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Abstract. In this note we prove that the intrinsic ¢-volume of any d-dimensional
zonotope generated by d+1 (resp. d) line segments and containing a d-dimensional
unit ball in E9 is at least as large as the intrinsic i-volume of the d-dimensional
regular zonotope generated by d + 1 line segments having inradius 1, where ¢ =
1,...,d—1,d.
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0. Introduction

According to a well-known theorem of Gauss [1] the density of any lattice packing of
unit spheres in the 3-dimensional Euclidean space E3 is at most \/% = 0.7404... and
equality holds for the lattice packing in which the unit spheres are centered at the points
(av/2,bv/2,¢c\/2), where a,b and c are integers and their sum is even. One can easily see
that in this case the Voronoi cells are regular rhombic dodecahedra that generate a face-to-
face lattice tiling of E3. In general, a convex d-dimensional polytope of the d-dimensional
Euclidean space E4 that tiles E4 by translation is called a parallelohedron. Venkov [6] and
later independently, McMullen [3] proved that any d-dimensional parallelohedron admits
(uniquely) a face-to-face lattice tiling of E9. Putting these results together one can claim
that the volume of any 3-dimensional parallelohedron of inradius at least 1 is at least as
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large as the volume of a regular rhombic dodecahedron of inradius 1. Recall (see for exam-
ple [5]) that there are 5 combinatorial types of parallelohedra in E3 namely, affine cubes,
hexagonal prisms, rhombic dodecahedra, elongated dodecahedra and truncated octahedra
(Figure 1). (Also, recall that a rhombic dodecahedron whose faces are congruent rhombi
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Figure 1

and whose vertex figures are regular polygons is called a regular rhombic dodecahedron.)
Finally, we mention the well-known fact (see [5]) that all five parallelohedra in E3 are
zonotopes (that is they are vector sums of line segments). We raise the following problem,
an affirmative answer to which would obviously imply the above classical result of Gauss.

The Rhombic Dodecahedral Conjecture. The surface area of any 3-dimensional
parallelohedron of inradius at least 1 in E3 is at least as large as 12v/2 = 16.9705.. . . the
surface area of a regular rhombic dodecahedron of inradius 1

In order to phrase the main result of this note properly we have to recall the following.
Let K C E4 be a convex body (i.e. a compact convex set with nonempty interior in E9).
Let w; denote the i-dimensional volume of the unit i-ball, 0 < ¢ < d. Then the intrinsic
i-volume V;(K) of K can be defined via Steiner’s formula

Volg(K + de szVd i ’

where p > 0 is an arbitrary positive real number and pB? denotes the closed ball of radius
p centered at the origin o of E9 and K + pB¢ denotes the vector sum of the convex bodies
K and pB® with d-dimensional volume Volg(K + pB?). It is well-known (see for example
[4]) that Voly(K) is the d-dimensional volume of K, 2Vol;_1(K) is the surface area of K
and 2““ o~ Vi(K) is equal to the mean width of K. (Moreover, Vo(K) = 1.) Finally, the

d- dlmensmnal zonotope Z generated by d + 1 line segments in E9 is called regular if Z
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can be generated by the segments connecting the center of a regular d-dimensional simplex
with its vertices.

Theorem. The intrinsic i-volume of any d-dimensional zonotope generated by d+1 (resp.,
d) line segments and containing a d-dimensional unit ball in E2 is at least as large as the
intrinsic 1-volume of the d-dimensional reqular zonotope generated by d + 1 line segments
having inradius 1, wheret=1,...,d —1,d.

The following is an immediate corollary that on the one hand, generalizes a result of Linhart
[2] on the inradii of rhombic dodecahedra on the other hand, supports an affirmative answer
to the Rhombic Dodecahedral Conjecture.

Corollary. The mean width (resp., surface area, volume) of any rhombic dodecahedron
containing a ball of radius 1 in E3 is at least as large as the mean width (resp., surface
area, volume) of the regular rhombic dodecahedron of inradius 1.

1. Proof of the Theorem

The following lemma plays a key role in our proof of the theorem. The special case of the
lemma having four equal line segments in E3 has been proved by Linhart [2] several years
ago. Our method of the proof presented below is different from the method introduced for
d=3in [2].

Lemma. The inradius of any d-dimensional zonotope generated by d + 1 line segments of
total length s > 0 in B9, d > 1 is at most as large as the inradius of the d-dimensional
reqular zonotope generated by d + 1 line segments of total length s.

Proof. Let Z be an arbitrary d-dimensional zonotope generated by d + 1 line segments of
total length s > 0 in E4. Without loss of generality we may assume that Z is generated
by the vectors vi,Va,...,vgy1 of total length s that positively span E9. Thus,

d+1
Z={z€E%[z=) Avi,0< N <1,1<i<d+1}, (1)

i=1

d+1
> lvill=s, (2)

i=1
o € int[conv{vy,va,...,Vgi1}], (3)
where ||...||,0,int[...], and conv{...} stand for the norm of a vector, the origin of E4, the

interior of a set in E9 and for the convex hull of a set in E4 (Figure 2). Now Z is centrally
symmetric. Moreover, it follows from the above construction that the pairs of opposite

facets of Z are . _
{F};, F,}1<i<j<d+1, (4)

where
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Fjj=vi+Fy,Fj=v; + Fy (5)

with Fj; being equal to the (d — 1)-dimensional parallelotope generated by the vectors
Vij = {vi,va,...vgpr )\ {Vi,vj}, that is,

Fjj={zcE|z= Z AV, 0 < Ap < 1} (6)
v EVij

Vd+1
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Figure 2
Thus, o
dist (Fy;, F};) < dist(vi, vj) = [|[vi —v[[ forall 1 <d < j <d+1, (7)
where dist(...,...) stands for the distance between two sets (resp., two points) in E9.

Now let V' = conv{vy,Vva,...,v4y1}. Then (7) implies that the diameter of the insphere
of Z is at most as large as the minimum edge length of the d-dimensional simplex V,
that is, it is at most min{||v; — v;|| [ 1 <4 < j < d+ 1}. As a result in order to finish
the proof of the lemma it is sufficient to show that among the d-dimensional simplices

V = conv{vi,Va,...,v4y1} satisfying (2) and (3) in E? the regular one with center o has
the largest possible shortest edge length. This we prove as follows.
Obviously, there is an extremal d-dimensional simplex V* = conv{vj,v3,..., v} ;}
satisfying
d+1
D lvill=s, (27)
i=1
o € int[conv{v},v5,..., vy 1}] (3%)

with the largest possible value of min{||v; —v}|[ |1 <4 < j < d+1}. Suppose that V* is
not a regular simplex. Let m > 0 be the length of the shortest edge of V*. Then V* must
have a vertex say, v; with some edges having length equal to m and some edges having
length > m. As the total number of edges meeting at v} is d there exists a hyperplane Hj,
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of E9 passing through o as well as v}, such that it separates the edges of v; of length m
from the edges of v} of length > m. Let H," be the closed half-space of E4 bounded by Hj
that contains all the edges of v}, of length > m. Now it is clear that if we rotate the vertex
v}, about the origin o towards H, ,:' with initial tangent vector being perpendicular to Hy by
a small angle, then all the edges of v;, will have length > m. Repeating this transformation
at some other vertices of V* we can increase min{||v} — v}[| | 1 <4 < j < d+ 1} without
changing the norms of the vectors vi,v3,..., vy, , a contradiction. Thus V* must be a
regular d-dimensional simplex of E4. Finally, let F} be the facet of V* opposite to the
vertex v and let U} = conv(F* U {o}),1 < i <d+1. IfI = {1,2,...,d+ 1} and

v* = Volg_1 (F}) = Volg_1(F5) = ... = Volg_1(Fj, ), then it is easy to see that
> Voly(U) < = «[|vi[| - v* for all i € I. (8)
JeI\{i}

Thus, (8) implies in a straightforward way that

* 1 *
d-é Vold(Uj)Sa-s-v 9)
Jel
that is
d2

with equality if and only if o is the center of the regular d-dimensional simplex V*. Hence,
if o were not the center of the regular d-dimensional simplex V*, then using (10) we could
move o to the center of V* thereby shortening the total length Zf;rll ||v¥|| of the spanning
vectors of V*, a contradiction. This completes the proof of the lemma. Il

Now we turn to the proof of the theorem. We distinguish two cases.

Case (1): The d-dimensional zonotope in question is generated by d 4 1 line segments.
The proof is by induction on d. Clearly, the theorem holds for d = 2. So, we may assume
that d > 3 and the theorem holds in any Euclidean space of dimension less than d. Then let
Z be an arbitrary d-dimensional zonotope generated by d+ 1 line segments and containing
a d-dimensional unit ball in E9. Without loss of generality we may assume that Z is
generated by the vectors vi,va, ..., vgr1 of Ed satisfying (1) and (3). Recall the following
elegant formula for the intrinsic i-volume V;(Q) of a d-dimensional convex polyhedron @
in E2 (see for example [4]):

Vi(@) =Y v(F®,Q) - Voli(FY), (11)

F()

where the summation is over all i-dimensional faces F® of @ and v(F®, Q) denotes the
normalized exterior angle of Q at the face F(¥. We split the proof of the theorem in two
subcases according to the values of 4.
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Subcase 1 < ¢ < d— 1. Let Z* be the d-dimensional regular zonotope of inradius 1
generated by the vectors uy, us,...,ugy; of EY satisfying the corresponding versions of
(1) and (3). Take a generating vector u; of Z*, 1 < j < d+ 1. Let Pr;(Z*) denote the
orthogonal projection of Z* onto a hyperplane of E9 perpendicular to u;. Finally, let
wi—1 = Vi_1[Pr1(Z2*)] = V;_1[Pra(Z2*)] = ... = V;_1[Prg4+1(Z*)]. Now, take a generating
vector vj of Z,1 < j < d+1. Then let Zi(J ) denote the union (“zone”) of the i-dimensional
faces of Z that are parallel to v;. Then by induction one can easily get that

Y AFD, Z) - Voly(F®) > ||v]| - ui_y forall 1 < j <d+ 1. (12)
F(i)ezi(j)

Thus, (11) and (12) imply that

d+1
i Vi(Z) 2 uim1 - Y |Ivll. (13)
j=1

Hence, (13) and the lemma imply the theorem in a straightforward way.

Subcase i = d. As the d-dimensional volume of any d-dimensional zonotope generated by
d + 1 line segments and containing a d-dimensional unit ball in E? is at least as large as
% times its surface area the theorem follows from the subcase ¢ = d — 1 in a trivial way.

Case (2): The d-dimensional zonotope in question is an affine cube.

As any d-dimensional affine cube of inradius at least one can be approximated by d-
dimensional zonotopes generated by d + 1 line segments and containing a d-dimensional
unit ball in E9 the theorem follows from case (1).

This completes the proof of the theorem. Il
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