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Introduction

Let A be a non-empty set, G a group, and ¢ a homomorphism from G into the full trans-
formation group of A. Then A may be considered as a unary algebra with the set G of
operations where an operation g € G is defined by the rule g(a) = (p(g))(a) for every a € A.
These algebras are called G-sets. Some basic information about G-sets and, in particular,
about their congruences may be found, for example, in [1]. In [3], we described G-sets with
several natural properties of their congruences, in particular, G-sets whose congruence lattice
is distributive, modular, arguesian, semimodular, etc.

Studying congruences of G-sets appears to be sufficiently natural per se. Our main
motivation, however, comes from a different source. Recent results by M. V. Volkov and the
author show that, for some wide classes of semigroup varieties, the structure of subvariety
lattices can be described in terms of congruence lattices of certain G-sets (see, in particular,
[5, 6]). In particular, it is the case for overcommutative semigroup varieties (that is, varieties
containing the variety of all commutative semigroups). These results together with the
mentioned results of [3] permit to obtain a series of results concerning identities in lattices
of overcommutative varieties and related questions (see [4]).
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Here we consider a new restriction to congruences on G-sets. Recall that an element x
in a lattice (L; V, A) is called modular if

(xVy)ANz=(zA2)Vy

whenever y, z € L and y < z. In the present paper we describe modular elements in congru-
ence lattices of G-sets. We think that this result certainly may be applied for a description
of modular elements in the lattice of overcommutative semigroup varieties.

The paper consists of three sections. Section 1 contains preliminary information from [3]
about congruences on GG-sets. At the conclusion of this section, we formulate the main result
of the work. It is proved in Sections 2 and 3.

1. Preliminaries

The congruence lattice of a G-set A is denoted by Con(A). A G-set A is said to be transitive
if, for any pair of elements a,b € A, there exists g € G such that g(a) = b. It is well known
(see, for example, [1, Lemma 4.20]) that if A is a transitive G-set then the lattice Con(A) is
isomorphic to an interval of the subgroup lattice of G (more precisely, Con(A) = [Stabs(a), G]
where @ is an arbitrary element in A and Stabg(a) = {9 € G | g(a) = a}).

A transitive G-subset of a G-set A is called an orbit of A. Clearly, any G-set is a disjoint
union of its orbits. In view of the remark in the previous paragraph, it is natural to investigate
the lattice Con(A) modulo the congruence lattices of the orbits of A.

Let A be a G-set and u a congruence on A. We say that u isolates an orbit B of A if B
is the union of u-classes. We say that pu connects (collapses) orbits B and C of A if B # C
and there are elements b € B and ¢ € C with b u ¢ (respectively, if B # C and x py whenever
z,y € BUC). If M is a non-singleton family of orbits of A then we say that u connects
(collapses) M if pu connects (collapses) any pair of different orbits of M. We call p greedy
if it collapses any pair of orbits it connects. By p* we denote the following binary relation
on the set of all orbits of A: B p*C if and only if either B = C or p connects B and C.
Clearly, p* is an equivalence relation. Let G Con(A) denote the set of all greedy congruences
of A. We denote by Orb(A) the set of all orbits of A and by Fq(X) the lattice of equivalence
relations on a set X. The following lemma clarifies the structure of G Con(A).

Lemma 1.1. ([3, Lemma 1.1 and Proposition 1.2]) Let A be a G-set and Orb(A) = {A; | i €
I}. The set GCon(A) forms a sublattice of the lattice Con(A). The lattice GCon(A) is

isomorphic to a subdirect product of the lattices Eq(Orb(A)) and Con(A;) where i runs over I.
The corresponding embedding f of GCon(A) into Eq(Orb(A)) x [I Con(A;) is given by the
i€l

rule: if a € GCon(A) then f(a) = (a*;..., q;,...) where «; is the restriction of « to the
orbit A;. 0O

We need also information about non-greedy congruences on a G-set.

Lemma 1.2. ([3, proof of Proposition 1.3]) Let A be a G-set. Suppose that a congruence
on A connects but does not collapse the orbits A; and A; of A. Put p; = p|a;, and pj = | a; -
Then the G-sets A;/pi and Aj/p; are isomorphic. More precisely, the following mapping
pi; o Aifpi — Aj/p; is an isomorphism: if M; is a p;-class, then M; = pj(M;) is the
wj-class such that x py for some x € M; and y € M;. a
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It is evident that if, in notation of Lemma 1.2, M; = ,u;*J(MZ) then z py whenever z,y €
M; U Mj. One can note also that the isomorphisms 7 ; and p; are mutually inverse.

Let u be a non-greedy congruence on A and M = {M; | i € J} a non-singleton p*-class
such that y does not collapse M. For any congruence £ on A and i € J, let § = &|p,. Let us
fix some j € J. By Lemma 1.2, M;/u; = M;/p; for any i € J. Let /ij be the isomorphism
from Con(M;/ ;) onto Con(M;/p;) induced by the isomorphism pf ; from M;/p; onto M;/pu;.
For a congruence x on A with x D p;, we put x;;, = ufj(xi/ui). One can note that p} ; and
ij are identical mappings and that x;.; . = X;/1;-

The main result of the work is the following

Theorem. Let A be a G-set. A congruence o on A is a modular element in the lattice
Con(A) if and only if the following holds:
a) « either isolates every orbit of A or collapses some non-singleton set P of orbits of A
and isolates every orbit of A outside P;

b) the restriction of a to any orbit of A is a modular element in the congruence lattice of
this orbit;

c) if B and v are congruences on A with 3 C v and B = {B; | i € J} is a non-singleton
B*-class such that o isolates every orbit in B while each of the congruences [ and vy
does not collapse B then there is a j € J such that

(Y igs) Avigs =V (e A Yi)- (1)

It is easy to verify that if « is a modular element in Con(A) then the equality (1) actually
holds for every j € J.

Clearly, a lattice L is modular if and only if every z € L is a modular element in L. This
permits us to easily deduce from Theorem the description of G-sets with modular congruence
lattices given by [3, Corollary 2.4].

We note also that the lattice of equivalence relations on a non-empty set A can be
considered as the congruence lattice of some G-set. Indeed, we may consider A as a G-set
where (G is the singleton group. Clearly, any equivalence relation on A is a congruence of
this G-set and the lattices Fq(A) and Con(A) coincide. Thus, our Theorem extends the
description of modular elements in lattices of equivalence relations obtained in [2].

Sections 2 and 3 are devoted, respectively, to the proof of necessity and sufficiency of
Theorem.

2. Necessity

We start with the following

Lemma 2.1. Let A be a G-set. If a congruence a on A is a modular element in the lattice
Con(A) then a is greedy.

Proof. Suppose that « is not greedy. Then it connects but does not collapse some pair of
orbits A; and A; of A. Let us consider the following three congruences on A:
o, ;0 oy ;y if and only if either x =y or z,y € A; and xay or z,y € A; and z a y;
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B: x By if and only if either z =y or z,y € A; and zay or z,y € Aj;

v: zyy if and only if either z =y or z,y € A; or z,y € A;.
Since « connects the orbits A; and Aj, if the restriction of a to A; is the universal relation on
this orbit then « collapses A; and A;. Hence there are elements z,y € A; such that (z,y) ¢ a.
On the other hand, since o connects A; and Aj, there is an element 2’ € A; such that z o z'.
Furthermore, since A; is an orbit, there is g € G with y = g(x). We have g(z) ag(z') and
g(z') € A;. Hence zaa’ fg(a') ag(xz) = y. Thus, (z,y) € aV 3. Furthermore, it is evident
that zyy. Therefore, (z,y) € (aV ) A~. Since « is a modular element in Con(A) and
B < 7, we have (z,y) € (o Ay)V f. But it is evident that (¢ Ay) VS =a;; V= 5. We
have z By. Since z,y € A;, this implies x ay. A contradiction. O

Now, let us verify the necessity of Theorem. Let A be a G-set and o a modular element in
Con(A). By Lemma 2.1, « is greedy. Since G Con(A) is a sublattice in Con(A) (see Lemma
1.1), « is a modular element in G Con(A) too. It is clear that if a lattice L is a subdirect
product of lattices {L) | A € A} then an element z € L is modular if and only if, for any
A € A, the projection of x to L, is a modular element in L. By Lemma 1.1, we immediately
have that the condition b) of Theorem holds and that the equivalence relation o* is a modular
element in the lattice Eq(Orb(A)). Results of the article [2] easily imply that an equivalence
relation p on a set X is a modular element in the lattice Fq(X) if and only if either p is the
equality relation or p has exactly one non-singleton class. We see that the condition a) of
Theorem holds. It remains to verify the condition c). Here we need the following

Lemma 2.2. Let A be a G-set, B; and B; different orbits of A and B and 7y congruences on
A such that 3 C v and each of these congruences connects but does not collapse the orbits B;
and Bj. Then v; ;g = 7.8

Proof. For p € {B,7}, we put p; = p|p, and p; = pp;.

Let Pv;;3Q, p € P and ¢ € Q. Since v;,5 = v,;/0; and §; C 7;, we have pyq. Let
now P' = §7,(P), Q = 3;,(Q), p' € P' and ¢' € Q'. Then p'Bpyq 3¢ whence p'vq'. This
implies that (P, Q') € 7;/B;. Since P = 3 ;(P') and Q = 3;,;(Q'), we have P; Q. Thus,
Vi S Vi,

Let now P ;5Q. Put P' = 37,(P) and Q" = §;,(Q). Then (P',Q’') € vi/B;. Let p' € P
and ¢' € Q'. Since 3; C 7;, we have p'v¢'. Let now p € P and ¢ € Q. Since P = 3} ;(P') and
Q = B;;(Q'), we have p B3p'vq (¢ whence pyq. This implies that (P,Q) € v;/8; = 7;,,-
Thus, 753 C v;,5,8 Whence v; ; 3 = ;- a

Let us return to the proof of necessity. Let # and v be congruences on A with § C v and
B = {B; | i € J} a non-singleton 3*-class such that « isolates every orbit of B while each
of the congruences  and 7 does not collapse B. We need to verify that the equality (1)
holds for some j € J. Let us prove that, in fact, this equality is valid for an arbitrary j € J.
Indeed, let us fix j € J. Clearly, the right part of the equality (1) is contained in the left
one. Thus, it remains to check that

(Z.XJ Qi) NVjgp < ié/J(az,J,ﬁ A Yi5.8)



B. M. Vernikov: Modular Elements in Congruence Lattices. . . 89

Let P and @ be §j-classes such that (P,Q) € (¥J @;;8) N s Then P~;;s(Q and there

are 3;-classes I}, Py, ..., P, such that P = P, P =@ and, for any s =0,1,...,n — 1, there
is i, € J such that P;a;, ;s Psr1. Put By = 85, (Fo) and P| = Jzo(Pl) By the definition
of the mapping 3;, , we have (Fy, P|) € ay,/B;,. This means that if pj € Fj and p} € P
then (pf, p}) € i, V Bi,. Besides that, if py € Py and pj € Pj then py 3 pf,. Furthermore, put
P = J“(Pl) and P, = HI(PQ) Then (P/', Py) € ail/ﬁ“, and therefore, (p’l’,p'Q) € a;, VG
whenever pi € P and p, € P;. Furthermore, since g ;(P') = P, =  ;(P;), we have
that if p; € Py, pi € P| and p| € P/ then p| 3p; Bp! whence p| 8p/. Furthermore, put
Py = B35;,(P,) and Py = 37, (Ps). Then p, 3py and (py,p}) € i, V B;, whenever p, € P,
5 € PY and pj € P;. Continuing this process, we construct Py, P;, P/ ..., P/ _;, P! | and

n—1»
P7Iz such that pgﬂpgv (pg7p£1) € a; V ﬂisu R pn 1ﬂpn 1 and (PZ 1’pn) € o, , V /an 1
whenever py € P, pf € P, p, € Py, ..., p,_, € P._,,pi_, € P, and p;, € P|. Further,
if p/, € P, and p, € P, then p|, Bp,. Now let us ﬁX arbitrary elements p € P and q € P,.
The considerations given above show that (p,q) € aV . In addition, since Py, ;s P, and
B C v, we have pyq. Thus, (p,q) € (aV ) A7.

Since « is a modular element in the lattice Con(A), we have (p,q) € (e A7) V 3. Hence
there are elements 7y, 71, ..., 7, € Asuch that ro = p, r,, = g and, forany s =0,1,...,m—1,
either (rg,7s11) € aAyorrs Brsii. Let A; be the orbit of A such thatr; € A; (i =0,1,...,m).
Recall that 1o =p € Py = P and r,, = ¢ € P, = (. Since P and @ are (3;-classes, we see
that Ay = A, = B; € B. By the hypothesis, « isolates any orbit of B, and therefore, o A 7y
also does. This means that, for any s = 0,1,...,m — 1, if A; # A,y then r; 37,1, and
therefore, Ay, A1,..., Ay, € B. Suppose that Ag = A; = --- = Ay, (all these orbits coincide
with B;) and elther ko m or Ag, # Agyr1. Then (r, rko) € (aj A7) V B;. Recall that the
Bj-class containing ro = p is P. Let us denote by R; the (3;-class containing ry,. Clearly,
(P, R1) € (o5 A)/B; = (o/B;) A (73/Bi) = ajjp Ajgp- Put Ry = P and Ry = Ry.
Furthermore, suppose that kg < m. Let Ay 1 = Agyi2 = --- = Ag, and either £y = m or
Ay, # Ag,+1. Since Ag,41 € B, we have that Ag 1 = Aggo = --- = A, = B;, for some
iy € J. Clearly, (rg,41,7k,) € (iy AYiy) V Bi,- We denote by Ry the f3;,-class containing ry, 11
and by Rs the (3;,-class containing r,. Then (Rs, R3) € (ai; Aviy)/ By = (i, i) A (Viy / Biy)-
Recall that 7, B7111. Therefore, (o A 7); ;(R2) = R}. Put Ry = (a A7); ;(R3). Then
(R}, R}) € i, jp N Vijp- Using Lemma 2.2, we have (R}, R}) € o, ;5 N7 Continuing
this process, we obtain j;-classes Rj, .. R’ such that R, = @ and (R}, R}) € a8 A
Viip (R, RY) € g jg NYjjgr -5 (R 1,R’) € o, jp N, for some 12,23,...,%,1 € J.
Therefore, (P, Q) € .\/J(Oéz',j,g N ;,.8), and we are done.

1€

3. Sufficiency

Let o be a congruence on a G-set A and suppose the conditions a)—c) of Theorem hold. We
are going to verify that « is a modular element in the lattice Con(A). Let us fix congruences
B and v on A with 8 C . It is clear that (¢ Ay)V B C (aV ) A~. It remains to verify that
(aV BNy C (aAvy)V B. Evidently, we may (and will) assume that S C . Suppose that
z,y € A and (z,y) € (aV ) Avy. We need to check that

(z,y) € (any) VB (2)
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Since (z,y) € (aV B) A+, there are elements zg, 71, ..., %, € A such that xg =z, z, = y
and, for any 7 = 0,1,...,n — 1, either x; ax;;; or x; Bx;y1. Besides that xyy. Let us
denote by A; the orbit of A containing z; (: = 0,1,...,n). If Ag = Ay = --- = A, then
(z,y) € (ap V Bo) Ay (where py is the restriction of p to Ag for any u € {a, 8,7}). By the
condition b) of Theorem, (z,y) € (ag A Y) V o C (a Ay) V 3, and we are done. Thus, we
may assume that A; # A,y for some i € {0,1,...,n—1}.

Suppose at first that there is 7 € {0,1,...,n— 1} such that A; # A;;1 and z; o z;41. Let

J= Osf%ig_l{Ai # A1, T aTip1}
and
k= 112%32{&4 # Ai, 11wy

Both the orbits A; and Ay belong to non-singleton a*-classes. But by the condition a) of
Theorem, o* contains at most one non-singleton class. Hence the orbits A; and Aj lie in
the same a*-class. In other words, either A; = A or o connects A; and Aj. The condition
a) of Theorem implies that « is greedy. Hence either A; = Ay or « collapses A; and Ay.
The choice of the orbits A; and Ay guarantees that either Ay = A; or 3 connects the orbits
Ao and A; as well as either Ay = A, or B connects the orbits A; and A,. Since z € A,
and y € A,, there are elements 2’ € A; and 3y’ € Ay such that z 32’ and y' fy. We have
' Bxyy By, and therefore, z'yy'. The orbit A; belongs to a non-singleton a*-class, and
therefore, the restriction of « to this orbit is the universal relation on A;. In particular, this
means that if A; = Ay then 2’ ay’. If o collapses A; and Ay then, evidently, =’ ay' too.
Hence (2',y") € aAy. Thus, z 82, (2',y') € aAv and y' By. Therefore, (z,y) € (A7) V S.

Thus, we may assume that, for any + = 0,1,...,n — 1, if A; # A;1 then x; 8z;11. In
other words, all the orbits Ag, A1, ..., A, lie in the same [*-class. Let us denote this F*-class
by B. Let B={B; |i € J}. Since A; # A;41 for some i € {0,1,...,n — 1}, the class B is
non-singleton. We need the following easy

Lemma 3.1. Let A be a G-set, u a congruence on A and M a non-singleton p*-class. If p
collapses some pair of orbits of M then u collapses M.

Proof. Let M = {M; | i € J}. Suppose that p collapses orbits M, and M, where j,k € J
and j # k. Let z,y € ,UJ M;. Then there are elements 2’ € M; and y' € M}, such that z 2’
1€

and y' py. Furthermore, 2’ 1y because p collapses M; and M. We have z py. O

Thus, if § collapses some pair of orbits B;, B; € B then x §y. This immediately implies the
inclusion (2). Thus, we may assume that 3 does not collapse any pair of orbits of B.

Since [ C +, all orbits of B lie in the same ~v*-class. Suppose that 7 collapses some
pair of orbits of B. Then, by Lemma 3.1, v collapses B. In particular, z;yx;; for all
i=0,1,...,n—1. Therefore, for any i = 0,1,...,n— 1, either (z;,2;41) € a Ay or z; B T;y1.
This implies (2). Thus, we may assume that v does not collapse any pair of orbits of B either.

Suppose now that there is an orbit B; € B such that the restriction of o to B; is the
universal relation on this orbit. Since x € Ay € B and y € A, € B, there are elements
x',y' € B; such that z 8z’ and y' By. Then 2’ Bxyy By' whence z'vy'. The choice of B;



B. M. Vernikov: Modular Elements in Congruence Lattices. . . 91

implies that ' ay’. Thus, z 82", (2',y') € a A~y and 3y’ By. We have (z,y) € (e« Ay) V S.
Thus, we may assume that the restriction of o to any orbit of B differs from the universal
relation on this orbit. In particular, this means that « isolates any orbit of B.

Thus, it remains to consider the case when the hypothesis of the condition c) of Theorem
is fulfilled. As usual, for any i € J and p € {a, 3,7}, we denote by p; the restriction of y to
B;. By the condition c), there is j € J such that the equality (1) holds.

Each of the orbits A, A1,..., A, lies in B. Suppose that 49 = Ay = -+ = A, =
B, (where iy € J) and Ay, # Ag,+1. Clearly, (zo,zx,) € 4, V Bi,- We denote by Ry
(respectively, R;) the (;,-class containing x¢ (respectively, x4,) and put Py = ;; j(RO) and
Py = B ;(R1). Since v = z9 € Ry, we have x p, for any py € Fy. Furthermore, it is clear
that Py, Pr. Let Agp1 = Aggpo = -+ = Ay, = By, (where 4, € J) and either k& = n
or Ay, # Ag,+1. Clearly, (zgg41,%k,) € a4y V B, We denote by Ry (respectively, R3) the
ﬁil—class containing xy,,1 (respectively, zy, ). Since g, BTko41, we have 3 (Ry) = P1. Put
Py =}, ](R3) Clearly, P; o, g . Continuing this process, we obtain 3;-classes P, ..., P,
such that P oy, i3 P30, s -, 58 Pr—10u, P for some ig,13,...,%,_1 € J and the
Bi,_,-class ﬂ;:ir—l(Pr) contains y. The last means, in particular, that p, By for any p, € P,.
Put P = Py and @ = P,. We have (P,Q) € ié/J @ ;3. Furthermore, if p € P and ¢ € @ then

pBxyyBq whence pyq. This implies that P, ;3Q. Thus, (P,Q) € (é/J @;j8) N V)48
K3
According to (1), (P,Q) € .Vj(ai,j,ﬂ A v;jp). Hence there are §j-classes Sp,S1,..., Sy
1€

such that So = P, S,, = @ and, for any £ = 0,1,...,m — (Sk,Sk-i—l) € 4 58 N V4B
for some idg,%1,...,im—1 € J. Put S5 = B35, (Sp) and S7 = B;, (S1). Let s; € S; and
sh € S{ Clearly, (s, s}) € a4,. Furthermore, by Lemma 2.2, v, ;3 = 7,3, and therefore,
(sp, S1) € Vip- Thus, (sp,s)) € iy A v, © o Ay. Besides that, if so € Sy then z 3¢ 55,
whence z 3s;. Furthermore, put S7 = f;, (S1) and Sy = ”1(5‘2) Using Lemma 2.2
again, we have that if s/ € S and s, € S} then (s,s4) € o, Avi; € a A~y. Further,
sy Bs] because G5 ;(S) = Si = B ;(S7). Continuing this process, we obtain elements
82,83,83,...,8% l,s;’n 1,50, € A such that s By, (sh,55) € aiy Ay, C @Ay, sh5sh, s
s Bsh_,and (s 1,8 ) € i, s AYi,,_, C aA~y. Furthermore, by the construction, s, €
i1 (Sm). Since S, = @ = P and y € 3, ,(F;), we have that if s,, € Sy, then s7, ﬁsmﬁy
whence s/, By. We find a sequence of elements z, sq, s}, s{, s, 5, ..., 8L, _1, 50 _1, Sk, y such

at x 3 sp, (sh,8]) € a ANy, s, sy and (s}, s €« orall k =1,2,...,m—1 an
that x §sj, (sp, s} N7, s, B sy and (sy, s,iq A~y forall £ = 1,2 1 and
st By. Thus, (z,y) € (¢ Ay) V B.

We see that the inclusion (2) always holds. Thus, we have proved the Theorem.
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