Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 41 (2000), No. 2, 455-467.

Initially Koszul Algebras

Stefan Blum

FB6 Mathematik und Informatik, Universität – GHS – Essen Postfach 103764, 45117 Essen, Germany e-mail: stefan.blum@uni-essen.de

Introduction

In this paper we study initially Koszul algebras. Let $R = K[X_1, ..., X_n]/I$ be a homogeneous K-algebra where K is a field and $I \subset (X_1, ..., X_n)^2$ is graded ideal with respect to the standard grading $\deg(X_i) = 1$. Such an algebra R is Koszul, if its residue class field has an R-free linear resolution. So far, Koszul algebras have been discussed in several contexts. In [9] Fröberg gives a survey on this subject.

An effective method to show that an algebra is Koszul has been introduced by Conca, Trung and Valla [6]. They have defined Koszul filtrations, that is a family F of ideals generated by linear forms with the following properties: The ideal (0) and the maximal homogeneous ideal \mathfrak{m} of R belong to F, and for every $I \in F$, $I \neq (0)$, there exists $J \in F$ such that $J \subset I$, I/J is cyclic and $J: I \in F$. It is easy to see that an algebra which admits a Koszul filtration is Koszul (see [6]).

We call a K-algebra R initially Koszul (i-Koszul for short) with respect to a sequence $x_1, \ldots, x_n \in R_1$, if the flag $F = \{(x_1, \ldots, x_i) : i = 0, \ldots, n\}$ is a Koszul filtration of R. Conca, Rossi and Valla have proved that i-Koszulness implies a quadratic Gröbner basis with respect to the reverse lexicographic order on $K[X_1, \ldots, X_n]$ induced by $X_1 < \ldots < X_n$ (see [5]).

In the first section of the article we give a condition on $\operatorname{in}(I)$ which characterizes i-Koszulness of R with respect to X_1+I,\ldots,X_n+I . Using this criterion we show that i-Koszulness is preserved under tensor products over K. Moreover, if R is i-Koszul and the defining ideal I is generated by monomials of degree 2, then the d-th Veronese subring of R is again i-Koszul.

In Section 3 we study algebras for which generic flags are Koszul filtrations. We will see that this is equivalent to the property that I has a 2-linear resolution. Furthermore we

0138-4821/93 \$ 2.50 © 2000 Heldermann Verlag

discuss algebras which are i-Koszul with respect to any K-basis of R_1 . We call such algebras universally initially Koszul (u-i-Koszul for short). In case that K is algebraically closed and $\operatorname{char}(K) \neq 2$ we classify all u-i-Koszul algebras, showing that I = (0) or $I = (X_1, \ldots, X_n)^2$ or $I = (g^2)$ for some linear form g.

In the last section we study homogeneous semigroup rings. Let $G = \{\alpha_1, \ldots, \alpha_k\}$ be a minimal system of generators of an affine semigroup in \mathbb{N}^n . We say a semigroup ring R is i-Koszul, if R is i-Koszul with respect to the semigroup generators $X^{\alpha_1}, \ldots, X^{\alpha_k}$. R is said to be u-i-Koszul, if R is i-Koszul with respect to all permutations of the semigroup generators.

We consider natural shellability of the divisor poset Σ of R which is closely related to Λ -shellability in [1]. Let $\lambda:G\to\Lambda$ be a map which totally orders the generators. For any semigroup element α the lexicographic order on Λ^r gives a linear order > on the maximal chains of the interval $[1,\alpha]$. R is said to be naturally shellable, if for each semigroup element α the interval $[1,\alpha]$ is shellable with order >. Using a lemma of Hibi we show that an i-Koszul semigroup ring is natural shellable. We also show that a u-i-Koszul semigroup is already a polynomial ring.

The author is grateful to Prof. Herzog for several helpful comments regarding this paper.

1. Notation and definitions and background

In this paper $S = K[X_1, \ldots, X_n]$ denotes always the polynomial ring and $\mathfrak{m} = (X_1, \ldots, X_n)$ the graded maximal ideal of S. We set R = S/I where $I \subset \mathfrak{m}^2$ is a homogeneous ideal. We recall from [6] the following definition:

Definition 1.1. Let R be a homogeneous K-algebra. A family F of ideals of R is called a Koszul filtration of R, if:

- (a) Every ideal $J \in F$ is generated by linear forms,
- (b) The ideal (0) and the maximal homogeneous ideal of R belong to F and
- (c) For every $J \in F$, $J \neq 0$, there exists $L \in F$ such that $L \subset J$, J/L is cyclic and $L: J \in F$.

The following is noted in [6].

Proposition 1.2. Let F be a Koszul filtration of R. Then $\operatorname{Tor}_i^R(R/J,K)_j=0$ for $i\neq j$ and for all $J\in F$. In particular, the homogeneous maximal ideal of R has a system of generators x_1,\ldots,x_n such that all ideals (x_1,\ldots,x_j) with $j=1,\ldots,n$ have a linear R-free resolution and R is Koszul.

Definition 1.3. Let $x_1, \ldots, x_n \in R_1$. We call R initially Koszul (i-Koszul for short) with respect to x_1, \ldots, x_n , if $F = \{(x_1, \ldots, x_i) : i = 0, \ldots, n\}$ is a Koszul filtration.

In order to simplify notation we say that R = S/I is i-Koszul, if R is initially Koszul with respect to $X_1 + I, \ldots, X_n + I$. Koszul filtrations as in 1.3 which are generated by a flag of linear subspaces of R, first considered in [4], are called Gröbner flags. The reason for this naming is the following result.

Theorem 1.4. [Conca, Rossi, Valla] Let $R = K[X_1, \ldots, X_n]/I$ be i-Koszul. Then I has a quadratic Gröbner basis with respect to the reverse lexicographic order induced by $X_1 < X_2 < \ldots < X_n$.

By 1.2 any Koszul filtration of R contains a flag. Thus i-Koszulness is equivalent to the existence of a Koszul filtration which is as smallest as possible.

2. Characterization of i-Koszulness

In this section > denotes the reverse lexicographic order induced by $X_1 < X_2 < \ldots < X_n$. The following result, which was shown independently in [5], characterizes i-Koszulness in terms of initial ideals.

Theorem 2.1. The following statements are equivalent:

- (a) $R = K[X_1, \dots, X_n]/I$ is i-Koszul.
- (b) $R' = K[X_1, \dots, X_n]/\text{in}_{>}(I)$ is i-Koszul.
- (c) I has a quadratic Gröbner basis with respect to > and if $X_iX_j \in \text{in}_>(I)$ for some i < j, then $X_iX_k \in \text{in}_>(I)$ for all $i \le k < j$.

For the proof of 2.1 we need the following property concerning the chosen term order >.

Lemma 2.2. Let $I \subset S$ be a graded ideal and set $\bar{S} = K[X_2, \ldots, X_n]$. Let $\sigma: S \to \bar{S}$ be the K-algebra homomorphism with $X_1 \mapsto 0$, $X_i \mapsto X_i$ for i > 1. Suppose that g_1, \ldots, g_t is a Gröbner basis of I such that $X_1 \nmid \operatorname{in}(g_i)$ for $i = 1, \ldots, r$ and $X_1 \mid \operatorname{in}(g_i)$ for $i = r + 1, \ldots, t$. Then $\sigma(g_1), \ldots, \sigma(g_r)$ is a Gröbner basis of $\bar{I} = (\sigma(f): f \in I)$. In particular, it holds $\overline{\operatorname{in}(I)} = \operatorname{in}(\bar{I})$.

Proof. We use Buchberger's criterion. Since > is the reverse lexicographic order we have for any $f \in S$: If $X_1 \mid \text{in}(f)$, then $X_1 \mid f$ (see [7] 15.4). Thus we get $S(\sigma(g_i), \sigma(g_j)) = \sigma(S(g_i, g_j))$ for all $i, j \in \{1, \ldots, r\}, i \neq j$ and the assertion follows immediately. \square

We return now to 2.1.

Proof. We prove the equivalence of (a) and (b) by induction on n. The case n=1 is trivial. Let $x_i = X_i + I$ and $x'_i = X_i + \operatorname{in}(I)$ for $i=1,\ldots,n$. Note that R is i-Koszul, if and only if

- (i) R/x_1R is i-Koszul and
- (ii) $0: x_1 = (x_1, \dots, x_k)$ for some k.

Using $\operatorname{in}(X_1 + I) = (X_1) + \operatorname{in}(I)$ ([7] 15.12) and 2.2 we see that (i) is equivalent to $R'/x_1'R'$ being i-Koszul. Since $\operatorname{in}(I : X_1) = \operatorname{in}(I) : X_1$ (see [7] 15.12) we get $0 : x_1' = (x_1', \dots, x_k')$ if and only if (ii) holds. This proves the equivalence of (a) and (b). For the equivalence of (b) and (c) we need

Proposition 2.3. Let R = S/I where $I = (m_1, \ldots, m_r)$ is generated by monomials of degree 2. Then the following statements are equivalent:

- (a) R is i-Koszul.
- (b) If $X_i X_j \in I$ for some j > i, then $X_i X_k \in I$ for all $i \le k < j$.

Proof. Let $x_k = X_k + I$ for $k = 1, \ldots, n$ and $J_i = (x_1, \ldots, x_i)$ for $i = 0, \ldots, n$.

- (a) implies (b). If $X_iX_j \in I$ with i < j, then $x_ix_j = 0$ and so $x_j \in J_{i-1} : J_i$. Since R is i-Koszul it follows $J_{i-1} : J_i = J_l$ for some $l \ge i-1$. But then for each $i \le k < j$ we get $x_ix_k \in J_{i-1}$. Therefore $X_iX_k X_lX_s \in I$ for some $l \le i-1$ and some s. Since I is a monomial ideal this implies $X_iX_k \in I$.
- (b) implies (a). We have to show that $J_{i-1}:J_i=(x_1,\ldots,x_{k(i)})$ for each $i=1,\ldots,n$. Let $u\in J_{i-1}:(x_i),\ u\neq 0$. Since I is a monomial ideal we may assume that u is a monomial. It is clear that $J_{i-1}\subset J_{i-1}:J_i$. So we assume $u\notin J_{i-1}$. It follows that $ux_i=0$. There are $k\leq l$ such that $X_kX_l\in I$ and $X_kX_l\mid uX_i$. If $i\neq k$ and $i\neq l$, we have u=0 which is a contradiction. Since $u\notin J_{i-1}$ it follows that i=k and $u\in (x_l)$. Condition (b) implies that $(x_i,\ldots,x_l)\subset J_{i-1}:x_i$ which yields the assertion.

3. Applications and examples

In this chapter we use the criterion of Section 2 to show that certain algebras are i-Koszul. First we need some notation.

Definition 3.1. Let $m \in S$ be a monomial. We write $\max(m)$ for the largest index i such that $X_i \mid m$. A set M of monomials is called (combinatorially) stable, if for every $m \in M$ and $j < \max(m)$ the monomial $(X_j/X_{\max(m)})m \in M$.

With 2.3 we get immediately

Corollary 3.2. Let I be generated by monomials of degree 2 and G(I) the set of minimal generators. If G(I) is stable, then R = S/I is i-Koszul.

Moreover we observe that i-Koszulness is compatible with tensor products over K.

Proposition 3.3. If $R = K[X_1, ..., X_n]/I$ and $R' = K[Y_1, ..., Y_m]/J$ are i-Koszul algebras, then $T = R \otimes_K R'$ is also i-Koszul.

Proof. By 2.1 there are Gröbner bases f_1, \ldots, f_k of I and g_1, \ldots, g_l of J, such that $\operatorname{in}(I)$ and $\operatorname{in}(J)$ satisfy condition 2.1(c). It is $T = K[X_1, \ldots, X_n, Y_1, \ldots, Y_m]/Q$ with Q = IT + JT. We take the reverse lexicographic order on $K[X_1, \ldots, X_n, Y_1, \ldots, Y_m]$ induced by $X_1 < \ldots < X_n < Y_1 < \ldots < Y_n$. It follows immediately from the Buchberger criterion that $f_1, \ldots, f_k, g_1, \ldots, g_l$ form a Gröbner basis of Q. Thus condition (b) of 2.3 is satisfied for $\operatorname{in}(Q)$ and by 2.1 we get the assertion.

Theorem 3.4. Let I be generated by monomials. If R = S/I is i-Koszul, then the d-th Veronese subring $R^{(d)}$ is i-Koszul for all d > 0.

Proof. We first consider the case R=S. Let M be the set of all monomials of degree d in S. We order the elements of M such that $m_1>_{lex}m_2>_{lex}\ldots>_{lex}m_t$. Writing $S^{(d)}\cong K[Y_1,\ldots,Y_l]/J$ each monomial m_l can be identified with a residue class $y_l=Y_l+J$. Thus we define $J_l:=(m_1,\ldots,m_l)$ for $l=0,\ldots,t$. We have to show that for every $l=1,\ldots,t$ the ideal $J_{l-1}:J_l$ is generated by an initial sequence of the m_i 's. We set

$$M_l = \{ m \in M : X_r | m \text{ for some } r \le l \}$$

for l = 1, ..., t and $M_0 = \emptyset$. The elements of each M_l form an initial sequence $m_1, m_2, ..., m_{i_l}$. We claim that

$$J_{l-1}$$
: $(m_l) = (M_{\max(m_l)-1})$

which yields the assertion. In case l=1 there is nothing to prove, thus we may assume l>1. Let $s=\max(m_l)-1$. We write $m_l=X_{i_1}\cdots X_{i_d}$ with $i_1\leq\ldots\leq i_d=s+1$. Let $u\in J_{l-1}\colon (m_l)$. We may assume that u is a monomial. Then we have that $um_l=wm_r$ for some monomial w and $r\in\{1,\ldots,l-1\}$. We write $m_r=X_{j_1}\cdots X_{j_d}$ with $j_1\leq\ldots\leq j_d$. Since $m_r>_{lex}m_l$, there exists $q\in\{1,\ldots,d\}$ such that $j_m=i_m$ for all m< q and $j_q< i_q\leq s+1$. The equation $um_l=wm_r$ implies

$$uX_{i_a}\cdots X_{i_d} = wX_{j_a}\cdots X_{j_d}$$

and thus we have $X_{j_q}|u$ which yields $u \in (M_s)$. Conversely, let $u \in M_s$. Then there exists $r \in \{1, \ldots, s\}$ such that $X_r|u$. We define $w = X_{i_1} \cdots X_{i_{d-1}} X_r$. It follows $w >_{lex} m_l$ and hence $w \in J_{l-1}$. Since

$$um_l = \left(\frac{u}{X_r} X_{i_d}\right) w,$$

it follows that $u \in J_{l-1} : (m_l)$.

We now consider the general case R = S/I. Let $x_i = X_i + I$ for i = 1, ..., n. Since I is monomial ideal, the set of all monomials which do not belong to I forms a K-basis of R. Thus each monomial $u = x_{j_1}x_{j_2}...x_{j_r} \in R$ is either 0 or has a unique presentation $u = X_{j_1}X_{j_2}...X_{j_r} + I$. Therefore we may identify each monomial with its residue class. We have the following relations:

(*) For any two non-zero monomials $m, m' \in R$ we have mm' = 0 if and only if there are $i, j \in \{1, ..., n\}$ such that $X_i \mid m, X_j \mid m'$ and $X_i X_j \in I$.

 $R^{(d)}$ is generated as a K-algebra by the set M of all non-zero monomials of degree d in R. As in the first case we order the monomials of M by $m_1 >_{lex} m_2 >_{lex} \ldots >_{lex} m_t$ and set $J_i = (m_1, \ldots, m_i)$ for $i = 0, \ldots, t$. We define

$$N(m_l) = \{ m \in M : \text{ there exists } i \leq j \text{ with } X_i | m_l, X_j | m \text{ and } X_i X_j \in I \}$$

and assert that

$$J_{l-1}:(m_l)=(M_{\max(m_l)-1},N(m_l))$$

for l = 1, ..., t. Let $a \in J_{l-1} : (m_l), a \neq 0$. We may assume that a is a monomial. There are two cases to consider:

- (a) $am_l = 0$. We have a relation as in (*). If $a \notin (M_{\max(m_l)-1})$ then, for each index t with $X_t \mid a$, it holds $t \geq \max(m_l)$. Thus, if $X_i \mid m_l$ and $X_j \mid a$ with $X_i X_j \in I$, it follows $i \leq j$ which yields $a \in N(m_l)$.
- (b) $am_l \neq 0$. We have $am_l = bm_i$ for some monomial $b \in R^{(d)}$ and some i < l. There is a K-linear, injective map $\sigma : R = S/I \to S$ with $m + I \to m$ for all non-zero monomials $m \in R$. If $mm' \neq 0$ for two monomials $m, m' \in R$, we get $\sigma(m)\sigma(m') = \sigma(mm')$. Let $\pi : S \to R = S/I$ be the natural epimorphism. Then it holds $\pi \circ \sigma = \mathrm{id}_R$. Since σ and π respect the standard grading, these maps restrict to $R^{(d)}$ respectively $S^{(d)}$. We apply σ to

the equation above and, since $am_l \neq 0$, obtain that $\sigma(a)\sigma(m_l) = \sigma(b)\sigma(m_i)$ in $S^{(d)}$. The case R = S yields $\sigma(a) \in (M_{\max(\sigma(m_l))-1})$. Applying π we get $a \in (M_{\max(m_l)-1})$.

The converse inclusion $(M_{\max(m_l)-1}, N(m_l)) \subset J_{l-1} : (m_l)$ follows immediately from the case R = S and the relations in (*).

It remains to show that for all $l=1,\ldots,t$ the ideal $J_{l-1}:(m_l)$ is generated by an initial sequence $m_1,\ldots,m_{k(l)}$. Since the elements of $M_{\max(m_l)-1}$ form already an initial sequence it suffices to prove the following: If $m_s \in N(m_l)$ for some s, then $m_{s-1} \in M_{\max(m_l)-1} \cup N(m_l)$. Let $m_l = X_{i_1} \ldots X_{i_d}$ with $i_1 \leq \ldots \leq i_d$. It is $i_d = \max(m_l)$. Since $m_s \in N(m_l)$ there are $i \leq j$ with $X_i | m_l$ and $X_j | m_s$ and $X_i X_j \in I$. By the chosen order we have $m_{s-1} >_{lex} m_s$. Thus there exists a k with $X_k \mid m_{s-1}$ and $k \leq j$. If $k < i_d$, we have $m_{s-1} \in M_{\max(m_l)-1}$. Otherwise we have $i \leq k \leq j$. Since R is i-Koszul we have $X_i X_k \in I$ by 2.3. This yields $m_{s-1} \in N(m_l)$.

We now consider

Definition 3.5. (see e.g. [2]) Let L be a finite, distributive lattice, and $K[\{X_{\alpha}\}_{\alpha\in L}]$ the polynomial ring over K. Consider the ideal $I_L = (X_{\alpha}X_{\beta} - X_{\alpha\wedge\beta}X_{\alpha\vee\beta}: \alpha, \beta \in L)$ of $K[\{X_{\alpha}\}_{\alpha\in L}]$. The quotient algebra

$$R_K[L] = K[\{X_\alpha\}_{\alpha \in L}]/L$$

is called the Hibi ring of L over K.

Hibi has shown that I_L has a quadratic Gröbner basis for any term order which selects, for any two incomparable elements $\alpha, \beta \in L$, the monomial $X_{\alpha}X_{\beta}$ as the initial term of $X_{\alpha}X_{\beta} - X_{\alpha \wedge \beta}X_{\alpha \vee \beta}$ (see [10]). Such a term order > is, for example, the reverse lexicographic term order induced by a total ordering of the variables satisfying $X_{\alpha} < X_{\beta}$, if rank(α) > rank(β) (see [2]). We get the following characterization:

Remark 3.6. Let L be a finite distributive lattice and > a term order on $S = K[\{X_{\alpha}\}_{{\alpha} \in L}]$ as above. Then the Hibi-Ring $R = S/I_L$ is i-Koszul if and only if R is a polynomial ring.

Proof. If $I_L \neq (0)$, we have $X_{\alpha}X_{\beta} \in \text{in}(I)$ where α and β are some incomparable elements of L, say $X_{\alpha} < X_{\beta}$. Since R is i-Koszul, it follows $X_{\alpha}^2 \in \text{in}(I)$ by 2.1. But this would mean that α is incomparable with itself, a contradiction.

4. u-i-Koszulness

Let R be i-Koszul. In 1.2 we have seen that K has a linear R-free resolution. If we consider R as an S-module, we can study the minimal S-free resolution of R. For the next statement we take Gin(I) with respect to the reverse lexicographic order induced by $X_1 > \ldots > X_n$. It holds

Proposition 4.1. Let K be an infinite field, $\operatorname{char}(K) \neq 2$, $I \subset S$ a graded ideal and $I \neq (0)$. The following statements are equivalent:

- (a) I has a 2-linear S-resolution.
- (b) $S/\operatorname{Gin}(I)$ is i-Koszul.
- (c) $S/\operatorname{Gin}(I)$ is Koszul.

Proof. We use some results about Gin(I). It is known that Gin(I) is a Borel-fixed ideal and reg Gin(I) = reg(I) (see [7] 20.21). Since $char(K) \neq 2$ by hypothesis, we obtain that $Gin(I)_2$ is stable (see [7]15.23b).

Let us assume (a). Then we have reg(I) = 2 = reg Gin(I) which implies that Gin(I) is generated in degree 2. Using 3.2 S/Gin(I) is i-Koszul. This is condition (b) which implies (c) by 1.2.

Assuming (c) we have that Gin(I) is generated in degree 2. Since by hypothesis K is an infinite field and $Gin(I)_2$ is stable, we can use Prop.10 in [8] which yields that Gin(I) is 2-regular. In case $I \subset \mathfrak{m}^2$ this implies reg(Gin(I)) = 2 = reg(I). Thus I has a 2-linear resolution.

Proposition 4.1 can be interpreted as follows:

Corollary 4.2. I has a 2-linear resolution if and only if all generic flags are Gröbner flags.

We may now ask for which algebras all flags are Gröbner flags. This leads us to the following

Definition 4.3. A K-algebra R = S/I is called universally initially Koszul (for short u-i-Koszul), if R is i-Koszul with respect to every K-basis $x_1, \ldots, x_n \in R_1$.

In the case that R is u-i-Koszul the property of i-Koszulness is preserved under any change of coordinates in S_1 . Since this is a strong condition, we can classify all u-i-Koszul algebras in the following case:

Theorem 4.4. Let K be algebraically closed, $\operatorname{char}(K) \neq 2$ and $I \subset \mathfrak{m}^2$. Then R = S/I is u-i-Koszul if and only if $I = (g^2)$ for some linear form $g \in S_1$ or $I = \mathfrak{m}^2$.

We need some preparation.

Lemma 4.5. Let R be u-i-Koszul and $x \in R_1$. Then R/xR is also u-i-Koszul.

Proof. Let $\bar{R} = R/xR$ and $x_2, \ldots, x_n \in \bar{R}_1$ an arbitrary K-basis of \bar{R}_1 . We have to show that \bar{R} is i-Koszul with respect to this sequence. Since R is u-i-Koszul, R is i-Koszul with respect to x, x_2, \ldots, x_n . This yields the assertion.

Lemma 4.6. Let R be u-i-Koszul, $\operatorname{char}(K) \neq 2$ and let $N \subset R_1$ denote the set of all zerodivisors in R_1 . Then N is a linear subspace of R_1 and $N^2 = 0$.

Proof. Since R is u-i-Koszul we have $(x) \subset 0$: (x) for all $x \in N$. This implies $x^2 = 0$ for all $x \in N$. Thus, for $x, y \in N$ we have $(x + y)(x - y) = x^2 - y^2 = 0$ and therefore $x + y \in N$. Since $\operatorname{char}(K) \neq 2$, it follows $N^2 = 0$.

Lemma 4.7. Let $I = (L^2)$ for some linear subspace L of S_1 . Then R = S/I is u-i-Koszul if and only if $\dim_K L \in \{0, 1, n\}$.

Proof. Let R be u-i-Koszul. After a change of coordinates we may assume that $L = (X_1, \ldots, X_i)$ with $i = \dim_K L$ and $I = (X_1, \ldots, X_i)^2$. If $i \notin \{0, 1, n\}$, we interchange X_i and X_{i+1} . We obtain a new defining ideal J with $X_1X_{i+1} \in J$, but $X_1X_i \notin J$ which is a contradiction to i-Koszulness of S/J by 2.3. Conversely, let $i = \dim_K L \in \{0, 1, n\}$. If i = 0,

there is nothing to prove. If i=1, then $I=(g^2)$ for some $g\in S_1$. For any transformation we obtain a new defining ideal $J=(h^2)$ with $h\in S_1$. We observe that $\operatorname{in}(h^2)$ is a square in the term order of 2.1. The assertion follows from 2.1. If i=n, we have $I=(X_1,\ldots,X_n)^2$. In this case the defining ideal does not change of any transformation and we get the claim by 2.1.

Lemma 4.8. Let K be algebraically closed, $\operatorname{char}(K) \neq 2$ and R = S/I. If $I \subset \mathfrak{m}^2$ is a principal ideal, then R is u-i-Koszul if and only if $I = (g^2)$ for some $g \in S_1$.

Proof. If $I=(g^2)$ for some $g \in S_1$, then R is u-i-Koszul by 4.7. Let R be u-i-Koszul. Since K is algebraically closed and since $\operatorname{char}(K) \neq 2$, there exists a K-basis Y_1, \ldots, Y_n of S_1 such that the generator of I is of the form $Y_1^2 + \ldots + Y_i^2$ for some $i \leq n$ (see [13]). We claim that i=1 and argue by contradiction. If i>1, we apply $Y_{i-1} \mapsto Y_{i-1} + \sqrt{-1}Y_i$ and $Y_j \mapsto Y_j$ for $j \neq i-1$. Then the generator f in the new coordinates has $\operatorname{in}(f) = -2\sqrt{-1}Z_{r-1}Z_r$ and thus R is not i-u-Koszul by 2.1. Therefore we have i=1, and $f=Y_1^2$.

Remark 4.9. Let $I \subset S$ have a quadratic Gröbner basis and let f_1, \ldots, f_k be a minimal system of generators of I. Then there exists a minimal Gröbner basis of I which consists of K-linear combinations of f_1, \ldots, f_k .

Proof of 4.4. In 4.7 and 4.8 we have already observed that R is u-i-Koszul, if $I=(g^2)$ or $I=\mathfrak{m}^2$. Let R be u-i-Koszul. By 4.6, the set N of all zerodivisors in R_1 is a linear subspace of R_1 and $N^2=0$. Thus, in the case that $\dim(R)=0$ we have $N=R_1$ and so $I=(X_1,\ldots,X_n)^2$. Let now $\dim(R)>0$. We have to show that $I=(g^2)$ for some $g\in R_1$. We use induction on $d=\dim(R)$. Let d=1. We have two cases:

- (a) N=0. In this case R is a 1-dimensional Cohen-Macaulay ring with minimal multiplicity and every $l\in R_1$ is a non-zerodivisor. Suppose $I\neq (0)$. We show that R must be a domain and deduce a contradiction. Since $\dim(R)=1$ and $I\neq (0)$ we have $\mathrm{emb}\dim(R)>1$. Let $x_i=X_i+I$ for $i=1,\ldots,n$. x_1 is a non-zerodivisor of R. Since $\dim(R/x_1R)=0$ and since R/x_1R is u-i-Koszul by 4.5, we get $R/x_1R=K[X_2,\ldots,X_n]/(X_2,\ldots,X_n)^2$ as we have already observed above. Since x_1 is a non-zerodivisor of R, we have $X_1^2\notin I$. By 2.1, $S/\inf(I)$ is i-Koszul. The term order of 2.1 implies that $X_1^2\notin\inf(I)$. By 2.3, we get $\inf(I)=(X_2,\ldots,X_n)^2$. It is a general fact that the set of monomials which do not belong to $\inf(I)$ forms a K-basis of R. In our case $x_1^ix_1,\ldots,x_1^ix_n$ form a K-basis of R_{i+1} for all $i\geq 0$. If $a\in R_i$, $i\geq 2$, is a homogeneous element we have $a\in (x_1)^{i-1}$. Suppose ar=0 for some $r\in R$. We can write $a=x_1^{i-1}l$ with some linear form $l\in R_1$. It is $ar=x_1^{i-1}lr=0$. Since x_1 and l are non-zerodivisors by assumption it follows that r=0. Thus, every homogeneous element of R is a non-zerodivisor which implies that R is a domain. Therefore R is a polynomial ring in one variable because K is algebraically closed and I is homogeneous. This is a contradiction to I to I the first I is a supplemental I is a contradiction to I the first I is a supplemental I is a contradiction to I to I the first I is a supplemental I is a contradiction to I the definition I is a contradiction to I the first I is a supplemental I is a contradiction to I the first I is a contradiction to I the first I is a contradiction to I is a contradiction I is a contradiction to I the first I is a contradiction I to I is I the first I then I
- (b) $N \neq 0$. It is $I \neq (0)$. We start induction on $n = \text{emb} \dim(R)$. Let n = 2. By 2.1 and 4.9 $I \subset K[X_1, X_2]$ has a minimal system of generators f_1, \ldots, f_k which forms a minimal Gröbner basis. Since we are in the case that $d = \dim(R) = 1$ we have $I \neq \mathfrak{m}^2$ and thus $k \leq 2$. If k = 0, then R is a polynomial ring. For k = 1 we get the assertion by 4.8. If k = 2, we deduce a contradiction. Since R is i-Koszul, we obtain by 2.1 that $\operatorname{in}(I) = (X_1^2, X_1 X_2)$

with respect to the term order of 2.1. It follows that $I=(X_1^2,X_1X_2)$ because X_1^2,X_1X_2 are the smallest two monomials of degree two. Thus, by interchanging X_1 and X_2 we get the defining ideal $J=(X_1X_2,X_2^2)$. By 2.1 S/J is not i-Koszul which is a contradiction to R being u-i-Koszul. Let n>2. We choose $x\in N, x\neq 0$. We may assume $x=x_1=X_1+I$. Since $x_1^2=0$ by 4.6, we have that $\dim(R/x_1R)=1$ and $\operatorname{emb}\dim(R/x_1R)=n-1$. R/x_1R is u-i-Koszul by 4.5. Let \overline{N} be the set of all zerodivisors of R/x_1R . If $\overline{N}\neq 0$, by induction hypothesis on n, if $\overline{N}=0$, by case (a), it follows that R/x_1R is a hypersurface ring of the form $R/x_1R=K[X_2,\ldots,X_n]/(g^2)$ for some $g\in K[X_2,\ldots,X_n]_1$. Let $L\subset S_1$ be the linear subspace with $(I:X_1)_1=L$. Then we have $I=(X_1L,g^2+X_1l)$ for some linear form $l\in S_1$. By 4.6, we get $X_1\in L$ and thus $X_1\in \operatorname{Rad}(I)$. It follows that $g\in \operatorname{Rad}(I)$ which implies $g+I\in N$. Again by 4.6, we get $g^2\in I$ and $X_1g\in I$. This implies $g,l\in L$ and therefore $I=(L^2)$. Since d=1 we have $L^2=I\neq \mathfrak{m}^2$. By 4.7 we get the assertion.

We finish now the induction on d. Let d>1. Then we have $N\neq R_1$. Thus there exists $x\in R_1\setminus N,\ x\neq 0$. We may assume $x=x_1=X_1+I$. By 4.5 R/x_1R is u-i-Koszul. We have $\dim(R/x_1R)=\dim(R)-1\geq 1$ and thus by induction hypothesis $R/x_1R=K[X_2,\ldots,X_n]/(g^2)$. It follows $I=(g^2+X_1l)$ for some $l\in R_1$. If $I\neq (0)$, we obtain the assertion by 4.8.

In the monomial case we have a more precise statement.

Proposition 4.10. Let $I \subset S$ a proper monomial ideal. R = S/I is u-i-Koszul if and only if $I = \mathfrak{m}^2$ or I is of the form $\begin{cases} (X_i^2) & \text{if } \operatorname{char}(K) \neq 2 \\ (X_{i_1}^2, \dots, X_{i_r}^2) & \text{if } \operatorname{char}(K) = 2 \end{cases}$.

Proof. In the case that $I = \mathfrak{m}^2$ or I is of the form (X_i^2) for some i the algebra R is u-i-Koszul by 4.7. Now let $\operatorname{char}(K) = 2$ and $I = (X_{i_1}^2, \ldots, X_{i_r}^2)$ for some indices $i_1 < \ldots < i_r$. For any transformation $X_i \mapsto \sum_{j=1}^n a_{ji} X_j$ $i = 1, \ldots, n$, we obtain a new defining ideal $J = (g_1, \ldots, g_r)$

with $g_k = \sum_{j=1}^n a_{ji_k}^2 X_j^2$ for $k = 1, \ldots, r$. Then J has a minimal system of generators which forms a Gröbner basis of J. In the term order of 2.1 in(J) is of the form $(X_{j_1}^2, \ldots, X_{j_s}^2)$ for some indices $j_1 < \ldots < j_s$. By 2.1, S/J is i-Koszul and thus R = S/I is u-i-Koszul. Conversely, let us assume that R is u-i-Koszul. There are two cases:

- (a) $\operatorname{char}(K) \neq 2$. By 4.6 and 4.7, we get $I = (X_i^2)$ for some i or $I = \mathfrak{m}^2$.
- (b) char(K) = 2. Let G(I) be the set of the minimal generators of I. We need some facts which follow immediately from 2.3. If
 - (1) $X_i X_j \in G(I)$ with i < j and $X_i X_k \notin G(I)$ for some k > j or if
 - (2) $X_i X_j \in G(I)$ with i < j and $X_k^2 \notin G(I)$ for some k > i or if
 - (3) $X_i^2, X_i X_{i+1}, X_i X_n \in G(I), X_1^2, \dots, X_n^2 \in G(I)$ and $X_{i+1} X_{i+2} \notin G(I)$ for some i < n-1 or if
- (4) $X_i^2, X_i X_{i+1}, X_{i+1}^2 \in G(I)$ and $X_{i-1} X_i \notin G(I)$ for some 1 < i < n, then R is not u-i-Koszul.

We have to show the following: If $I \neq \mathfrak{m}^2$ and I is not of the form $(X_{i_1}^2, \ldots, X_{i_r}^2)$, then R is not u-i-Koszul. Under this assumption we have $X_i X_i \in G(I)$ for some i < j. By

2.3 and (1), we have $X_i^2, \ldots, X_i X_n \in G(I)$. By (2), we get $X_{i+1}^2, \ldots, X_n^2 \in G(I)$. Then (4) implies $X_{i-1} X_i \in G(I)$. By iteration and using (3), we obtain that $I = \mathfrak{m}^2$ which is a contradiction.

As a direct consequence from 4.4 and 4.10 we have

Corollary 4.11. Let char $(K) \neq 2$ and K algebraically closed. If R = S/I is u-i-Koszul, then $R' = S/\inf(I)$ is also u-i-Koszul.

The converse of 4.11 is not true. For example, take n = 3 and $I = (X_1X_3 - X_2^2)$. Since $in(I) = (X_2^2)$ the algebra R' is u-i-Koszul by 4.10, but R is not, as follows from 4.4. We get immediately from 4.4:

Corollary 4.12. Let K be algebraically closed, $\operatorname{char}(K) \neq 2$ and R = S/I a u-i-Koszul domain. Then I = (0).

The statements in 4.4 and 4.12 are not true for more general base fields. Take, for example,

$$R = \mathbb{Q}[X_1, X_2]/(X_1^2 - \frac{1}{2}X_2^2).$$

Then $X_1^2 - \frac{1}{2}X_2^2$ is not a square in $\mathbb{Q}[X_1, X_2]$ and R is a u-i-Koszul domain. Moreover,

$$R = \mathbb{Z}/2\mathbb{Z}[X_1, \dots, X_4]/(X_1^2 + X_2^2, X_3^2 + X_4^2)$$

is u-i-Koszul. Therefore we need $char(K) \neq 2$ in 4.4.

In [4] we find the following concept: A homogeneous K-algebra R is called universally Koszul, if the set of all ideals of R which are generated in degree 1 defines a Koszul filtration of R. There is no direct relation to i-Koszulness. Since on the one hand the algebra

$$K[X_1, X_2]/(X_1X_2)$$

is u-Koszul by [4] 1.5., but not i-Koszul by 2.3. On the other hand

$$K[X_1,\ldots,X_n]/(X_1^2,\ldots,X_n^2)$$

is i-Koszul due to 2.3, but not u-Koszul, if n > 3 and $char(K) \neq 2$ (see [4]).

5. i-Koszulness of semigroup rings

In this chapter we want to study semigroup rings. In this case we only consider flags spanned by semigroup generators. We identify a monomial X^{α} with the corresponding exponent $\alpha \in \mathbb{N}^n$. Thus if $R = K[\alpha_1, \ldots, \alpha_k]$ is a homogeneous semigroup ring with minimal set of semigroup generators $G = \{\alpha_1, \ldots, \alpha_k\}$, then R is called i-Koszul if R is i-Koszul with respect to $\alpha_1, \ldots, \alpha_k$. R is said to be u-i-Koszul , if R is i-Koszul with respect to $\alpha_{\pi(1)}, \ldots, \alpha_{\pi(k)}$ for any permutation $\pi \in S_k$. We will see that i-Koszulness implies a certain shellability of the finite intervals in the divisor poset of R. The set Σ of all monomials in R is partially

ordered by divisibility. If there is an injective map $\lambda: G \to \Lambda$, Λ totally ordered, then all unrefineable finite chains of divisors

$$C: \beta_0 \stackrel{\alpha_{i_1}}{\to} \beta_1 \to \cdots \stackrel{\alpha_{i_r}}{\to} \beta_r$$

are labeled by $\lambda(C) = (\lambda(\alpha_{i_1}), \dots, \lambda(\alpha_{i_r})) \in \Lambda^r$. We have a total order > on Λ^r induced by the lexicographic order and the order on Λ .

Definition 5.1. (see [1],[3]) R is called naturally shellable, if for every monomial $\alpha \in \Sigma$ the order complex $\Delta([1,\alpha])$ is shellable with order $\lambda(C_1) < \cdots < \lambda(C_r)$ where $\{C_1,\ldots,C_r\}$ is the set of all unrefineable chains in the interval $[1,\alpha]$.

Let $R = K[Y_1, ..., Y_k]/I$. Natural shellability can be translated into a condition on in(I) with respect to the reverse lexicographic order induced by $Y_1 < \cdots < Y_k$.

Proposition 5.2. (T. Hibi) The following statements are equivalent:

- (a) R is naturally shellable.
- (b) $\operatorname{in}(I)$ is quasi-poset, i.e. if i < k < j and $Y_i Y_j \in \operatorname{in}(I)$, then it follows $Y_i Y_k \in \operatorname{in}(I)$ or $Y_k Y_j \in \operatorname{in}(I)$.

Consequently, by 2.1 the following is evident:

Corollary 5.3. Let R be an i-Koszul semigroup ring. Then R is naturally shellable.

It is known (see [12]) that shellability of divisor posets implies Koszulness. Thus the corollary above gives us an alternative proof for the statement that an i-Koszul semigroup ring is Koszul. We have seen in 3.3 that the property of i-Koszulness is preserved under tensor products. This is not true for Segre products of semigroup rings. For example,

$$R = K[X_1Y_1, X_1Y_2, X_2Y_1, X_2Y_2] \cong K[Z_1, Z_2, Z_3, Z_4]/(Z_1Z_4 - Z_2Z_3)$$
(1)

is not i-Koszul with respect to any permutation of the semigroup generators by 2.1. But it can be shown that R is naturally shellable ([3]). Therefore the converse of 5.3 is not true in general.

We now compare i-Koszulness with other Koszul properties. In [11] strongly Koszul algebras are introduced. In the semigroup case this property is preserved under Segre products (see [11]). Thus the ring $R = K[X_1, X_2] \star K[Y_1, Y_2]$ in example (1) is strongly Koszul. In [11] it is shown that strongly Koszul algebra is sequentially Koszul. It is obvious from the definition that:

Remark 5.4. Any i-Koszul algebra R is sequentially Koszul.

As (1) shows the converse is not true in general. Furthermore i-Koszulness does not imply the strongly Koszul property. Take, for example,

$$T = K[X_1^3, X_1^2 X_2, X_1 X_2^2, X_1 X_2 X_3, X_2^2 X_3, X_2 X_3^2].$$

If we order the generators lexicographically descending, we get by computation that T is i-Koszul. However, T is not strongly Koszul by [11] Prop.1.4. because

$$(X_1X_2X_3):_T(X_2^3)=(X_2^3,X_1^3X_2X_3^2).$$

Concerning u-i-Koszulness we have the following

Proposition 5.5. Let $R = K[\alpha_1, \ldots, \alpha_k] \subset S$ be a semigroup ring. If R is u-i-Koszul, then R is a polynomial ring.

Proof. We may assume that $\alpha_1 >_{lex} \ldots >_{lex} \alpha_k$ where $>_{lex}$ is the total lexicographic order on \mathbb{N}^n . Let $R = K[Y_1, \ldots, Y_k]/I$ with $\alpha_i = Y_i + I$ for $i = 1, \ldots, n$. By hypothesis, R is i-Koszul with respect to this sequence. We argue by contradiction. If $I \neq (0)$, we get by 2.1 that I has quadratic Gröbner basis with respect to the reverse lexicographic term order induced by $Y_1 < \ldots < Y_k$. The toric ideal I is minimally generated by binomials of degree 2. By 4.9, I has a quadratic Gröbner basis G which consists of binomials. The chosen order of the semigroup generators implies that every $f \in G$ is of the form $f = Y_i Y_i - Y_k Y_l$ with $k < i \le j < l$ where in $(f) = Y_i Y_j$. We choose the smallest index i such that $Y_i Y_j \in \text{in}(I)$ for some $i \leq j$. Since R is i-Koszul, we have $Y_i^2 \in \operatorname{in}(I)$ by 2.1. Thus there exists $f \in G$ such that $f = Y_i^2 - Y_{i-r}Y_{i+s}$ for some r, s > 0. Interchanging Y_i and Y_{i-r} we get a new defining ideal J and an element $g = Y_{i-r}^2 - Y_i Y_{i+s} \in J$. Taking the same term order on S/J we observe that $\operatorname{in}(g) = Y_i Y_{i+s}$. Since S/J is i-Koszul, it follows that $Y_i^2 \in \operatorname{in}(J)$ by 2.1. Thus there exists a binomial $h \in J$ such that $h = Y_i^2 - Y_a Y_b$ for some $a, b \in \{1, \dots, k\}$. But then, there is a relation $u = Y_{i-r}^2 - Y_c Y_d \in G$ for some $c, d \in \{1, \ldots, k\}$ and the order of the semigroup generators implies c < i - r < d. Thus we have $\operatorname{in}(u) = Y_{i-r}^2 \in \operatorname{in}(I)$ which is a contradiction to the choice of i.

References

- [1] Aramova, A.; Herzog, J.; Hibi, T.: Shellability of semigroup rings. To appear in European J. of Combinatorics 1998.
- [2] Aramova, A.; Herzog, J.; Hibi, T.: Finite lattices and lexicographic Gröbner Bases. Preprint 1998.
- [3] Blum, S.: Natürliche Schälbarkeit homogen erzeugter Halbgruppenringe. Diplomarbeit, Universität Essen 1999.
- [4] Conca, A.: Universally Koszul algebras. Preprint 1998.
- [5] Conca, A.; Rossi, M. E.; Valla, G.: Gröbner flags and Gorenstein algebras. Preprint 1999.
- [6] Conca, A.; Trung, N. V.; Valla, G.: Koszul property for points in projective spaces. To appear in Math. Scand. 1998.
- [7] Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer Verlag 1994.
- [8] Eisenbud, D.; Reeves, A.; Totaro, B.: Initial Ideals, Veronese subrings and rates of algebras. Advances in Math. 109 (1994), 168–187.
- [9] Fröberg, R.: Koszul algebras. Preprint 1998, to appear in Proc. Fez Conf. 1997, Marcel Dekker.
- [10] Hibi, T.: Distributive lattices, affine semigroup rings and algebras with straightening laws. In: Commutative Algebra and Combinatorics (M. Naga and H. Matsumura, Eds.), Advanced Studies in Pure Math., Vol. 11, North-Holland, Amsterdam 1987, 93–109.

- [11] Herzog, J.; Hibi, T.; Restuccia, G.: Strongly Koszul algebras. To appear in Math. Scand. 1997.
- [12] Herzog, J.; Reiner, V.; Welker, V.: The Koszul property in affine semigroup rings. Pacific J. Math. 186(1) 1998.
- [13] Kunz, E.: Einführung in die algebraische Geometrie. Vieweg Verlag 1997.

Received August 9, 1999