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1. Introduction

Parabolic surfaces in R* bear their name because they satisfy parabolic partial differential
equations. In this paper we shall determine and classify all parabolic non-ruled surfaces in
R* which are homogeneous in the sense of equiaffine geometry. In the course of the general
discussion it will also come out that there are no compact parabolic surfaces, thus answering
a question which has been open for some time.

The method for homogeneity will be a combination of differential geometry and Lie group
theory. The differential geometry for parabolic surfaces has been established in [9], [10]. See
also [11], [12] and, for the Lie group background, [13]. The main results here are the classifi-
cation theorems B and C in Section 5 and 6: There will result nine classes of representatives,
some of them depending on one or two real parameters. In the noncommutative case all
surfaces are algebraic, in the commutative case most are not.

For elliptic and hyperbolic surfaces [14], [15], [16] recently developed a general unified
theory, including the new approach by [7] and earlier works of Burstin/Mayer and W. Klin-
genberg (see the references there). For the flat nonparabolic cases, [15] determined the
homogeneous copies.

2. Parabolic surfaces in affine four-space

A starting point for the affine differential geometry of surfaces in R* is a conformal class
of metrics invented by Burstin/Mayer. Let z : M — R* be a C*°-immersion of a two-
dimensional manifold M into R*, the latter considered as an affine space, equipped with the
standard determinant form, denoted by brackets. Choosing a local base field U = (U, V') on
M, a representative of the conformal class is given by

Gu(X, Y) = % ([dUSC, dv$, dx(dU.I), dy(dvx)] + [deE, dvﬂ?, dy(dUiE), dx(dvx)])

0138-4821/93 $ 2.50 (© 2000 Heldermann Verlag



160 R. Walter: Homogeneous Parabolic Surfaces in R*

where X, Y are argument vector fields on M. The symbol d denotes the differential of R™"2-
valued functions on M. The essential feature of Gy, is its conformal invariance under any
change of the frame field ¢/. In particular, the rank of Gy, is a purely affine invariant. If the
rank is 2, one has the elliptic (i.e. definite) and the hyperbolic (i.e. indefinite) case. If the
rank is 1, one has the parabolic case. Sometimes we write G instead of Gy and call it the
pre-metric.

The non-existence of compact elliptic surfaces proved in [12] also holds in the parabolic case:

Theorem A. There are no compact parabolic surfaces in R*.

In particular we cannot hope for compact groups connected with our homogeneous parabolic
surfaces. The classification will show this again.

Proof. Choose an auxiliary Euclidean metric { , ) in R*, say the standard one. Consider a
point py € M where the squared distance function f : M — R, f(p) := (z(p), z(p)) reaches
its maximum, and choose a local parametrization around pg such that the u-lines integrate
the unique zero directions of the pre-metric. Then in the whole neighorhood of py, we have
[Ty T, Tun, Tuw] = [Tus Toy Tuw, Tow] = 0, [Tu, Ty, Tuw, Tuy] # 0. This implies the dependency
ZTuy = 0 mod (z,, x,) there. Now the gradient of f is 0 and its Hessian is negative semidefinite
at po. In particular at py:

fu=2(x,2,) =0, fo=2(x,2p) =0, fuu =22y, Tu) + 2(x, Ty) < 0.

Together with the dependency, this implies (x,,z,) < 0 at pg, a contradiction to the rank 2
of . U

Nevertheless, the parabolic surfaces form a large class of surfaces; see [9, Sect. 7] for a detailed
result. The differential geometry for parabolic surfaces doesn’t fit in any usual scheme. The
first question is: When we have no Riemannian metric and no canonical connection etc., how
can differential geometry be set going?

The key here is a sort of Gauss map: The zero directions of the pre-metric G induce
a line subbundle of the tangent bundle TM. The vector parts of the lines in R* define a
two parameter family of points in the projective space P? associated to R*. So we obtain
a Gauss image of the surface in P3. As a mild additional assumption, we assume that the
Gauss map is locally diffeomorphic. Equivalent with this is that the local integral curves of
the line subbundle are asymptotic lines which have no point of inflection (so ruled surfaces
are excluded by this). The Gauss-image in P? turns out to be hyperbolically curved. One
family of asymptotic lines on it corresponds to those on the original surface while the second
one may serve to define another independent line subbundle of 7M. Both line bundles then
span TM and are defined in an affine invariant manner. For the details see [9]. Like there,
local parametrizations x(u,v) of a parabolic surface shall be adapted to this situation, in
particular they will satisfy a parabolic equation of the form

Ty = XTou + BTy, (8 without zeros, (2.1)

expressing that the u-lines are asymptotic lines of the surface without inflection points. Two
such distinguished parametrizations, say z(u, v) and ™ (u™*, v™), are connected by a transition
of the form u = f(u*),v = g(v*), with C*-functions f, g of one variable.
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Once we have the two tangent line bundles and their local integral curves the procedure
is continued by half-invariant differentiation as used by Bol [1] in his work on projective
differential geometry. This includes certain differential operators along the distinguished
parameter lines which are defined in the following way:

A half-invariant a of weight (m,n) € Z x Z is a locally defined function of the dis-
tinguished parameters u,v with the transition behaviour a* = f™g¢™a under a change of
distinguished parameters. Assume that A, resp. p are two scalar half-invariants of weights
(—1,mny), resp. (myg, —1) with no zeros. Then the operations

a1 = Gy + m(ln |)\|)u, a2 = Gy + n(ln |,LL|)U,

produce from a half-invariant a of weight (m,n) two new half-invariants aq, resp. as of
weights (m + 1,n), resp. (m,n+ 1). Associated to such fundamental half-invariants A, u are
the quantities

1 1
o= §(ln IAD wo, T = §(ln 1)

which are important for integrability conditions.

The crucial point is the finding of fundamental half-invariants A, 4 which are defined in
an invariant manner. In Eqn. (2.1), the § is half-invariant of weight (2, —1). If we take M
as oriented, the v-lines can be oriented in such a way that # > 0. The orientation of the
u-lines is then fixed by the orientation of M. Keeping this, forces the transition functions to
obey f' > 0, ¢’ > 0. Then half-invariant differentiation makes also sense for weights which
are reals (instead of integers), and we can choose

A= g, pi=p,
the so called -system, which will be used henceforth (if nothing else is said).

Remark. It is possible to understand half-invariant differentiation in the language of con-
nections. For a complex analogue, see [2] and [4].

The half-invariant differentiation in the §-system now induces two further line bundles which
are transversal to the surface and thus can take the role of a first and second normal, namely
spanned by the vectors

h := x12, b:= x99.

Observe that the position vector z is half-invariant of weight (0,0), i.e. fully invariant. The
structure equations for the moving frame 1, 23, h, b have the form [9, Sect. 5]

T11 = axi+ [z

Ti2 = Z21 = h

Tog — b

hl = (012 — 20’).T1 + ,Bz.rz + ah + 5[) (22)

he = 7yx1+ex2+ @h
= ~vx1+ (e +27)22 + @h
ba = bo171 + baoza + bazh + bosb.

=
[y
I
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We now specialize to the equiaffine situation and thus have at our disposal the volume form
[...] on R*. We may then form the additional quantity

D= [x“’x”’xumxm)] = [xl,.’Ez,h, b]7

which is half-invariant of weight (2,4). As a consequence of the structure equations (2.2), it
is differentiated according to

Dy = QOéD, Dy = 2(pD

Next we may form a moving frame with canonically defined vectors spanning our four line
bundles:

g1 = ﬂ_2/5‘D|_1/10371

g — ﬁ1/5 D —1/5$ )

gz _ ﬂ_1/|5|1‘)|_3/1§h [91, 92, g3, 94] = sign(D),
gy = ﬂ2/5|D‘_2/5b

the last equation following from the definition of D.

Such a unique moving frame is quite essential for the homogeneity question. Namely, if
the immersion is the orbit of a Lie subgroup I' C SA (= special affine group of R*) then the
dimension of [' must be 2. Because otherwise the isotropy group at a fixed orbit point would
be infinite. But all elements of the isotropy group fix the distinguished frame at that point,
so coincide with the identity.

Therefore we will define a parabolic surface to be homogeneous if it is the orbit of a
two-dimensional Lie subgroup of SA. We only consider oriented parabolic surfaces whose
asymptotic lines have no points of inflection. The last requirement exactly rules out homo-
geneous parabolic ruled surfaces.

3. The differential geometric reduction

As a first step for the homogeneity question we draw from the differential geometry necessary
conditions which reduce the number of cases for the possible Lie group representations.

So assume that z is a local parametrization for a parabolic orbit as defined. One main
consequence is that each scalar full invariant (i.e. of weight (0,0)) must be constant along the
orbit. Most of the quantities entering the structure equations are only half-invariant. But it
is easy to generate full invariants by forming quotients. For example A, C, B, F, S, defined
as follows, are fully invariant:

o= A52/5|D|1/10, v = C,B_2/5|D|2/5, = Bﬂl/5|D|3/10, 0= F6—1/5|D|1/5’ o= 561/5‘D|3/10-

We now need the following lemma on general half-invariant differentiation w.r.t. fundamental
half-invariants \, p:

3.1. Lemma. If a scalar half-invariant a of weight (m,n) has no zeros and satisfies

aq
(—) = 2co, ¢ = const.
a/2
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then, by a suitable positive transition, we can reach
jal = [A[*™.

Proof. Since M Yas weight (1,0), we have
a

<%1>2 = (%l)v, a1 = ay +m(ln |A|),a.

From this and the assumption one infers
(In (Jaf [A™7)),, =0,

so |a|] |A|™¢ = U(u)V (v) for some positive functions U,V of one variable. Under transition
of the distinguished parameters, |a| |A\|™~¢ takes a factor of the form |f’|"|¢’|*. Thus by the
choice

= [ U du o0 = [V
we can render |a| |[A|" ¢ to 1 in the new parameters. O

Remark. Under the same assumptions on a one deduces from the interchanging rule for
mixed half-invariant derivatives:

(%1)2 - (%)1 = 2mo — 2nr. (3.1)

We now return to calculate in the §-system.

3.2. Lemma. If A, F are constant then, by a suitable positive transition, we can reach
D] = p°.

Proof. We have

|D|1 D2
= 2a, = 2¢p.
D) D]
On the other hand, by the definition of A, F":
1 |D|}/10 1 1 1s|DY? 2
:_A2/57D i —_F 1/5—D _ =
thus
(‘D‘l) - gag@ (|D|2> = éaﬁﬂ
Dl ), 57 DI/, 5

1Dla
|D|
transition, |D| = (571/2)712 = 6. -

With (3.1) this gives ap = —500, hence ( ) = —200, so from Lemma 3.1, after suitable
2
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If we use a parametrization with |D| = 3%, our quantities specialize to

a = A ,
y = ng g = Bl
e = BB go = PBlag
¢ = FB ’ 95 = B°h
o = S,BQ, g4 = B_Zb-
Then also (from the derivatives of D):
2 1
L, = — AR , = —F 32
b= A, B =< Ff

The structure equations for x1,xo, h, b will now be converted to those for the g;. Observe
that the g; are fully invariant, so the derivatives for 1, coincide with the ordinary derivatives
for ,,,. For a compact writing, we introduce the formal row

Y = (g1, 92, 93, 94),

define its derivatives entry-wise, and then can state the new structure equations in the form:

A 0 fAF-25 C
=~ 77 1 -24 0 B —458
— — 5
Y, = BYH, H = | , ] 2 7
0 0 1 —3A
(3.2)
—iF 0 C Z(AF?-10FS+10AC)
N 0 -%F B +(—2AB +50)
Yo = fYE, B := 1 0 Z2F B+8S
0 10 1F

The integrability condition of the new structure equations result from the comparison of
Yiuu, You. This yields, using the derivatives of 3 from above:
_ 9 - 1 _ —

where the brackets of two matrices denotes their commutator. Expressed with the entries of
E, H this says:

(a) 4A(AF? — 10FS + 10AC) = 20CF — 5(AF — 105)(B + 85)

(b) 4A(=2AB +5C) = —10F (B — 45) + 25BF — 2(AF? — 10F S + 10AC) (33)
(c) 3AB + 32A8 = F? '
(d) AF = —508.

Adjoining to the system of the g; the position vector function x, we obtain no additional
integrability conditions, because the derivatives of = are z, = B¢, x, = (92, and one easily
deduces zu, = 5%gs, Tvu = 5°93,
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The following is of general interest for handling affine situations within the linear frame-
work of vector spaces: We represent points, resp. vectors of the space R™ by elements of
R™"! with last entry 1, resp. 0, both written as columns.

21 21
point of R™: : , vector of R™:

Zm Zm

1 0

An affine mapping « : R™ — R™ is of the form «(z) = Lz + [ where L : R™ — R™ is
linear and [ fixed in R™ (2, written as columns and L written as (m x m)-matrix). We then
represent «, L by (m + 1) x (m + 1)-matrices:

b 0

DT - L | _ (L] . L | _ (L]0
aby. L.— lm —(0 1), Lby. O —<T’T>,

where we also noted suitable short-hand versions. L is called the linear part, | the translation
part of L.

By this imbedding, affine mappings in R™ can be treated as linear mappings of R™".
This is in particular true for the composition and also for all Lie-group objects. For example
the affine group of R™ becomes the subgroup of GL(m+1) consisting of the (m+1) x (m+1)-

L
matrices (T%) with regular left upper corner L, and its Lie-algebra will consist of the

. Ll . . .
matrices (TT with arbitrary left upper corner L. Also the determinants and traces

carry over appropriately, and the same is true for the exponential map. The special affine
group SA becomes now as Lie-algebra the last mentioned matrices with trace 0 of the left
upper corner. Observe that the affine mappings of R™ now are sitting in the affine hyperplane
of the set of (m+1)-square matrices with last entry 1, while the elements of the corresponding
vector hyperplane have a 0 there instead of 1.

Back to our system Y = (g1, g2, g3, 94), we may interprete the entries g; really as column

vectors, and the matrix
Yi iz
Y o (T’T)

as a representation for the vector system consisting of the g; and z. Its derivatives are
calculated as _
o o H |e
Y, = fYH, where H =
(3.4)
= = E e
Y, = [BYE, where E = ( ) ,
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e; denoting the standard base columns of R*. The integrability condition for Y is the same
as that for Y, namely ) .
[E, H|= 5AE 5FH.

Essentially, this Y is a parametrization of the group of our orbit z: Assume that a fixed point
of the orbit with parameters g, vg is the origin: z(ug, vg) = 0, and moreover that the g;(ug, vo)
form the standard base e; of R*. (The general position differs from this only by a fixed affine
map of determinant 4+1.) Then Y (u,v) represents the affine map in R* transporting the
origin to the point z(u,v) and the base vectors e; to the vectors g;(u,v). Tangent vectors to
the group at wug, vy are thus given by Y, (ug,vo) = B(uo, vo)ﬁ and Y, (ug, vo) = ﬂ(uo,vo)ﬁ
or simply by ﬁ, E. These are then generators for the Lie algebra of the orbit.

In view of the integrability conditions we distinguish two main cases:
Case (I): A=0.
By (3.3) (c) also F' =0, and the integrability condition becomes:
[E, H]=0.

We write

E:=E, H:= H. (3.5)
Case (II): A #0. L
The integrability condition suggests to replace E, H by

2 ~ 1 —~
E=-AE - -FH H=—H. .
5 5 ’ 2A (3.6)
Then

[E,H] = E.

The change from E, H to E, H corresponds to a reparametrization (to non-distinguished
parameters) by

2
u= iu*——FU*, v==-Av*
2A 5 5
In fact we then have
Y « = YH, Y « = SYE

and henceforth use this parametrization writing u, v instead of u™*, v* (if nothing else is said).

Collecting both cases we can write

. __J 0 in Case (I)
[E, H] = »E, 7= { 1 in Case (II).

So (I) will be the commutative case and (II) the noncommutative case.
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4. The algebraic reduction

The possible generators E, H for the Lie algebra are given by the above formulas.
Usually we follow the convention to write

o= (5

in this arrangement of boldface, normal capital and small letters. Here n = 1, resp. n =
0, whether L represents an affine map, resp. a generator of a Lie-algebra. Besides these
specialities of affine geometry, the generalities on linear Lie groups and their orbits are as in
[13, Sect. 2].

The classification will be made w.r.t. affine similarities in R*. They correspond to linear
similarities in R®, described by the transition from L to T 'LT, where

T .= (%) , det(T) = det(T) # 0.

It is no restriction to assume det T = +1. So it is natural (and avoids a subsplitting into more
cases) to do the final classification of orbits w.r.t. the group SA of affine transformations of
determinant +1.

There are two special types of such similarities, the pure translational ones for which
T = I (= unit matrix) and the pure linear ones for which ¢ = 0.

Sometimes it is possible to simplify the translation part of an L with n = 0 by a pure
translation similarity. Consider for this the equation

() () () (215)

So the new translation part is [,, = Lt + [, hence all [,, lying in the affine space [ 4+ im L are
possible. For example, [,, = 0 is possible if L is regular. If L has block form, then these
possibilities for [, can be discussed block-wise. We shall call this a translation reduction.
This can be applied to more than one L simultaneously (with due regard, that only one
translation part ¢ is at our disposal).

We often meet the following situation: If 7" is a matrix rendering the linear part L of L to Ly,
. . . . Lo |1

T-'LT = Ly then, with the corresponding pure linear T, the L is rendered to ( 00 10 )
with [y :== T~'l. We say for this that the translation part of L is taken along with such a T.

For any Lie-algebra I'* there is defined the group of self-similarities Fr, consisting of
those T whose similarities transport the Lie-algebra as a whole onto itself. Expressed with
generators E, H for our two dimensional Lie-algebras, the group Fr is given by the T for
which there exist real aq, as, 81, f2 with

TﬁlET = a1E+a2H
T_lHT = /61E+182H ’

a1 Qg

b Be

(Of course the variables a1, ag, B1, 32 here have nothing to do with the coefficient functions
in the structure equations.)

£ 0.
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The geometric role of Fr is that it decides on initial points, whether their orbits are
similar or not. This is the same situation as in [13, Sect. 6]. In fact it is somewhat easier
here because we have a unique moving frame. This replaces Lemma 6.1 there, and the
consequences drawn there are valid appropriately. In particular, each orbit determines its
group uniquely.

In the course of the classification, it is useful first to normalize the linear parts and
afterwards to look how the translation parts can be normalized. We do that mostly with the
following three step procedure:

(i) Transform the linear parts of generators to normal forms.
(ii) Take the translation parts of the original generators along with the transitions of step (i).
(iii) Apply a translation reduction to these generators.
Observe that part (i) is quite non standard because the simultaneous normal form problem
of two or more vector space endomorphisms is generally unsolved. In the present situation
we get through by the results of [13].
We have the two main cases from above:
(I) A =0 with [E,H] =0 (commutative case)
(IT) A # 0 with [E,H] = E (noncommutative case).

The algebraic reduction will be done separately for these cases during the proofs of the

main theorems. (Sometimes it is convenient to interchange notationally the role of T and
T-1)

5. The commutative case

Theorem B. The non-ruled homogeneous parabolic surfaces of R* with commutative groups
are classified according to the following five cases, specifying normal forms for the generators
E,H of the corresponding Lie algebra and implicit equations resp. parametrizations for the
orbits. In all cases, E =H? and ¢ > 0:

(L.1)

0 1 1
1 0 0 T3 = X1Tg — gx‘;’
H= 1 0 01, 1 1

( 1 \ cevt?

11

H= -1 —V2 , z(u,v) =
N e "V cos(v2(u — 2v))

\ 0 ) e " Usin(v2(u — 2v))

ce ' (u + 2v)
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(I.3.a)
(0 1) u
2 0 662(u+21))
H= -1 —V3 , z(u,v) =
V3 -1 e cos(v/3(u — 2v))
\ 0 ) e " 2 sin(v/3(u — 2v))
(I.3.b)
( P \/ﬁq V3 Ce(p+\/§q)u+(p2+4\/§pq+2)v
pP—V2q
H = —p _\/5 ( ) e(p—\/iq)u+(p2—4\/§pq+2)v
, x(u,v) =
\/i —p efpuf(p2+2)v COS(\/§U,)
0 ) 20
—pu—(p“+2)v
g:=+1-p2 0<p<1, p#+2/3 ‘ sin(v2u)
(L.4)
w —p '
P w ( e P cos (pu + gv) \
H-= —w —q ’ ’
¢ -w e P sin (pu + Bv)
z(u,v) =c- w
1 e~ @utPY) cog (qu — gv)
w:§\/§7q: 1_p230<p§w w
1 —(wutp'v) ( - )
poi= = —p? \e sin { qu wv )

Any such homogeneous parabolic surface is /S—K—equivalent to exactly one of the representa-
tives listed above. In particular, the occuring parameters p, c are classifying.

Proof. We first continue the necessary conditions. The existence will come out easily at the
end. The generators of the commutative cases are generally from (3.2) — (3.5):

=

Il
olo~ o o
ol— oo o
olco WA
oclolmQ o
oloo =~ o

s

Il
olo o~ o
olo~ o o
ol oo o
olooc WA
olooc o~

The main observation is
E = H2.



170 R. Walter: Homogeneous Parabolic Surfaces in R*

This considerably simplifies the classification of the pair E, H in this case. In fact it suffices
to render H to a normal form for the following reason:

There are no other elements in the span of E, H whose squares are also in that span
(besides the multiples of H). This follows from the fact, that the powers H, H? H3 H*
are calculated to be linearly independent. Thus the relation E = H? distinguishes the pair
E, H up to a nonvanishing factor of H. This is clearly invariant under similarities T: After
applying T, the new distinguished generators are just T 'ET, T 'HT (with one scalar factor
free for the second one).

Analogously the self-similarities are here those T for which there is a § # 0 such that
T-'HT = 3H.

The linear part H has the characteristic polynomial

xu(§) =& - BE-C.

The fine classification now runs according to the possible zeros of xg.
Case (I.1): xg has a zero of multiplicity 4, i.e. B=C = 0.

Then H has already Jordan normal form, and it is not possible to simplify further the
translation part of H. In fact, replacing the 1 in the translation part by 0 would lead to a
matrix which is not similar to H, and also not proportional similar to H; see [13, Lemma
3.3]. So the original form of H is already a good affine normal form. Of course, there will
exist nontrivial similarities leaving this normal form invariant.

The self-similarities are calculated to become

A s
)\t15 A2 tos
T = )\t25 )\2t15 )\3 t35 y det(T) ?é 0.
Mgz ANlos Nty X | tas
1

with free parameters A, etc. such that detT" # 0. It is obvious that any two points can be
transformed to each other by a suitable T of this type with |det T| = 1. So all orbits are
similar to each other, and we may pick one, say that with initial point 0. Its parametrization
(in R®) is

L,
0 —u”+ v
0 2
(u,v) — exp(uH) exp(vE) | 0 | = éu?’ + uw
0
- 1 1
1 ﬂu‘l + §u2v + 51)2

\ i /

By eliminating u, v the implicit equations of this orbit (in R4) result as announced.
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Case (I.2): yy has a real double zero and a pair of genuine conjugate complex zeros.

The discriminant of xz is 27B* + 256C2 = 0. We parametrize the set of these matrices H
by setting C = —3v*, B = 473, where  varies in R\ {0}. So + is the real double zero, the
other two being (—1 % iv/2)7.

The linear part H has Jordan normal form yH,, where Hy := J(2,1) + N(—1,v/2), in
the notation of [13, p. 138-141]. An additional translation similarity renders the translation
part of H to zero, because Hj is regular. So we obtain a new generator which replaces H
and may be called H again for simplicity. Finally we may divide out the v and thus obtain
the H as announced.

The procedure, to give new improved generators the old names, will be followed in the
future without explicit mention.

The self-similarities belonging to the new generators are

ti1 O
to1 t11
T = t33 t34 y det(T) 75 0.
—134 133

1

Two initial points in R* with coordinates z;,y; can be transformed to each other by such a
T with |det(T)| = 1 iff 23 (23 + 23) = y7(y3 +y3), which must have a value ¢® with ¢ > 0 (by
the rank 1 condition on the pre-metric). This c is classifying. As initial point we may choose
(¢,0,1,0)T in R* and calculate its orbit as announced.

Case (I.3): x g has exactly two real zeros and a pair of genuine conjugate complex zeros.

The problem is that these zeros are not expressible by B, C in a reasonable manner. So we
parametrize the set of these matrices H by the zeros themselves, more precisely by the two
real ones called a, 8: Observe that for some real r, s there must be an identity:

xu() =& -BE-C=(E-a)(- D) +rE+s), 17 —4s<0.
Solving the corresponding coefficient equalities for r, s, B, C' gives:
B = (a+ B)(a? + (7, C = —af(a®+ af + 57, 302 +2aB+36%>>0. (5.1)

In fact these conditions together with o # [ are necessary and sufficient for the present zero

1
behaviour of xz. These zeros become «, 3, — 2 (a + 3+ z'\/3042 + 2a08 + 3ﬁ2>. It is still
more convenient to replace «, # by two other parameters p, ¢ with

a+3 = 2p : a = p+V2q
a—0 = 2/2q’ o B = p—+V2q’

where ¢ # 0. The inequality in (5.1) is then automatically satisfied because 8(p? + ¢*) =
3a? + 208 + 362
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A Jordan normal form of the linear part H may start with diag(p + V2q,p — \/§q) as left
upper block, followed by the normal block corresponding to the two complex eigenvalues. As
to the translation part of H, we have to distinguish two subcases:

Subcase (I.3.a): The left upper block has rank 1, i.e. p*> = 2¢? or equivalently a3 = 0.

We take the a as 0. The three step procedure leads to a new translation part which can
be chosen as (p,0,0,0)". Since ¢ = —p/+/2, the imaginary parts of the complex eigenvalue
become ++/3p. So we may divide H by p, eventually interchange the two complex eigenvalues
and arrive at the new generator, as announced. The elements of the similarity group become

too 0
T = t33 t34 y det(T) 7é 0.
—t34 133
1

Two initial points can be transformed to each other by such a T with |det(T)| = 1 iff
T3(23 + 12)% = y2(y2 + y#)?, which must have a value ¢® with ¢ > 0 (by the rank 1 condition
on the pre-metric). This c is classifying. As initial point we may choose (0,¢,1,0)" in R*
and calculate its orbit as announced.

Subcase (I.3.b): The left upper block has rank 2, i.e. p* # 2¢* or equivalently o3 # 0.

Then the whole translation part of H can be rendered to zero. We arrange the two real zeros
by o > 3, i.e. ¢ > 0. By finally dividing the whole H by 1/p? + ¢2 we can assume p?+¢? = 1
and thus arrive at H, as announced.

Two values of p lead to similar proportional generators H iff they have the same absolute
value. So 0 < p < 1 (the latter from o # ) and p # \/% Then the p is separating between
similarity classes. The self-similarities are

t11
22
T = t33 t34 y det(T) 75 0.

—t34 133

1

Two initial points can be transformed to each other by such a T with | det(T)| = 1 iff on them
rix3 (23 + x3)? has the same value ¢ with ¢ > 0 (by the rank 1 condition on the pre-metric).
This ¢ is classifying. As initial point we may choose (c,1,1,0)" in R* and calculate its orbit
as announced, where we used E + 2pH instead of E because the expressions become simpler.

Case (I.4): xy has four genuine conjugate complex zeros.

The problem is again that the zeros of x g are not expressible by B, C in a reasonable manner.
So we parametrize the set of these matrices H differently. The four zeros are of the form
r +1is, —r + it with 2r2 = s? 4+ ¢2, because xy has no term of order 2 and 3. We may assume
s>0,t>0. Band C are then uniquely expressible by r, s,t. The translation part of H can
be rendered to zero since H is regular. Dividing the real Jordan normal form corresponding
to these four distinct eigenvalues by v/2r and renaming we arrive at H, as announced.
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Only the interchange of p, ¢ leads to similar proportional generators H, so we may assume
0<p<Lag,ie.
0<p<uw, q:=+/1-—p°
Then the p is separating between similarity classes.
The self-similarities are
tir tio lig lus
lig —ti3

—1 t .
T = — tas 1 andifp=gq . _ [5-—
o 83 > in addition: o 3L 32
—t34 t33 t32 _t31

1 1

with det(T) # 0. The equivalence of initial points is described by (2% + x5)(z3 + 23) = ¢*
with ¢ > 0 (by the rank 1 condition on the pre-metric). This ¢ is classifying. As initial point
we may choose (c,0,¢,0)T in R* and calculate its orbit as announced.

In all five cases the existence of the surfaces follows from a calculation of the pre-metric at the
initial point and by observing that it is diagonal and has G99 # 0 under the given conditions.
Ruled surfaces do not occur because, using this pre-metric, one easily sees that z,, is a linear
combination xz, + Sz, at (u,v) = (0,0) with 5 # 0 there. O

6. The noncommutative case

Theorem C. The non-ruled homogeneous parabolic surfaces of R* with noncommutative
groups are classified according to the following four cases, specifying normal forms for the
generators B, H of the corresponding Lie algebra and implicit equations for the orbits, where
always ¢ > 0:

(IT.1)
0 2
10 1 409622 (22 — 224)* = ¢
E= 0 |1 |, H= 1 ,
1 0]0 —2 (173 — 19)* = c*a?
0 0
(11.2)
0 3
10 1 1 333%374 — 312073 + Qfg = CcI
E=| 10  H= -1 , )
10 -3 (2w173 — 22)3 = — éc%%
0 0
(IL3)
0 1 —1 (23 — 3z129 + 323)% =
10 0 -2 39
p=| 10| |o| n- sl | = Rwoany,
0 6 81
2 6,2 _ .2
0 0 (21 — 29)%23 = ¢
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(I1.4)
(1) 0 4 1 1472222 — 29431 Tow s+
E=| 10 CH-=1 9 | 425635 + 1922 = 0,
01 3 =3 . s
0 0 (124 — 29)® = Pt

Any such homogeneous parabolic surface is SA -equivalent to exactly one of the representa-
tives listed above. In particular, the parameter c is classifying.

Proof. In this case the integrability conditions (3.3) (a) — (d) can be solved for S, B,C
recursively from below. Condition (a) then becomes equivalent to the equation

F(5F +2A%)(5F — 16A%)(15F + 84%) = 0,

which has the solutions F' = pA? with either

2 16 8

QZO’ Q:_ga nga Q:_E

Introducing this in conditions (b) — (d) expresses S, B, C by g, A. So the two generators E, H
are determined by o, A alone.

The fine classification follows these four values of p. The corresponding values of E, H
will be displayed separately in each case. For convenience, we shall multiply the first one with
5/(2A). From the equation [E, H| = E it is known [13, Sect. 5] that E is nilpotent (as well as
E) and that span(E) is the only ray in the Lie-algebra consisting of nilpotent elements. Thus
the group of self-similarities here consists of all T such that there are oy, 81, (3, satisfying

TE = aET
TH = BET+gHT® 270

The classification of the linear parts of E, H follows the same line as in [13, Sect. 5]. The
translation parts will be handled by the three step procedure described in Section 2.

Case (II.1): o= 0.
The two generators are originally from (3.2) — (3.4), (3.6):

Nt

o~ oo
- o oo
oo oo
oo oo

N[Ot

olooc o

A—l
0

cloo ~ o
as
Il

The Jordan normal form of E is J(2,0) 4+ J(2,0), and the eigenvalues of H are 2,1, -1, -2,
so the pair E, H is of type F (III.1) (with b = 3) in the notation of [13]. The three step
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procedure leads to the new generators as announced. The rank 1 condition on the pre-metric
requires 1 # 0 and f(z) = 0, where

f(z) = 6423 (22 — 2z4) — (2123 — 22)*.

The self-similarities become

t11
Bt aitn
af of %OJ%
1

From this one deduces that two initial points with z; # 0, f(z) = 0 and y; # 0, f(y) = 0 are
equivalent under such a T with | det(T)| =1 iff

(951963 - 552)4 (ylys - y2)4

2 2
7 1

The value of this may be set to ¢* with ¢ > 0, and this c is then classifying. (For ¢ = 0 a
ruled surface would arise.) As initial point we choose zy := (1,0, ¢,63/128¢*) " and calculate
the following parametrization of the orbit (and also its implicit equations as announced):

62u
2u
z(u,v) := R'-part of exp(vE) exp(uH) ( 9510 ) _ . :;_ece_u
L4)2 - 63 .2,—2
V-t ceve M+ o e

2
Case (II.2): o= — 5

The two generators are originally

(547 0 A 554 |34
14 24 LA -2 A
E = 1 A —ZA A0
0 1 sA A0

\ 0

/ 2 0 —2A2 LA gAfl\
240 1 0 —= A2 0
H = 0 24" 1 —A 0
0 0o sS4t -2 0

\ o)
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The Jordan normal form of E' is J(4,0), and the eigenvalues of H are 3/2,1/2,—1/2,-3/2,
so the pair E, H is of type F (I), in the notation of [13]. The three step procedure leads to
E, H as announced. The rank 1 condition on the pre-metric requires z; # 0 and f(z) = 0,
where

f(z) == 9(323xy — 3212073 + 73)* + 8(27173 — 73)°.

The self-similarities become

( 138} \
Bitin i
T=| 3fitu ofitn  ofty ) det(T) # 0.
§03tn sonfitn ity odtyn

\ r)

From this one can discuss the equivalence of initial points as usual. The result is similar to
the vector space case F(I) in [13]. The equivalence is described by the two algebraic equations
as announced, with ¢ > 0 being classifying. The implicit equations are the same. Choosing
the initial point (1,0, —(3/8¢)%3,¢/3)7, the orbits are parametrized as follows:

e3/2u
( ) U€3/2u
x(u,v) =
1,2.3/2u _ 13 2/3,—1/2u

Sv°e s T2c*°e

%0363/% _ % 870023 ye—1/2u 4 %Ce—s/zu

1
Case (IL.3): o= €6

The two generators are originally

48 2304 9216 8
(-4 0 FRA e AT -4
8 16 512 2304
A A A At 1
BE=| 1 34 B4 _mul g
8 48
0 1 -84 B | 9
\ 0
48 1536 5 A—
/ 2 0 242 18543134 1\
241 -1 0 2242 0
H= 0 At 1 8A 0
0 0 24t =2 0
\ 0

The Jordan normal form of E is J(3,0)+ J(1,0), and the eigenvalues of H are —1, —2,—3,6,
so the pair E, H is of type F (IL.1) (with b = —1), in the notation of [13]. The three step
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procedure leads to E, H as announced. The rank 1 condition on the pre-metric requires
x4 # 0 and f(z) = 0, where

f(z) = 81(=3z9x; + 3x3 + 7)* — 32(aF — 219)°.

The self-similarities become

( aq 51\

a1 04% %512

T=| sufl oip o} 08, det(T) # 0.
0 0 0 tua| O

\ Ny

From this one can discuss the equivalence of initial points as usual. The result is again
similar to the vector space case F(I) in [13]. The equivalence is described by the two algebraic
equations as announced, with ¢ > 0 being classifying. The implicit equations are the same.
Choosing the initial point (1,0, (4v/2—9)/27,¢)" in R*, the orbits are parametrized as follows:

v+e
s v+ ve™
o(u,v) = %U3+%v2€—u+4\/2§7—96—3u
ceGu
Case (I1.4): o= _8
A4): o=~
The two generators are originally
8 64 256 4
(47 0 —mxAt g A 54
4 8 64 64 A4
54 A A —asdt| 1
_ 4 8 A2 256 43
4 8
0 1 = A — 5 A2 0
\ 0 )
4 _
( 2 0 —gA” 3 A%| 34
5 4 104
240 -1 0 — 505 A? 0
H= 0 gA_l 1 —%A 0
0 0 247! —2 0
\ 0

The Jordan normal form of E is again J(3,0) + J(1,0), and the eigenvalues of H are
4/3,1/3,-2/3,—1, so the pair E, H is of type F (II.1) (with b = 4/3), in the notation
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of [13]. The three step procedure gives here the new generators as announced. The rank 1
condition on the pre-metric requires z; # 0 and f(x) = 0, where

f(z) = 19(x174 — 22)* + 2562124 (2124 — T2) + 12821 (—24%21 + 223).

The self-similarities become

tll 0
Piti it 0
T = %Bftn alﬂltn O!%tn 0 y det(T) ?é 0.
0 0 0 o |p
1

From this one can discuss the equivalence of initial points as usual. It is described by

(2124 — 32)° = 522, ¢ > 0.

The value of ¢ is then classifying. (¢ = 0 leads to a ruled surface.) The implicit equations
are this together with f(z) = 0. Choosing the initial point (c, 0, —147/256¢,1)", the orbits
are parametrized as follows:

064/3u

CU€4/3U
55s c(128v%e*/3v — 147¢2/3v)

v+e v

z(u,v) =

The existence of these noncommutative cases is verified as in the end of Theorem B, with the
distinction that the pre-metric at the initial point does not come out diagonal (but has rank
1, of course). The reason is the reparametrization performed in the end of Section 3. So one
cannot see directly that the surfaces are non-ruled. However, one can go the way back and
verify that, expressed in distinguished coordinates, we have the same linear dependency as
in the end of Theorem B, with § # 0. O

Concluding remark on the Gauss images. The Gauss image of a homogeneous parabolic
surface in R* is a homogeneous surface in P3. On the present Lie group level, these Gauss
images can be listed in normal form with almost no computation: The asymptotic direc-
tions along an orbit are obtained by transporting a fixed asymptotic vector a, € R* \ {0}
at the initial point zo € R* around with the generating group I'. Thus, if T' has the above
parametrization y(u,v) := exp(vE) exp(uH), a parametrization of the Gauss image in ho-
mogeneous coordinates is
a(u,v) := exp(vE) exp(uH)ay,

E, H the linear parts of E,H. As to the ag, one may choose a vector Xy # 0 from the null
space of the pre-metric at o, say Xo = p(9/0u) 0,0y + ¥(0/0v)(0,0), and take its tangential
image

ag = R*-part of (uH + VE) (%) .
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This is valid whether E, H have normal form or not. So E, H are the generators for the group
acting on the Gauss image. Taking E, H, 2y as in Theorems B and C yields the desired list
of (projectively homogeneous) Gauss images in normal form. Some of them turn out to be
ruled, namely for (L.1), (I.3.b) with p = 0, (I.4) with p = w, and (II.1). Of course there will
result a sublist of all projectively homogeneous surfaces as established by [6] in the non-ruled
case and [3] in the ruled case. A reconstruction of the homogeneous parabolic surfaces in R*
from the presumable homogeneous Gauss images would offer several difficulties because the
pre-images are very ample and require an additional integration. Moreover there would arise
problems with the separation of representatives. A classification of non-ruled projectively
homogeneous surfaces in P* on the basis of [13] has been described recently in [5] and [8].
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