarily the required
generating set of k(x) N k(y) over k.

Before dealing with the above three steps in detail we first consider the simpler problem
of deciding freeness, as the technique used here will also prove useful when dealing with linear
disjointness. The key for deciding freeness constructively is

Recall 3. [18, Ch. I, §2, Proposition 2| k(z) is free from k(y) over k(z) if and only if
transdeg(k(x,y)/k(x)) = transdeg(k(y, z)/k(2)).

To determine the required transcendence degrees we can use the trivial identitity
transdeg(k(z,y)/k(x)) = transdeg(k(w)/k(x)) — transdeg(k(w)/k(z,y))

(and analogously transdeg(k(y, z)/k(z)) = transdeg(k(w)/k(z)) — transdeg(k(w)/k(y, 2))).
For computing transdeg(k(w)/k(x)) resp. transdeg(k(w)/k(z,y)) [10, Lemma 2] suggests

to determine the dimension of the prime ideal B,) k() resp. P(w)/k(zy)- This can be done

by means of a Grébner basis computation, for instance ([8, Theorem 1]). Using the method

in [10] a basis of P(w)/k() can be found without introducing tag variables; an approach to

determine the transcendence degree by means of tag variables is discussed in [16] and [6].
In summary we have

Lemma 4. Procedure 1 decides for finite subsets x,y,z C k(w) whether k(z) is free from
k(y) over k(z) without introducing tag variables.

Procedure 1

In: z,9,2z C k(w)
Out: true, if k(x) is free from k(y) over k(z)
false, otherwise

begin
G < any Grébner basis of Pw)/k) (see [10]).
G < any Grébner basis of Pw)/k(z,y) (see [10]).
G3 < any Grobner basis of PB,) k() (see [10]).
G4 < any Grébner basis of Pw)/k(y,z) (see [10]).
Derive dim(m(w)/k(m)), dim(‘l?(w)/k(m,y)), dim(‘:ﬁ(w)/k(z)), and dim(m(w)/k(y,z)) from
G1, Go, G3, and G4 via [8, Theorem 1].
if dim(PBw)/k@)) — AN PBw)/rey) = Am(P/re) = An(Puw) i)
then return true
else return false
fi
end
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Deciding linear disjointness is a bit more involved, as we do not only need the dimension but
also a generating set of P,y /(). To reach this goal without using tag variables we can apply
a classical tool from algebraic geometry, namely, the Chow form:

Denote by t := dim(*P(,)/x) = transdeg(k(z1, ..., x,)/k) the transcendence degree of the
extension k(x1,...,%,)/k, and let {u;; : ¢ = 1,...,t+1, j = 1,...,m} be algebraically
independent over k(x). Furthermore, we write Fiy/,(u; Z) € k[ua1, ..., Urpim, Z1y - -+ Zeg1] \
{0} for the up to a constant factor in £* unique irreducible polynomial with

F(w)/k (u; Z ULy - ,Z ut+1jxj> =0.
7j=1 7j=1

Then following [15] we refer to F{)/x as the Chow form of PBz)/x. In particular, the number of
indeterminates of the form Z; occurring in F{,)/, equals transdeg(k(z)/k). Note that if Fig/k
did not contain all of Z1, ..., Z;,1 there would be an algebraic dependence over k(u) among
t sums of the form ) wu;jz;. This would contradict the equality ¢ = transdeg(k(z)/k) =
transdeg(k(u)(z)/k(u)).

Defining polynomials of the variety V(%)) in affine m-space over an algebraic closure
of k£ can be derived from F{;),, by means of [17, §5 B.]: Introduce new variables X, ..., X,,,
and for i =1,...,t+ 1 replace Z; by Z;”Zl u3; X in Figy/k(u; Z). Then the coefficients of

F(w)/k (u, Zulej, ceey Zut+1ij> € k[X][’U,]
j=1 j=1

form an ideal A/, < k[X] having V(B(z)/x) as associated locus. Unfortunately 2/, is not
necessarily prime, and can even have embedded primes (see [15] for an example). However,
(z)/x has a unique isolated primary component whose associated prime equals PBz)/x. In
particular, we can determine generators for P,/ by computing the associated primes of
(z)/k (see [14], [4] and the references given there), followed by choosing the associated prime
of maximal dimension (again, the dimension of the prime ideals can be determined by means
of [8, Theorem 1]).

Note that PP,k is in particular the radical of the equidimensional hull of 2y, (resp.
for k(x)/k separable equal to the equidimensional hull of )/, as in this case the isolated
primary component is prime (see [7, Theorem 5])). Therefore also the algorithms in [4] for
determining the (radical of the) equidimensional hull of an ideal can be applied here.

Having in mind the three conceptual steps given above we are left to find procedures for
e computing the Chow form F{,)/ and

e determining the minimal field of definition £y of an ideal 3 < k[Z].

3. Computing the Chow form and the minimal field of definition of an ideal

If the transcendence degree ¢ of k(z)/k is known then finding Fi;)/; reduces to computing
the minimal polynomial of »77" w125 over k(z,d w1y, ..., > uyz;). In our concrete
situation we have to find the transcendence degree of an extension of the form k(z,y)/k(x)
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where z and y are rational functions in the generators w of k(w). For this we can proceed as
in the above procedure for deciding linear disjointness, namely, compute

transdeg(k(x, y)/k(x)) = dim(‘B(w)/k($)) — dim(m(w)/k(z,y))

via [10] and [8, Theorem 1].

Finally, to find the required minimal polynomial itself—again without tag variables—we
can reuse the Grobner basis of B(y)/k(s), Which has proven useful in determining the transcen-
dence degree, by applying [11, Algorithm 3.2]. The latter procedure actually was designed
for computing minimal polynomials over intermediate fields of a purely transcendental ex-
tension k(w)/k; this restriction is not required in the proof of its correctness, however, and
it is sufficient to have a Grobner basis of the ideal ‘B, x(z) to apply this algorithm.

For finding the minimal field of definition ko of an ideal J < k[Z] in [9] and [12] the
following approach is suggested: Determine a reduced Grobner basis G5 of J. Then £k is
the field which over the prime field of £ is generated by the coefficients of the elements of
G5. The correctness of this method is verified easily: G5 is unique and —via Buchberger’s
algorithm—can be derived from any finite basis of J without extending the field generated
(over the prime field) by the coefficients of the polynomials in this initial generating set.

At first glance using a reduced Grébner basis for determining the field of definition may
seem a bit strange. But in fact, already the proof of the existence of the minimal field of
definition of an ideal given in [18] makes use of a finite canonical generating set. To illustrate
the connection between these (Weil) bases and Grébner bases we restate part of Weil’s proof
of Recall 2.

To derive this result Weil looks at the set of terms (=monic monomials) T(Z) in the
variables Z. Using some linear order < we may take T(Z) for a w.r.t. < increasing sequence
(t:)32,- Omitting all terms ¢; from T(Z) with ¢; — Z;;B ajt; € J for some o € k we obtain
a subsequence (¢;,)32,. Now define the sequence of polynomials (p;)$2, via

ti — Y, axt;, with ay € k such that ¢; — Y ayt;, €T3, otherwise.

A<t i) <t

{ 0, if i = i) for some )\ € Ny,
pi =

Using Hilbert’s basis theorem Weil concludes that for some r € Ny the polynomials py, . . ., p,
form a basis of J. At this conclusion it is implicitly used that < is of type w, otherwise the
required integer r need not exist (think of J = (7, Z5) < k[Z;, Z5] and < a lexicographical
term order). So after fixing a linear order of type w and choosing r minimal with py, ..., p,
being a basis of J the set W< (J) := J,_,{p:}\ {0} forms a canonical generating set of J. Weil
proves that the coefficients of the polynomials in this set over the prime field of £ generate
the required field of definition k.

Observation 5. In general this canonical (Weil) basis is not a Grébner basis w. r.t. <.

Proof. Let J = (Z12 — 7y, Z1 Zy* — 1) < Q[Z, Z;] and denote by =< the graded reverse
lexicographic term order with Z; < Z5. Then the sequence of terms (¢;)$°, starts with

(tO: tla t2, . ) = (1a Zla Z?a Z12a ZIZQa 2225 Zl?’a Z12Z2a Z1Z22a 2235 .. ) ’
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and we obtain
(po,p1, P2, -.-) = (0,0,0, Z1* — Z5,0,0, Z1* — Z1Z9, Z1* Zy — Z5°, Z1 Z5" — 1, Zs° — 7).
So the canonical (Weil) basis computes to
W<(3) = {ps, pa, 5,06} = {Z1° — Z5, Z1° — Z1 Z9, Z1* Zy — Z5°, Z1 Z5" — 1} .

In particular, it is not a Grébner basis, because p1g = Zo> — Z; € J cannot be reduced modulo
W< (7). O

Note that if we add pio to W<(J) where J is the ideal in the above proof we obtain a Grébner
basis of J. This is not by coincidence, as in fact a Weil basis can always be extended to a
Grobner basis by carrying on Weil’s procedure:

Observation 6. If < is a term order of type w, I < k[Z], and (p;)$2, defined as above then
there exists an s € Ny such that \J,_o{pi} \ {0} is a Grébner basis of J w.r.t. <.

Proof. As explained in [18, proof of Lemma 2| every polynomial in J is a finite k-linear
combination of some of the p;,i € Ny. Hence, we may select a finite subset W C {p; : i € Ny}
such that all elements of the reduced Grobmer basis of J w.r.t. =< can be expressed as a
k-linear combination of the polynomials in W. Setting s := max{i € Ny : p; € W} yields the
desired natural number s. Il

Observation 7. If W<(J) happens to be a Grébner basis already it does neither have to be
reduced nor minimal.

Proof. Denote again by < the graded reverse lexicographical term order on T(Z;, Z3) with
Zy < Zs. Then the sequence of terms (¢;)5°, starts with

(tosti,to,---) = (1,21, Zo, Z1%, 71 79, 77, . . ),

and the Weil basis of (7, Z22) Q[ Z1, Zs] computes to {77, VARAYAY ZQQ}. In particular it
is a non-minimal Grébner basis w.r.t. <. O

In summary we have

Lemma 8. Procedure 2 decides for finite subsets x,y,z C k(w) whether k(z) is linearly
disjoint from k(y) over k(z) without introducing tag variables.



R. Steinwandt; J. Miiller-Quade: Freeness, Linear Disjointness and Implicitization. .. 63

Procedure 2

In: =z,y,2 C k(w)
Out: true, if k(x) and k(y) are linearly disjoint over k(z)
false, otherwise

begin
Compute transdeg(k(z,y)/k(z)) (see above)
Compute Fiy) k() (using [11, Algorithm 3.2])
Derive equations for 2,y k() (see above)
Compute the associated prime By k() of the isolated primary component
of A (y)/k(z) (using one of the methods described in [14], [4])
B < the coefficients of a reduced Grébner basis of B(y)/k(z) W.T.t. some term order
if B C k(z) (see [10])
then return true
else return false
fi
end

Of course, to check whether there exists a common subfield k(2') of k(z) and k(y) with
k(x) and k(y) being linearly disjoint over k(z') we simply have to verify the inclusion B C
k(y) instead of B C k(z) in the if-statement. Similarly, if £(z) and k(y) are known to be
linearly disjoint (necessarily over their intersection) then the set B computed above satisfies

k(z) Nk(y) = k(B).

4. An example from invariant theory

To illustrate the above procedure we resume an example from invariant theory given in [9].

Let wy, ws be algebraically independent over C. Then the fields C(w;°°, w9>®, wiw,) and
C(wy + wo, wywy) are linearly disjoint over their intersection, and (using a suitable two-
dimensional representation) the latter equals the field of invariants CP'° of the dihedral
group Dygg (see [9, Section 6] for details).

Applying the above ideas we can construct generators for CP° over C. For this we first
determine the Chow form F(w150,w250,w1w2)/(C(w1 +ws,wi ws) of m(w150,w250,w1w2)/(C(w1+w2,w1w2): Since
both C(wy, ws)/C(w1®°, we™°, wiwsy) and Cwy, ws)/C(w; + we, wiws) are algebraic we have

F(w150,w250,w1UJ2)/<C(w1 +wa,wiwe) € Clwr + wa, wiwa) [ur1, Uiz, Ur3; Z1].

Using [11, Algorithm 3.2] to compute the minimal polynomial of u1w;%® + u19w9%° + 13w we
over C(u)(wy + wy, wiws) we obtain the Chow form:

72— ((ur1 + w12) (w10 + we®0) + 2uzwiws) - Z4
+ (U11w250 + upw;® + U13W1W2) (u11w150 + urpwe®® + U13W1W3).
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From this we can derive defining polynomials of V (B w50 1550 1, ws)/Clws +ws,wiwz)) DY substitut-
ing Zy < u11 X1 4+ u12Xs + u13 X3 where Xy, X5, X3 are new variables, followed by extracting
coeflicients:

X32 — 2w1w2 . X3 + (TUﬂUQ)Q,

X12 — (11]150 + w250) . X1 + (w1w2)50,

X22 — (w150 + w25°) . X2 + (w1w2)50,

2 - X1X3 — 2w ws - X1 — (w150 + w250) . X3 + (11)150 + w250)w1w2,
2 - X2X3 — 2w ws - X2 — (w150 + w250) . X3 + (11)150 + w25°)w1w2,
9. X1X2 _ (’LU150 + ’11)250) . Xl _ (U)150 + w250) . X2 + ’U)1100 + w2100

The ideal Ay, 50 1550 1 ws) /Claws +wswiws) I C(wi + wa, wyws)[X] spanned by these polynomials
is prime (it is of dimension 0 and as char(C) = 0 the isolated primary component is prime
(again [7, Theorem 5])) and hence coincides with By, 50 1,50 w1 ws) /Clw: +ws,wiws)- L he reduced
Grobner basis w.r.t. the graded reverse lexicographic term order where X; < X, < X3 is

{X12 — (’LU150 -+ w250)X1 =+ (w1w2)50, X3 — ’U)lwg,XQ + X1 — w150 — U)250} .

Taking the coefficients as generators we obtain C(wy, wy)P1° = C(w;5° + w,5°, wiw,) as one
would expect.

5. Implicitization without tag variables

If £ is an infinite field and wq, ..., w; are algebraically independent over k£ we may think of
Z1,---,Tm € k(w) as rational functions in the indeterminates w parametrizing the set

{(@1(@),...,2m(a)) : @ € k' and x4, .., 2y, defined at a}.

Using the above notation the implicitization problem in computer aided geometric design
can be stated as: “Determine a generating set of Pz /x.”

It ist well-known that this problem can be solved by introducing m additional tag vari-
ables (see [3, p. 131], [1]). Using the Chow form as described above we can compute P z)/x
without making use of tag variables. Moreover, if one is only interested in problems like
testing whether certain points are contained in V(%)) it can be sufficient to solve the
following weaker variant of the implicitization problem (see, e.g. [5]): “Determine an ideal
J<k[Z] with V(3) = V(B@yk)”

To solve this variant it is sufficient to derive generators for the ideal %)/ from the
coefficients of Figy/x(u; Y- u1; X5, ..., u41;X;) € k[X][u]. The computation of the associated
prime ‘Bz can be skipped then.

Finally, we want to remark that for efficiency reasons it would be very interesting to
know of an alternate solution to the problem of finding the minimal field of definition of an
ideal—in spite of the fact that the mentioned proof of Weil shows that Grobner bases appear
quite naturally in this context.
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