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Introduction

In this paper we study initially Koszul algebras. Let R = K[X},...X,]/I be a homogeneous
K-algebra where K is a field and I C (X,...,X,)? is graded ideal with respect to the
standard grading deg(X;) = 1. Such an algebra R is Koszul, if its residue class field has an
R-free linear resolution. So far, Koszul algebras have been discussed in several contexts. In
[9] Fréberg gives a survey on this subject.

An effective method to show that an algebra is Koszul has been introduced by Conca,
Trung and Valla [6]. They have defined Koszul filtrations, that is a family F' of ideals
generated by linear forms with the following properties: The ideal (0) and the maximal
homogeneous ideal m of R belong to F, and for every I € F, I # (0), there exists J € F
such that J C I, I/J is cyclic and J: I € F. It is easy to see that an algebra which admits
a Koszul filtration is Koszul (see [6]).

We call a K-algebra R initially Koszul (i-Koszul for short) with respect to a sequence
T1,--., &y € Ry, if the flag FF = {(z1,...,2;): ¢ = 0,...,n} is a Koszul filtration of R.
Conca, Rossi and Valla have proved that i-Koszulness implies a quadratic Grobner basis
with respect to the reverse lexicographic order on K[X7,..., X,] induced by X; < ... < X,
(see [5]).

In the first section of the article we give a condition on in(I) which characterizes i-
Koszulness of R with respect to X; + I,...,X,, + I. Using this criterion we show that
i-Koszulness is preserved under tensor products over K. Moreover, if R is i-Koszul and the
defining ideal I is generated by monomials of degree 2, then the d-th Veronese subring of R
is again i-Koszul.

In Section 3 we study algebras for which generic flags are Koszul filtrations. We will
see that this is equivalent to the property that I has a 2-linear resolution. Furthermore we
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discuss algebras which are i-Koszul with respect to any K-basis of R;. We call such algebras
universally initially Koszul (u-i-Koszul for short). In case that K is algebraically closed and
char(K) # 2 we classify all u-i-Koszul algebras, showing that I = (0) or I = (X1,...,X,)?
or I = (g?) for some linear form g.

In the last section we study homogeneous semigroup rings. Let G = {a1,... ,a;} be a
minimal system of generators of an affine semigroup in N*. We say a semigroup ring R is
i-Koszul, if R is i-Koszul with respect to the semigroup generators X1, ..., X% _ R is said to

be u-i-Koszul, if R is i-Koszul with respect to all permutations of the semigroup generators.

We consider natural shellability of the divisor poset ¥ of R which is closely related to
A-shellability in [1]. Let A : G — A be a map which totally orders the generators. For any
semigroup element « the lexicographic order on A" gives a linear order > on the maximal
chains of the interval [1, «]. R is said to be naturally shellable, if for each semigroup element
« the interval [1, o] is shellable with order >. Using a lemma of Hibi we show that an i-Koszul
semigroup ring is natural shellable. We also show that a u-i-Koszul semigroup is already a
polynomial ring.

The author is grateful to Prof. Herzog for several helpful comments regarding this paper.

1. Notation and definitions and background

In this paper S = K[X3, ..., X,] denotes always the polynomial ring and m = (Xy,..., X},)
the graded maximal ideal of S. We set R = S/I where I C m? is a homogeneous ideal. We
recall from [6] the following definition:

Definition 1.1. Let R be a homogeneous K-algebra. A family F of ideals of R is called a
Koszul filtration of R, if:
(a) Ewvery ideal J € F is generated by linear forms,

(b) The ideal (0) and the mazimal homogeneous ideal of R belong to F and

(¢) For every J € F, J # 0, there exists L € F such that L C J, J/L is cyclic and
L:JekF.

The following is noted in [6].

Proposition 1.2. Let F be a Koszul filtration of R. Then Torf(R/J,K); =0 fori # j and
for all J € F. In particular, the homogeneous maximal tdeal of R has a system of generators

T1, ..., Ty such that all ideals (z1,...,x;) with j =1,...,n have a linear R-free resolution
and R 1s Koszul.

Definition 1.3. Let x1,... ,x, € Ri. We call R initially Koszul (i-Koszul for short) with
respect t0 L1,y ..., Tn, if F ={(x1,...,2;): 1 =0,...,n} is a Koszul filtration.

In order to simplify notation we say that R = S/I is i-Koszul, if R is initially Koszul with
respect to X1 + I,..., X, + I. Koszul filtrations as in 1.3 which are generated by a flag of
linear subspaces of R, first considered in [4], are called Grébner flags. The reason for this
naming is the following result.
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Theorem 1.4. [Conca, Rossi, Valla] Let R = K[X1,...,X,]/I be i-Koszul. Then I has a
quadratic Grobner basis with respect to the reverse lexicographic order induced by X1 < X5 <
< Xy

By 1.2 any Koszul filtration of R contains a flag. Thus i-Koszulness is equivalent to the
existence of a Koszul filtration which is as smallest as possible.

2. Characterization of i-Koszulness

In this section > denotes the reverse lexicographic order induced by X; < Xy, < ... < X|,.
The following result, which was shown independently in [5], characterizes i-Koszulness in
terms of initial ideals.

Theorem 2.1. The following statements are equivalent:
(a) R=K[Xy,...,X,]/I is i-Koszul.
(b) R = K[X3,...,X,]/ins(I) is i-Koszul.
(¢) I has a quadratic Grébner basis with respect to > and if X, X; € ins(I) for somei < j,
then X; Xy € ins(I) for alli <k < j.

For the proof of 2.1 we need the following property concerning the chosen term order >.

Lemma 2.2. Let I C S be a graded ideal and set S = K[Xs,... ,X,]. Leto : S — S be
the K-algebra homomorphism with X, — 0, X; — X; for i > 1. Suppose that g1,...,q; is a
Grébner basis of I such that X1 {in(g;) fori=1,...,r and X | in(g;) fori=r+1,...,t.
Then o(g1),-..,0(g:) is a Grébner basis of I = (o(f): f € I). In particular, it holds

in(/) =in().

Proof. We use Buchberger’s criterion. Since > is the reverse lexicographic order we have for
any f € S: If X |in(f), then X; | f (see [7] 15.4). Thus we get S(o(g;),0(g;)) = 0(5(9:, 95))
for all 4,5 € {1,...,r}, i # j and the assertion follows immediately. O

We return now to 2.1.

Proof. We prove the equivalence of (a) and (b) by induction on n. The case n =1 is trivial.
Let z; = X;+ I and 2} = X; +in(J) for i = 1,... ,n. Note that R is i-Koszul, if and only if
(i) R/z1R is i-Koszul and
(ii)) 0: 2z = (z1,... ,zx) for some k.
Using in(X; + 1) = (X1) +in(I) ([7] 15.12) and 2.2 we see that (i) is equivalent to R'/z| R’
being i-Koszul. Since in(/ : X;) = in(f) : X; (see [7] 15.12) we get 0 : 2} = (zf,...,2}) if
and only if (ii) holds. This proves the equivalence of (a) and (b). For the equivalence of (b)
and (c) we need O

Proposition 2.3. Let R = S/I where [ = (my, ... ,m,) is generated by monomials of degree
2. Then the following statements are equivalent:
(a) R is i-Koszul.

(b) If X; X, € I for some j > i, then X; X, €I for alli <k < j.
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Proof. Let xp = Xy + [ for k=1,... ,nand J; = (z1,... ,2;) for i =0,... ,n.

(a) implies (b). If X;X; € I with ¢ < j, then z;2; = 0 and so z; € J;_; : J;. Since
R is i-Koszul it follows J;_1 : J; = J; for some [ > 7 — 1. But then for each : < k < j we
get x;x, € J; 1. Therefore X; X, — X; X, € I for some [ < i — 1 and some s. Since [ is a
monomial ideal this implies X; X, € I.

(b) implies (a). We have to show that J;_; : J; = (z1,... , %) for each i = 1,... n.
Let u € J;_1 : (x;), u # 0. Since I is a monomial ideal we may assume that u is a monomial.
It is clear that J; 1 C J;_1 : J;. So we assume u ¢ J;_;. It follows that uz; = 0. There are
k < I such that X;X; € I and XX, | uX;. If i # k and i # [, we have v = 0 which is a
contradiction. Since u ¢ J; ; it follows that i = k£ and u € (x;). Condition (b) implies that
(xiy ... ,x;) C Ji_1 : z; which yields the assertion. O

3. Applications and examples

In this chapter we use the criterion of Section 2 to show that certain algebras are i-Koszul.
First we need some notation.

Definition 3.1. Let m € S be a monomial. We write max(m) for the largest index i such
that X; | m. A set M of monomials is called (combinatorially) stable, if for every m € M
and j < max(m) the monomial (X;/Xmax(m))m € M.

With 2.3 we get immediately

Corollary 3.2. Let I be generated by monomials of degree 2 and G(I) the set of minimal
generators. If G(I) is stable, then R = S/I is i-Koszul.

Moreover we observe that i-Koszulness is compatible with tensor products over K.

Proposition 3.3. If R = K[Xy,...,X,]/I and R' = K[Y1,...Y,]|/J are i-Koszul algebras,
then T = R®k R is also i-Koszul.

Proof. By 2.1 there are Grobner bases fi,..., fy of I and g¢i,..., g of J, such that in(/) and
in(J) satisfy condition 2.1(c). It is T = K[Xy,...,X,,Y1,...,Y,]/Q with Q = IT + JT.
We take the reverse lexicographic order on K|[Xi,...,X,,Y1,...,Y,] induced by X; <

<Xy <Y <L <Y, It follows immediately from the Buchberger criterion that
fi,--o s fesg1,---, 9 form a Grobner basis of Q. Thus condition (b) of 2.3 is satisfied for
in(@) and by 2.1 we get the assertion. O

Theorem 3.4. Let I be generated by monomials. If R = S/I is i-Koszul, then the d-th
Veronese subring R is i-Koszul for all d > 0.

Proof. We first consider the case R = S. Let M be the set of all monomials of degree
d in S. We order the elements of M such that m; > Mo >ies ..o >pex mMy. Writing
S@ =~ K[Y,...,Y;]/J each monomial m; can be identified with a residue class 3 = Y; + J.
Thus we define J; := (mq,... ,my) forl =0,... ,t. We have to show that foreveryl =1,... ¢
the ideal J;_1: J; is generated by an initial sequence of the m;’s. We set

M, ={m € M: X,|m for some r <[}
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forl =1,...,tand My = (). The elements of each M, form an initial sequence m1, ms, ... ,m;
We claim that

e

Ji—1: (ml) = (Mmax(ml)*l)

which yields the assertion. In case [ = 1 there is nothing to prove, thus we may assume
[ > 1. Let s = max(my) —1. We write m; = X;, -+ X;, with iy < ... <43 = s+ 1. Let
u € Ji_1: (my). We may assume that u is a monomial. Then we have that um; = wm,. for
some monomial w and r € {1,... ,l—1}. We write m, = X, --- X, with j; <... < j4. Since
My >1eq My, there exists ¢ € {1,...,d} such that j, = i, for all m < ¢ and j, < i, < s+ 1.
The equation um; = wm, implies

UXZ de :’(,Uqu X]d

and thus we have X |u which yields v € (M;). Conversely, let v € M,. Then there exists
r € {1,...,s} such that X,|lu. We define w = X;, ---X;,_ X,. It follows w >, m; and

td—1
hence w € J;_1. Since
U

EXid)w,

um; = (
it follows that u € Ji_1 : (my).
We now consider the general case R = S/I. Let x; = X; + 1 for i = 1,... ,n. Since
I is monomial ideal, the set of all monomials which do not belong to I forms a K-basis
of R. Thus each monomial v = z;,z;,...x; € R is either 0 or has a unique presentation
u= X; Xj;,...Xj, + 1. Therefore we may identify each monomial with its residue class. We
have the following relations:

() For any two non-zero monomials m,m’ € R we have mm' = 0 if and only if there are
1,] € {1, .. ,n} such that X; | m, Xj | m' and XZXJ el

R@ is generated as a K-algebra by the set M of all non-zero monomials of degree d in R.
As in the first case we order the monomials of M by mi >0 Mo >z --- >iex My and set
Ji=(mq,...,m;) for i =0,...,t. We define

N(my) = {m € M : there exists ¢ < j with X;|m; , X;/m and X;X; € I'}

and assert that
Ji—1: (ml) = (Mmax(ml)—laN(ml))

fori=1,...,t. Let a € Ji_1 : (my), a # 0. We may assume that a is a monomial. There are
two cases to consider:

(a) amy = 0. We have a relation as in (x). If @ ¢ (Mmax(m,)—1) then, for each index ¢ with
Xt | a, it holds ¢ > max(my). Thus, if X; | m; and X, | a with X; X, € I, it follows ¢ < j
which yields a € N(my).

(b) am; # 0. We have am; = bm; for some monomial b € R and some i < [. There is
a K-linear, injective map o : R = S/I — S with m + I — m for all non-zero monomials
m € R. If mm' # 0 for two monomials m,m’ € R, we get o(m)o(m') = o(mm'). Let
m:S — R = S/I be the natural epimorphism. Then it holds 7 0 0 = idg. Since ¢ and 7
respect the standard grading, these maps restrict to R(® respectively S@. We apply o to
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the equation above and, since am; # 0, obtain that o(a)o(m;) = o(b)o(m;) in S@. The case
R = S yields 0(&) S (Mma.x(a(ml))—l)- Applying T we get a € (Mmax(ml)—l)-

The converse inclusion (Mmax(m,)—1, V() C Ji—1 : (my) follows immediately from the
case R = S and the relations in (x).

It remains to show that for all [ = 1,... ¢ the ideal J; i : (m;) is generated by an initial
sequence my, ... ,Myq). Since the elements of Myax(m,)—1 form already an initial sequence it
suffices to prove the following: If m, € N(m;) for some s, then m,_; € Mmax(m,)—1 U N(my).
Let my = X;, ... X,, with ¢y < ... <44 It is ¢4 = max(my). Since ms; € N(my) there are
i < j with X;|m; and X;|ms and X;X; € I. By the chosen order we have my_ 1 > ms.
Thus there exists a k with Xy | ms 1 and k < j. If k£ < 44, we have m, | € Miax(my)—1-
Otherwise we have ¢ < k£ < j. Since R is i-Koszul we have X;X; € I by 2.3. This yields
ms_1 € N(ml) ]

We now consider

Definition 3.5. (see e.g. [2]) Let L be a finite, distributive lattice, and K[{X4}acr] the poly-
nomial ring over K. Consider the ideal I, = (XoXp — XargXavs: o, 8 € L) of K[{X4}aerl-
The quotient algebra

Ri[L] = K[{Xa}aer]/L

15 called the Hibi ring of L over K.

Hibi has shown that I; has a quadratic Grobner basis for any term order which selects,
for any two incomparable elements o, 3 € L, the monomial X,Xs as the initial term of
XoXp — XangXavp (see [10]). Such a term order > is, for example, the reverse lexicographic
term order induced by a total ordering of the variables satisfying X, < Xpg, if rank(a) >
rank(3) (see [2]). We get the following characterization:

Remark 3.6. Let L be a finite distributive lattice and > a term order on S = K[{Xa}aer]
as above. Then the Hibi-Ring R = S/1I;, is i-Koszul if and only if R is a polynomial ring.

Proof. If Iy, # (0), we have X,Xg € in(/) where o and (3 are some incomparable elements
of L, say X, < Xg. Since R is i-Koszul, it follows X2 € in(/) by 2.1. But this would mean
that « is incomparable with itself, a contradiction. ]

4. u-i-Koszulness

Let R be i-Koszul. In 1.2 we have seen that K has a linear R-free resolution. If we consider
R as an S-module, we can study the minimal S-free resolution of R. For the next statement
we take Gin(/) with respect to the reverse lexicographic order induced by X; > ... > X,,. It
holds

Proposition 4.1. Let K be an infinite field, char(K) # 2, I C S a graded ideal and I # (0).
The following statements are equivalent:
(a) I has a 2-linear S-resolution.

(b) S/ Gin(I) is i-Koszul.
(¢) S/ Gin(I) is Koszul.
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Proof. We use some results about Gin(I). It is known that Gin([/) is a Borel-fixed ideal and
reg Gin(/) = reg([/) (see [7] 20.21). Since char(K) # 2 by hypothesis, we obtain that Gin([),
is stable (see [7]15.23b).

Let us assume (a). Then we have reg(I) = 2 = reg Gin(/) which implies that Gin(/) is
generated in degree 2. Using 3.2 S/ Gin(I) is i-Koszul. This is condition (b) which implies
(c) by 1.2.

Assuming (c) we have that Gin(/) is generated in degree 2. Since by hypothesis K is an
infinite field and Gin(/), is stable, we can use Prop.10 in [8] which yields that Gin([) is
2-regular. In case I C m? this implies reg(Gin(I)) = 2 = reg(/). Thus I has a 2-linear
resolution. 0

Proposition 4.1 can be interpreted as follows:
Corollary 4.2. I has a 2-linear resolution if and only if all generic flags are Grobner flags.
We may now ask for which algebras all flags are Grobner flags. This leads us to the following

Definition 4.3. A K-algebra R = S/I is called universally initially Koszul (for short u-i-
Koszul), if R is i-Koszul with respect to every K-basis 1, ... ,x, € R;.

In the case that R is u-i-Koszul the property of i-Koszulness is preserved under any change
of coordinates in S;. Since this is a strong condition, we can classify all u-i-Koszul algebras
in the following case:

Theorem 4.4. Let K be algebraically closed, char(K) # 2 and I C m?. Then R = S/I is
u-i-Koszul if and only if I = (g?) for some linear form g € Sy or I = m?.

We need some preparation.
Lemma 4.5. Let R be u-i-Koszul and x € Ry. Then R/xR is also u-i-Koszul.

Proof._ Let R = R/zR and zo,...,z, € R, an arbitrary K-basis of R;. We have to show
that R is i-Koszul with respect to this sequence. Since R is u-i-Koszul, R is i-Koszul with
respect to =, s, ... ,x,. This yields the assertion. [l

Lemma 4.6. Let R be u-i-Koszul, char(K) # 2 and let N C Ry denote the set of all zerodi-
visors in Ry. Then N is a linear subspace of Ry and N? = 0.

Proof. Since R is u-i-Koszul we have (z) C 0: (z) for all z € N. This implies 22 = 0 for all
x € N. Thus, for z,y € N we have (z + y)(z —y) = 22 — 2 = 0 and therefore z + y € N.
Since char(K) # 2, it follows N2 = 0. O

Lemma 4.7. Let I = (L?) for some linear subspace L of S;. Then R = S/I is u-i-Koszul if
and only if dimg L € {0,1,n}.

Proof. Let R be u-i-Koszul. After a change of coordinates we may assume that L =
(X1,...,X;) with ¢ = dimg L and I = (Xy,...,X;)% Ifi ¢ {0,1,n}, we interchange
X; and X;,1. We obtain a new defining ideal J with X;X;,; € J, but X;X; ¢ J which is a
contradiction to i-Koszulness of S/J by 2.3. Conversely, let i = dimg L € {0,1,n}. If i =0,
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there is nothing to prove. If i = 1, then I = (¢?) for some g € S;. For any transformation
we obtain a new defining ideal J = (h?) with h € S;. We observe that in(h?) is a square in
the term order of 2.1. The assertion follows from 2.1. If : = n, we have [ = (X1,...,X,)%
In this case the defining ideal does not change of any transformation and we get the claim
by 2.1. ]

Lemma 4.8. Let K be algebraically closed, char(K) # 2 and R = S/I. If I C m? is a
principal ideal, then R is u-i-Koszul if and only if I = (g°) for some g € S.

Proof. If I = (g?) for some g € Sy, then R is u-i-Koszul by 4.7. Let R be u-i-Koszul. Since
K is algebraically closed and since char(K) # 2, there exists a K-basis Y7,...,Y, of S; such
that the generator of I is of the form Y + ...+ Y;? for some i < n (see [13]). We claim that
i = 1 and argue by contradiction. If i > 1, we apply Y;_; — Y;_1 ++/—1Y; and Y; = Y} for
j #i—1. Then the generator f in the new coordinates has in(f) = —2v/—1Z,_1Z, and thus
R is not i-u-Koszul by 2.1. Therefore we have 1 = 1, and f = Y7 O

Remark 4.9. Let I C S have a quadratic Grobner basis and let fi,..., fr be a minimal
system of generators of I. Then there exists a minimal Grobner basis of I which consists of
K-linear combinations of fi,..., fe.

Proof of 4.4. In 4.7 and 4.8 we have already observed that R is u-i-Koszul, if I = (g¢?)
or I = m%. Let R be u-i-Koszul. By 4.6, the set N of all zerodivisors in R; is a linear
subspace of R; and N? = 0. Thus, in the case that dim(R) = 0 we have N = R; and so
I=(Xy,...,X,)? Let now dim(R) > 0. We have to show that I = (¢?) for some g € R;.
We use induction on d = dim(R). Let d = 1. We have two cases:

(a) N = 0. In this case R is a 1-dimensional Cohen-Macaulay ring with minimal multiplicity
and every [ € R; is a non-zerodivisor. Suppose I # (0). We show that R must be a domain
and deduce a contradiction. Since dim(R) = 1 and I # (0) we have embdim(R) > 1.
Let z; = X; + I for i = 1,... ,n. z; is a non-zerodivisor of R. Since dim(R/z1R) = 0
and since R/z1R is u-i-Koszul by 4.5, we get R/z1R = K[Xo,...,X,]/(Xa,...,X,)? as
we have already observed above. Since z; is a non-zerodivisor of R, we have X? ¢ I. By
2.1, S/in(I) is i-Koszul. The term order of 2.1 implies that X? ¢ in(I). By 2.3, we get
in(l) = (Xy,...,X,)% It is a general fact that the set of monomials which do not belong to
in(/) forms a K-basis of R. In our case z%z1,... , 2}z, form a K-basis of R;;; for all > 0. If
a € R;, i > 2, is a homogeneous element we have a € (z1)* . Suppose ar = 0 for some r € R.
We can write ¢ = :v’fll with some linear form [ € R,. Itisar = x“fllr = 0. Since z; and [ are
non-zerodivisors by assumption it follows that » = 0. Thus, every homogeneous element of
R is a non-zerodivisor which implies that R is a domain. Therefore R is a polynomial ring in
one variable because K is algebraically closed and I is homogeneous. This is a contradiction
to embdim(R) > 1.

(b)y N # 0. It is I # (0). We start induction on n = embdim(R). Let n = 2. By 2.1
and 4.9 I C K[X;, X5] has a minimal system of generators fi, ..., fy which forms a minimal
Grobner basis. Since we are in the case that d = dim(R) = 1 we have I # m? and thus
k <2. If k=0, then R is a polynomial ring. For £ = 1 we get the assertion by 4.8. If £ = 2,
we deduce a contradiction. Since R is i-Koszul, we obtain by 2.1 that in(I) = (X?, X;X>)
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with respect to the term order of 2.1. It follows that I = (X?, X;X5) because X7, X; X, are
the smallest two monomials of degree two. Thus, by interchanging X; and X, we get the
defining ideal J = (X1 X5, X2). By 2.1 S/J is not i-Koszul which is a contradiction to R
being u-i-Koszul. Let n > 2. We choose x € N, z # 0. We may assume z = z; = X; + [.
Since 22 = 0 by 4.6, we have that dim(R/z;R) = 1 and embdim(R/z;R) =n — 1. R/zR
is u-i-Koszul by 4.5. Let N be the set of all zerodivisors of R/z;R. If N # 0, by induction
hypothesis on n, if N = 0, by case (a), it follows that R/z,R is a hypersurface ring of the
form R/z1R = K[Xs,...,X,]/(¢?) for some g € K[X,,...,X,];. Let L C S; be the linear
subspace with (7 : X;); = L. Then we have I = (XL, g* + X;l) for some linear form [ € S;.
By 4.6, we get X; € L and thus X; € Rad(I). It follows that ¢ € Rad(/) which implies
g+ 1 € N. Again by 4.6, we get g> € I and X,g € I. This implies g,/ € L and therefore
I = (L?). Since d = 1 we have L? = I # m?. By 4.7 we get the assertion.

We finish now the induction on d. Let d > 1. Then we have N # R;. Thus there
exists x € Ry \ N, x # 0. We may assume z = z; = X; + I. By 4.5 R/zR is u-i-
Koszul. We have dim(R/z;R) = dim(R) —1 > 1 and thus by induction hypothesis R/z1 R =
K[Xs,...,X,)/(¢%). It follows I = (¢* + Xil) for some | € R;. If I # (0), we obtain the
assertion by 4.8. O

In the monomial case we have a more precise statement.

Proposition 4.10. Let I C S a proper monomial ideal. R = S/I is u-i-Koszul if and only
(X2 if char(K) # 2
(X72,...,X?2) if char(K)=2.
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if I =m? or I is of the form {

Proof. In the case that I = m? or I is of the form (X?) for some i the algebra R is u-i-Koszul
by 4.7. Now let char(K) =2 and I = (X?,...,X?) for some indices i; < ... < i,. For any
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transformation X; — > a;;X; i =1,...,n, we obtain a new defining ideal J = (¢1,...,9,)
j=1
with g = > aZ;, X7 for k = 1,...,r. Then J has a minimal system of generators which
j=1

forms a Grébner basis of J. In the term order of 2.1 in(J) is of the form (X7,...,X7)
for some indices j; < ... < js. By 2.1, S/J is i-Koszul and thus R = S/I is u-i-Koszul.
Conversely, let us assume that R is u-i-Koszul. There are two cases:
(a) char(K) # 2. By 4.6 and 4.7, we get I = (X?) for some i or I = m?.
(b) char(K) = 2. Let G(I) be the set of the minimal generators of I. We need some
facts which follow immediately from 2.3. If
(1) X,X,; € G(I) with ¢ < j and X; Xy, ¢ G(I) for some k > j or if
(2) X;X; € G(I) with i < j and X? ¢ G(I) for some k > i or if
(3) X2, X;Xi11, X; X, € GU), X2,... , X2 € G(I) and X; 11 X;,2 ¢ G(I) for some i < n—1
or if
(4) X7, X; X1, X2, € G(I) and X;_1X; ¢ G(I) for some 1 < i <n,
then R is not u-i-Koszul.
We have to show the following: If I # m® and I is not of the form (X?,...,X?), then
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R is not u-i-Koszul. Under this assumption we have X;X, € G(I) for some i < j. By
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2.3 and (1), we have X?,... , X;X, € G(I). By (2), we get X?,,...,X? € G(I). Then
(4) implies X;_;X; € G(I). By iteration and using (3), we obtain that I = m? which is a
contradiction. d

As a direct consequence from 4.4 and 4.10 we have

Corollary 4.11. Let char(K) # 2 and K algebraically closed. If R = S/I is u-i-Koszul,
then R' = S/in(I) is also u-i-Koszul.

The converse of 4.11 is not true. For example, take n = 3 and I = (X;X3 — X2). Since
in(I) = (X2) the algebra R’ is u-i-Koszul by 4.10, but R is not, as follows from 4.4. We get
immediately from 4.4:

Corollary 4.12. Let K be algebraically closed, char(K) # 2 and R = S/I a u-i-Koszul
domain. Then I = (0).

The statements in 4.4 and 4.12 are not true for more general base fields. Take, for example,

R =Q[X,, X.]/(X? - £ X)),

Then X7 — 1 X7 is not a square in Q[ X1, X5] and R is a u-i-Koszul domain. Moreover,
R=1Z7/2Z[X:,..., X4/ (X] + X3, X5 + X3)

is u-i-Koszul. Therefore we need char(K) # 2 in 4.4.

In [4] we find the following concept: A homogeneous K-algebra R is called universally
Koszul, if the set of all ideals of R which are generated in degree 1 defines a Koszul filtration
of R. There is no direct relation to i-Koszulness. Since on the one hand the algebra

K[ X1, X5]/(X1X5)
is u-Koszul by [4] 1.5., but not i-Koszul by 2.3. On the other hand
K(Xy,...,Xa)/(X,...,X2)

is i-Koszul due to 2.3, but not u-Koszul, if n > 3 and char(K) # 2 (see [4]).

5. i-Koszulness of semigroup rings

In this chapter we want to study semigroup rings. In this case we only consider flags spanned
by semigroup generators. We identify a monomial X* with the corresponding exponent

a € N*. Thus if R = K|oy,..., 0] is a homogeneous semigroup ring with minimal set of
semigroup generators G = {a, ... ,ax}, then R is called i-Koszul if R is i-Koszul with respect
to ai,...,04. R is said to be u-i-Koszul , if R is i-Koszul with respect to ayq),. .., axx)

for any permutation 7 € S;. We will see that i-Koszulness implies a certain shellability of
the finite intervals in the divisor poset of R. The set ¥ of all monomials in R is partially
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ordered by divisibility. If there is an injective map A : G — A, A totally ordered, then all
unrefineable finite chains of divisors

Ciﬂo'ﬂﬂl—%'"ﬂ;ﬂr
are labeled by A\(C) = (A4 ), ... , A, )) € A”. We have a total order > on A" induced by
the lexicographic order and the order on A.

Definition 5.1. (see [1],[3]) R is called naturally shellable, if for every monomial o € ¥ the
order complex A([1, ) is shellable with order A(Cy) < --- < A(C,) where {C4,...,C,} is
the set of all unrefineable chains in the interval [1, .

Let R = K[Y1,...,Y;]/I. Natural shellability can be translated into a condition on in([)
with respect to the reverse lexicographic order induced by ¥} < --- < Y}.
Proposition 5.2. (T. Hibi) The following statements are equivalent:
(a) R is naturally shellable.
(b) in(I) is quasi-poset, i.e. if i < k < j and Y;Y; € in(I), then it follows Y;Y} € in(I) or
Y,Y; € in(I).
Consequently, by 2.1 the following is evident:
Corollary 5.3. Let R be an i-Koszul semigroup ring. Then R is naturally shellable.

It is known (see [12]) that shellability of divisor posets implies Koszulness. Thus the corollary
above gives us an alternative proof for the statement that an i-Koszul semigroup ring is
Koszul. We have seen in 3.3 that the property of i-Koszulness is preserved under tensor
products. This is not true for Segre products of semigroup rings. For example,

R = K[XIYvIaXIYvZaXZYvIaXQYvZ] = K[Zl, ZQ, Z3, Z4]/(Z1Z4 - Z2Z3) (1)

is not i-Koszul with respect to any permutation of the semigroup generators by 2.1. But it
can be shown that R is naturally shellable ([3]). Therefore the converse of 5.3 is not true in
general.

We now compare i-Koszulness with other Koszul properties. In [11] strongly Koszul alge-
bras are introduced. In the semigroup case this property is preserved under Segre products
(see [11]). Thus the ring R = K[X;, Xs] * K[Y7,Y5] in example (1) is strongly Koszul. In
[11] it is shown that strongly Koszul algebra is sequentially Koszul. It is obvious from the
definition that:

Remark 5.4. Any i-Koszul algebra R is sequentially Koszul.

As (1) shows the converse is not true in general. Furthermore i-Koszulness does not imply
the strongly Koszul property. Take, for example,

T=K[X} XXy, X1 X5, X1 X5 X3, X5 X3, XoX2].

If we order the generators lexicographically descending, we get by computation that 7' is
i-Koszul. However, T is not strongly Koszul by [11] Prop.1.4. because

(X1X2X3) o (X3) = (X3, X7 XoX3).

Concerning u-i-Koszulness we have the following
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Proposition 5.5. Let R = Koy, ... ,a,] C S be a semigroup ring. If R is u-i-Koszul, then
R is a polynomial ring.

Proof. We may assume that a; >y ... > o where >, is the total lexicographic order
on N*. Let R = K[Y3,...,Y;]/I with a; = Y; + 1 for i = 1,... ,n. By hypothesis, R is
i-Koszul with respect to this sequence. We argue by contradiction. If I # (0), we get by
2.1 that I has quadratic Grobner basis with respect to the reverse lexicographic term order
induced by Y7 < ... < Y). The toric ideal I is minimally generated by binomials of degree
2. By 4.9, I has a quadratic Grobner basis G which consists of binomials. The chosen order
of the semigroup generators implies that every f € G is of the form f = Y;Y; — Y}, with
k <i < j <l wherein(f) = Y;Y;. We choose the smallest index ¢ such that Y;Y; € in([) for
some 7 < j. Since R is i-Koszul, we have Y;? € in(I) by 2.1. Thus there exists f € G such
that f = Y? — Y;_,Y;,, for some r, s > 0. Interchanging Y; and Y;_, we get a new defining
ideal J and an element g = Y2, —Y;Y;,, € J. Taking the same term order on S/J we observe
that in(g) = Y;Yi,,. Since S/J is i-Koszul, it follows that Y € in(J) by 2.1. Thus there
exists a binomial i € J such that h = Y2 — Y, Y, for some a,b € {1,...,k}. But then, there

is a relation u = Y2, — V.Y, € G for some ¢,d € {1,...,k} and the order of the semigroup
generators implies ¢ < i —r < d. Thus we have in(u) = Y2, € in(I) which is a contradiction
to the choice of i. O
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