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Abstract. In this note we present a very simple, but powerful, technique for finding
monomial varieties which are set theoretic complete intersections. The technique is
based on the concept of gluing semigroups that was defined by J. C. Rosales in [6]
and used by K. Fischer, W. Morris and J. Shapiro in [2] to characterize complete
intersection affine semigroup rings.

There are several techniques in the literature proving that certain varieties are
set theoretic complete intersections but all of them preserve the dimension of the
variety and are mainly results about curves, see [5, 7] and the references in there.
The technique presented here does not preserve necessarily the dimension of the
variety and it can combine the known results to produce set theoretic complete
intersection varieties of any dimension, see Examples 4 and 5.

Let T = {a1,...,a,} be a set of nonzero elements in N™. Let S(T) = {liaq + ... + Loy, :
li,...,l, € N} denote the affine semigroup generated by 7', G(T) = {kion + ... + ko, :
ki,...,k, € Z} denote the group generated by T and r denote the rank;G(T). Let ¢
be the homomorphism of semigroup algebras from K[Xj,...,X,] to the polynomial ring
Klt1,...,ty] induced by T, that is: ¢(X;) = t*. The kernel of ¢ is the ideal of 7" and is
denoted by I(T'), while the set of zeroes V(I(T')) in K™ is called the monomial variety of T.
K[S(T)] = ¢(K[Xy,...,X,]) is the affine semigroup ring of S(7T').

We will write rad(I) for the radical of I. The arithmetical rank of I(7), written
ara(I(T)), is the smallest integer s for which there exist elements fi, fo, -, fs in I(T),
such that rad(I(T)) = rad(fi, fa, -, fs). The ideal I(S) is called set theoretic complete
intersection if ara(I(T)) =n—r.
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Let Ty and T3 be two nonempty subsets of T such that T =T, UTy, and Ty NT, = 0. T is
said to be a gluing of T} and T if there exists a nonzero a € S(71) NS(75) such that G(a) =
G(T1) N G(T3). In terms of the ideals this is equivalent to I(T) = I(T1) + I(Tz)+ < F, >,
see [6], where F, is a binomial in the form M; — M, M; involves variables corresponding to
T, M involves variables corresponding to 75, and ¢(M;) = t* = ¢(Ms).

Lemma 1. Suppose that T 1is the gluing of T1 and Ty. Then

ara(I(T)) < ara(I(T1)) + ara(I(Ty)) + 1.

Proof. Suppose that ara(I(71)) = s1 and ara(I(Tz)) = sq, therefore there exist fi,..., fs,
91 ---,9s, such that I(T1) = rad(f1,..., fs;) and I(T2) = rad(gi,-..,gs,)- The result fol-
lows from the observation that I(T) = rad(fi,..., fs;» g1, -, Yss, Fu), since [(T) = I(Ty) +
I(T2)+ < Fa >.

Theorem 2. If both I(T}),I(Ts) are set theoretic complete intersections then I(T) is set
theoretic complete intersection.

Proof. Let ny be the number of elements in 77 and n, the number of elements in 75, we have
n = ny+ngy. Let 1 be the rank of G(77) and 7y the rank of G(73). Since G(a) = G(T1)NG(T5)
and rankzG(a) = 1, we have r+1 = r; +75. Then we have n—7r = (n; — 1) + (ng —r9) + 1.

Now suppose that both I(77),I(T5) are set theoretic complete intersections. Therefore
ara(I(1T1)) = ny—ry and ara((1y)) = ny—re. Then, from the Lemma 1 and the previous re-
marks we have that n—r < ara(I(7)) < ara(I(T1))+ara(I(1y))+1 = (n1—r1)+(ne—7r2)+1 =
n — r, that means (7)) is set theoretic complete intersection.

Based on this theorem one can develop a technique producing set theoretic complete inter-
section monomial varieties. One can make any combination of the known results to produce
new examples and iterate this procedure many times. Note also that we get explicitly the
defining equations of the new variety, provided that we know the defining equations of the
initial two.

Example 3. Affine monomial curves are set theoretic complete intersections in positive char-
acteristic, while in characteristic zero the general problem is still open, even for monomial
curves in A%.

In [4] D. Patil proves that any affine monomial curve (¢",¢"2,... "), for which s — 1
numbers among n4,...,ns; form an arithmetic sequence, is set theoretic complete intersec-
tion in A%, while in [3] W. Gastinger proves that an almost complete intersection monomial
curve (™, ¢™2 {™s {™4) is set theoretic complete intersection in A%. Note that only for
special values of the exponents m;, mo, m3, my the curve is an almost complete intersection.
Choose any positive integers m,n prime to each other such that n € S(ny,...,ns) and
m € S(my,...,my), where s — 1 numbers among n,, ..., ns form an arithmetic sequence and
(t™ ™2 ™3 ¢™4) is an almost complete intersection. From Theorem 2, the monomial curve
(tmma, L gmns grma o gnma) in A%F g set theoretic complete intersection.
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Example 4. In [1] S. Eliahou proves that the curve (#*,¢%,¢7,¢%) is set theoretic com-
plete intersection in A}. In [7] it was proved that the Eliahou’s curve is the set theoretic
complete intersection in A} of X3 — X1 X2, X35 — 3X2X2X, + 3X1 XoX3X? — X2X} and
X? —5X0X2 + 10X X X2 — 10X X5 +5X3X7 — X}, Also the curve (u'3, u?v® v?o'! v'3) in
P} is arithmetically Cohen-Macaulay, therefore it is the set theoretic complete intersection of
Y3 — Y13V, and V3% — 3Y2YEY? + 3V, YL V5Y) — Y2V, From Theorem 2 we have that the
semigroup S((13,0),(5,8),(2,11), (0,13), (4,4), (6,6), (7,7),(9,9)) is set theoretic complete
intersection, since

(13,13) € S((13,0), (5,8),(2,11),(0,13)) N S((4,4), (6,6), (7,7),(9,9)) and

G((13,13)) = G((13,0),(5,8),(2,11),(0,13)) N G((4,4), (6,6), (7,7),(9,9)).

Therefore the monomial surface
vV = (u13, wPoS, 2ot 13 utet, ubS uTe’, ugvg)

in A% is set theoretic complete intersection and
I(V) =rad(X3 — X, X2,
X5 —3X3X3IX, 43X Xo X3 X7 — X2X3,
X —5X8X2+ 10X} X,X2 — 10X2X5 +5X3X2 — X},
X, X, - VY, Y} — VY3V,
Y313 _ 3}/22}/38}/213 + 3}/1}/2}/34}/217 _ YEYZI)-

Example 5. One can use the same result two or more times, for example in [7] it was proved
that all monomial curves in P3 (surfaces in A% ) of the form

(uk+7l’ U7l?}k, uﬁl’U’H_l, u4lvk+3l’ ,Uk—|—7l)

are set theoretic complete intersections. From Theorem 2 we have that the monomial varieties
of the form

(uk1+7l1 ) u7l1,Uk1 , uﬁll,ukl +11 , U/4ll Uk1+3l1 , Uk1+7l1 , vk2+7l2 , U7l2tk2 , U6l2 tk2+l2 , ,U4l2tk2+3l2 , tk2+7l2)

are set theoretic complete intersections.
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