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Abstract. For normed isotropic convex bodies in R* we investigate the behaviour
of the (n — 1)-dimensional volume of intersections with hyperplanes orthogonal to
a fixed direction, considered as a function of the distance of the hyperplane to the
origin. It is a conjecture that for arbitrary normed isotropic convex bodies and
random directions this function — with high probability — is close to a Gaussian
density, for large dimension n. This would be a kind of central limit theorem. We
determine this function explicitly for several families of convex bodies and several
directions and obtain results concerning the asymptotic behaviour supporting the
conjecture.
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Introduction

The main topic of the present paper is a version of the central limit theorem in the geometric
context of convex bodies.

A normed conver body K C R"™ is a convex compact set of volume 1 whose centre of
inertia is at 0. A normed convex body is isotropic if its ellipsoid of inertia is a Euclidean ball.
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The radius of this ball will be denoted by Lk (following the notation of [10]); thus

L% = /(a: - u)*dx,

K

independently of u in the unit sphere S™ ! of R®. Note that for each convex body K with
nonempty interior there exists an affine transformation f: R* — R" such that f(K) is normed
and isotropic. For a direction v € S we define

Vru(t) = oi{z e K5z-u=t}) (teR),

where A, 1 denotes the (n — 1)-dimensional volume.

For a number of situations we show that ¢k, tends to a Gaussian density, for n — oo.
It appears to be a known conjecture among specialists that this is a general phenomenon:
For large dimensions the function ¢k, should be close to a Gaussian density for all isotropic
normed convex bodies K and for ‘most’ directions u € S™ !. More precisely, the density
corresponding to K should be the Gaussian with variance L.

In Section 1, we define several versions of the central limit property for subsets of the set
of isotropic normed convex bodies. The only result of a general nature we have so far is an
estimate asserting that the mean value of ¢ ,(0) over S" ! is bounded from below by the

value \/%Lk of the corresponding Gaussian density 912, at zero, asymptotically for n — oo

(see Proposition 1.3).

In Sections 2 and 3 we prove versions of the central limit property for cubes and for balls
in R™, respectively.

In Section 4 we show that for the |- [;-ball in R", i.e., the cross polytope X,, normed
to volume 1, and w := ﬁ(l, ..., 1), the functions ¢y, , tend to the appropriate Gaussian
density.

In Section 5 we derive results for the regular simplex A,,. In this case we show that ¢a, 4
converges to the appropriate Gaussian density on a certain discrete set of directions u € S™ 1.
We show that the set of exceptional u’s is small in an appropriate sense. This example may
be of particular interest since it shows that our considerations are not restricted to centrally

symmetric sets.

The computational results described above should be considered as evidence supporting
the conjecture that the central limit property holds generally. Moreover, we feel that the
explicit expressions as well as the methods presented in this paper are of independent interest
and importance.

The starting point of this paper was a question, addressed to the second-named author
by Peter Stollmann, concerning the (n — 1)-dimensional volume of cross sections of the cube
[0, 1]™ orthogonal to the direction w given above. Motivated by the stochastic interpretation of
the resulting explicit expressions and by the explicit computations for the ball the first-named
author formulated conjectures which served as a guide line for our further investigations.

The contents of the present paper are related to results and ideas which developed starting
from Milman’s proof [9] of Dvoretzky’s theorem. We refer to [11], [15] for references and
further developments.
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After finishing the first version of the present paper the authors became aware of the
preprint [1] where a central limit property is proved for a certain subclass of isotropic con-
vex bodies. Likewise, the second-named author [16] obtained a version of the central limit
property for a subclass containing the Euclidean balls, cubes, cross polytopes and regular
simplices. In these papers, the closeness of the marginal distributions to the corresponding
Gaussian distribution is described by uniform convergence of the distribution functions and
by convergence in law, respectively. In contrast, in the results of the present paper we obtain
closeness of the densities in the Li- and L.-norms.

Note. The numbering of theorems etc. is identical in the present version and in the extended
electronic version of the paper. In the present version some of the proofs are only outlined
whereas the extended electronic version contains more details. In these instances the end of
the proof is marked by the symbol X instead of 1.

1. The central limit property

In this section we define the ‘central limit property’. This definition is motivated by the
results which are sketched in the introduction and proved in the subsequent sections. In
order to formulate these properties we first introduce some notation.

The set of all isotropic normed convex bodies in R* will be denoted by K.

Let K € Kf. Geometrically, ¢ ,(t) as defined in the introduction is the (n — 1)-dimen-
sional volume of the intersection of K with the hyperplane {x € R"; z - u = t}. Note that

1

the Brunn-Minkowski theorem (cf. [12; p. 3], [14; p. 309]) states that the function @k ,(-) »—T
is concave on its support. It is one of the principle objectives of this paper to investigate the
behaviour of ¢ ,(t) as a function of ¢ for large n and ‘typical’ .

We investigate whether for large dimension n the function ¢k, is close to the Gaussian
density function for all directions u with the exception of a small set of vectors (in the sense
of measure). A convenient formulation for this is to use the expected value of the norm
(Le-norm or Ly-norm) of the difference, for random unit vectors w.

We denote the Gaussian density by g,2,

1 2 1 t
wlt) = et = (1)

Op—1 = MWy, =

L)

By 11,1 we denote the surface measure on S®~!, normed to a probability measure.
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Definition 1.1. Let T C (J, oy
of the following properties holds:

K§. We say that T satisfies a central limit property if one

(a) sup E (sup Oru(t) — gre (t)D — 0 forn — oo,
KeTNKy teR K

(b) sup E ( i ‘@K,u(t) — gr2 (t)‘ dt) — 0 forn — oc.
KeTnKg —00 K

Here, E denotes the expectation with respect to the probability measure [, 1.

Note that Proposition 2.5 proved below shows that (a) implies (b) provided that
Supger Lx < oc.

We conjecture that 7 = (J, .y K§ satifies the central limit property in both forms given
above. If this conjecture could be shown to be true, e.g., in the form given in Definition 1.1
(a) then it would follow that

sup sup / Oru(t)dpn—1(u) — gr2 (1) — 0 for n — oo,
KeKy teR
Sn—1
The only result we can show in the general context is a one sided bound at ¢t = 0 for
this convergence. In order to show this we need an expression for the mean of ¢ ,(t) over

u € S ! which will be derived next.

Lemma 1.2. Letn > 2, K € Kjj. Then
L (

p(t) = / rcu(t) dptn1 (u) = 7 e )) / (1—(%))@

gt {zeK; |z 2]t}

NS

w‘\

forallt e R
Proof. We define the distribution function

Pru(t) =M{r e K;z-u<t}),
for u € S"~!, t € R. Fubini’s theorem implies

[ rcalt)diins(a) = [ s

Sn—1 {(u,z)€S"~1x K; z-ut}
= /,unl({u € S" 1 x-u<t})dr.
K
Now
x t
pn—1({u € " - u < t}) = 1 ({u € 5™ 2| UK m})
0 for t < —|z|,
arcsinﬁ

=9 =2 [ cos" Ppdp for [t < |z,

1 for t > |z|.



U. Brehm, J. Voigt: Asymptotics ... for Convex Bodies 441

In order to get the average density function we differentiate the average distribution function
with respect to the variable ¢t and thus get

/ Prcu(t)dpin—1(u) = Z:j / (1 - (é)j N é—|d:c. 0

gt {zeK; |z 2[t]}

Proposition 1.3. For alln > 2, K € K, one has
¢r(0) = Yagr2 (0),
with

r(3)

r(Y)

SIS

Tn

Moreover, v, — 1 (n — 00).

Proof. We recall that

L2 = /(3: -u)idr = l/|a:\2d37: (ue s™ 1)
n
K

K
and

2 = L = vn
9r2.(0) NG m(ﬂxpdm)

o=

Hélder’s inequality, for p = 3, ¢ = 3, implies

1 2
2
3 1
1= mzdaj < /|m\2dm /—dm ;
|23 |z|
K K K

)

wl|
w|

L (
\FF(

N3

¢K(0) =

3 |[—~

| (IS
= —r

1
r = g2 (0).

(geess)

The convergence 7, — 1 (n — 00) is a consequence of Stirling’s formula which we will state
subsequently. O

ofT
w‘

1 1 T
)ZmdeWF(

The version of Stirling’s formula used in the present article is the inequality
z IT\Z (z)
(f) 2z < T(z+1) < (—) \/27rxe%,
e e

valid for all z > 0, where 0 < ¥(z) < 1. The left hand side inequality is a consequence of an
equality of Binet (see [7; sec. 1.5, (63)]), whereas the right hand side inequality follows from
Stirling’s series (see [7; sec. 1.5, (66)])
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Remarks 1.4. (a) In [16], a subclass of
¢k (0)
QL%((O)

hen Ko 18 introduced for which the asymptotic

=1 is shown.

formula limgim x— 00

(b) In [6], [4], a two-sided estimate for ¢k ,(0) in terms of Lk is given, namely
1
ClE 025,
which holds independently of n € N, K € K2, v € S"'. Besides boundedness, no asymptotic
properties, for n — 0o, can be derived from these bounds.

2. Results for the cube

We consider the cube C" := [—%, %]n in R". The main result of this section is the fact that

the set of cubes satisfies the central limit property either sense as stated in Definition 1.1.

Theorem 2.1. There ezists a function a: (0,1] — (0, 00),
a(a) = O(a?), (2.1)
such that, for alln € N, u € S* 1,

lecna =93] < alulo). (22)
o

As a consequence, one obtains

1+1Inn
/ ngcn,u_gﬁ (1) :o( - ) (2.3)
Snfl
Theorem 2.2. There ezists a function (3: (0,1] — (0,2],
B(a) = O(a*(1 — Ina)?), (2.4)
such that, for allm e Nu e S* 1,
pona =g, < Bllulo): (25)

As a consequence, one obtains

[ frons

Sn—1

()= 0 (m> . (2.6)

n

The proof of these theorems will require some preparations.

Let X4,...,X, be independent random variables which are uniformly distributed on
[—%, %] Let u € S* !, Then @cn, is the density of the distribution of u1 X7 + ... + up X,
PCry = Puy * Puy * - - ¥ Py, Where @, = |u171[ [ and the Fourier transform @gn ,,(£) =

. T2 2
Jg 0cnu(t)e ™ dt satisfies

Perau = PuyPus *** Pug»

with ¢, (£) = é sin %
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Proposition 2.3. There ezists a function ay: (0, 3] — (0,00),
ai(a) = O(a?), (2.7)

such that

|eem - 73|, < o (ule) (2.8)

for alln € N, u € 5" with |u|lo < 3. (Recall that goL(t) = \/E =6 thus g8 =
67%(%)2)

Proof. Choose 0 < a < %, and let u € S" !, |u|o < a. Using the inequalities

1 1 .
1——=£2¢ —smfée‘ig,

315 N ¢

($n§)2 1
S T
3 1+ 3¢

for all £ € R, one obtains (2.8) with the function

for £ € R, [£] < 7, and

2v/6 1
a §2 §2 a% o 2a_2
ap(a) :=2 / e 1 — (1—ﬂa ) / 1+§2a2 +g%(§) dé
0 2v/6
Splitting the first term of v (a) suitably one can show a;(a) = O(a?). X

Lemma 2.4. If0 < a <1 then
pin1({u € 8" Julo > a}) < (1 —a?)*7.
Proof. Note that

pn-1({u € S"7 Juloo > a}) < 201 ({u € S™7Y ur > a}),

pn1({u € 8" uy > a}) =

arccos a 1—a? oo 1—a?
[ sin"? pdyp [ =t [ tv2dt _ gyemt
0 0 < 0 _ (1—-a®)>
- z - 1 = 1
2fsin"_2 wdp f T t2 2ft"_2dt
0 0 0

(In order to prove the inequality note that "2 > 0 and that \/1%7 is monotone increasing

on (0, 1); invert the fraction and subdivide the integral fol.) O
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Proof of Theorem 2.1. First we note that Ball [2] has shown the remarkable equality

sup Pena(t) = V2.

teR,ueS?—1 neN

2 2
Proposition 2.3.
In order to show (2.3) we use Lemma 2.4 and obtain

o ({ue 57 _>aa)})

<tn1 ({u € 5" Juloo > a}) <n(1—a) 7

/H‘PC",u_gll2 ©

Defining  := ;-4 on (0,3) and a := V2 + \/g on (3,1] we obtain (2.1) and (2.2) from

— (g1
‘(pC”,u gﬁ

This implies

Snfl
for 0 < a < 1. For a = y/222 we obtain
41 o 14lnn 1
n— nn nn 2 4Inn
1-a*)” =n(1- <ne 2 =, 2.9
n(1—a*) n ( — 1) ne o (2.9)
4Inn V2 + T 1+Inn
chn,u — g1 dpp—i(u) < = : O
12 || 00 n—1 n n
Sn—l
Next we show that smallness of H(pcn,u — g1 implies smallness of H(pcn,u —gill .
12 12 ||
Proposition 2.5. There exists a function (;: (0,00) — (0, 2],
1 1
0) =0(5(—1nd)2), 0<d< — 2.10
Br(6) = O(4( )2) ( \/%) (2.10)
such that
o = go2ll; < Br (ol = go2ll) (2.11)

for all p € Li(R) N Ly(R), ¢ >0, [@(t)dt=1, o > 0.



U. Brehm, J. Voigt: Asymptotics ... for Convex Bodies 445

Proof. 1t is sufficient to treat the case ¢ = 1; we let g := ¢g;. Let ¢ be as just described,
0<d6:=l¢—gl, < \/%7 Then

T

lle — gl < /|<p \dt+/(5dt<2r5+/g(t)dt+1—/go(t)dt

tzr - t>r [t|<r

/ g(t)dt — 2ro

|t\<7‘ [t <r

< A4ré + t)ydt +1— / g(t)dt

|t|>r [t|<r
=4rd +2 / g(t)dt =4 r5+—/e_?dt
t>r

The last expression attains its minimum for 7 = (—In(622))2, which shows that (2.11) is
satisfied with

1 1 T ¢2
ﬂl((S) =416 (— In (52271')) 24 \/—2_7_‘_ / e 2dt
(— In(s22r))3

The first term in the function (; is bounded by
§(—2In6 — In(27))2 = O(5(—In¥b)?).

The second term is bounded by

o0

. ! / te s dt = — L s
V27 (—1n (8227))2 1 V2T (—1n (6227))?
(— ln((5227r))§
1 V2 1
= T O(5(—né)h),
V21 (—1In (5227))?
for0<é < 2\/— O

Proof of Theorem 2.2. By Theorem 2.1 and Proposition 2.5 there exist constants ag > 0,
¢ > 0 such that

a(a)) < ca’*(1 —1In a)% for 0<a < ap,

N

2 < ca’(1 —1Ina) for gy <a<l.
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Choosing 3 := o ( sa) on (0, a] and (8 as 2 on (ag, 1] one obtains (2.4) and (2.5).

As in the proof of Theorem 2.2 we now use Lemma 2.4,

pn ({we 57 > B(@)})

<ot ({u € 5" N uloo > a}) <n(l-a®) *

/ H(pC’",u_g% L

- 1
‘@C”,u gL

This implies

n—1

dpn—1(u) < B(a) +2n (1 —a®)

Sn—l
for0<a<1. Fora= 41“" we now find, observing (2.9),
41nn 2 1+1nn)s
/ H%”’“ — g1l dpn_i(u) <8 ( ) +==0 (g) : O
12 1 n— 1 n n

Snfl
3. Lower dimensional volumes for Euclidean balls

In this section we show results which are similar to those of Section 2 but stronger.
Let B,, C R" be the Euclidean ball of volume 1, i.e., of radius

1
n

-1 _T(E+1)
43
Recall that w, — 0 for n — oo and, more strongly, that

1

rn:F(%;_rl) ) F \/7_“)0

(from Stirling’s formula) for n — oo.
For 0 < m < n we denote by G(n,m) the set of all m-dimensional subspaces on R". For
U e G(n,m), x € U we define

3=
3=

N

B, () = e (. +UT) N By).

Moreover, we shall use the notation
gUQ’m(x) =

forr e R*, meN, o >0.
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Before stating the main result we note that

Ly = /\:1:\ dr = —an 1/ r"tdr =
0
2
n

CARR N C R VN CRVEZE
"n+2 (n+2)7 ~ (n+2)7 2me’

for n — oo.
We define s, := L, .

Theorem 3.1. There ezists ¢ > 0 such that for alll1 < m <n—4 and allU € G(n,m) one

has
/ |()0Bn, — gs2 F )‘d$<c—

T —
Proof. The Lebesgue measure on B,, can be decomposed as T% fo" n—1,7" dr, where i, 1,

denotes the normed surface measure on rS""'. Let 1 < m < n —4, U € G(n,m); without
restriction U = R™ (= R™ x {0}). Then [3; Theorem (2 )] implies

H n <p M3 (3.1)

-1
QOBn,U _ — [ T'n d’l"
m Li(v) n—m-—3

Tn 0 %’

The remaining steps for obtaining the assertion consist in showing that the integral in (3.1)
is close to g,2 , and that the latter is close to g2 ,,. The first of these statements is due to
m n

the fact that the volume of B, is concentrated near the surface, for large n, and the latter
one is obtained by showing that is close to s2 X

We note that Theorem 3.1 implies that smallness of T implies closeness of the marginal
densities ¢p, 7 to the corresponding Gaussian density with respect to the L;-norm. For the
L,.-norm the statement turns out to be weaker, as stated in the following theorem. In this
case, we aim for closeness of pp, y to 91 m

Theorem 3.2. For each € > 0 there exists 6 > 0 such that

_m _ 2
sup g, v(z)e™% — e ™| < e,
zelU

for alln > m > 1 satisfying ™~ <GS and alU € G(n,m).
Proof. First we calculate pp, (). Since (z + U*) N B, is an (n — m)-dimensional ball of

radius (r2 — |x\2)% we obtain

n—m ' ((z 1 n
080 (%) = W (12 — |2]?) 2 =% 1— | ——
( ) I'(2+1)

S

for |z| < ry,, and zero otherwise.
The assertion is then obtained by using Stirling’s formula. X
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Corollary 3.3. For allm € N one has, for n — oo,

Sup sup 01,0 () ~ g1 ula)| — 0,
UeG(n,m) zeU e

sup /
UeG(n,m) 7

Remark 3.4. A corresponding statement, for m = n—1, for the sequence of spheres \/nS" !
is well-established; in [8] this observation is attributed to Poincaré [13]. (It was pointed out to
the authors that this was noticed earlier by Maxwell; see also the discussion in [3] concerning
the history of this property.) In this case the limiting Gaussian density has variance one.
The occurence of the different variance in our case is explained by the fact that the mass of
the ball B, is ‘concentrated’ in a suitable spherical shell around the sphere (y/nLg,)S™ '
This latter phenomenon is discussed in [16] for more general sets in Kf.

©Bu(T) — g1 . (z )‘dx—)().

2me

4. (n — 1)-dimensional volumes for the cross polytope

Our next example is the normed isotropic cross polytope X, i.e., a | - |;-ball. The volume
of the |- |;-unit ball in R is 2”4, Thus, in order to normalize to volume 1 we consider the

| - [1-ball
n 'L
n n
X, = R"™: | < .
n {x € R"; ; |z 5 }

It is obvious that, for normed isotropic sets, there may be exceptional directions where
closeness to a Gaussian distribution fails. For example, taking the cube C™ and the direction
u = ey, one simply obtains 1[ 11 for all n. Similarly, for u = e; and X,,, an application of

Stirling’s formula yields the convergence of ¢x, , to ee~2¢* uniformly and in L (R).
The main purpose of this section is to derive explicit formulas and estimates for ¢x, .,

where the direction is given by w = ﬁ(l, oo 1)
Theorem 4.1. Let d, := Z'Lf For |t| < &~ we have
n!n n

n—1

d, "X /n—1 L
QOXn,w 22n - Z <n ) 1 + dnt) 1—k (1 — dnt)k’

and ¢x, ,(t) =0 otherwise.

Proof. The expression for ¢y, ,(t) is obtained in the following way. One considers the
intersection of X,, with the hyperplane {x € R"; z - w =t} as the union of pyramids having
their apex on the line {tw; ¢t € R}. The basis of the pyramids is the intersection of the
hyperplane {z € R"; x-w = t} with one of the facets of X,,. Taking the sum one obtains the
formula. X

In order to discuss the behaviour of ¢x, ,(t) for n — oo we need an expression of ¢x, (%)
in terms of powers of .
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Lemma 4.2. Forn € N, x € R one has

S (1) et =3 (0 9) (2) (o

k=0

w3

For the proof of Lemma 4.2 we need the following preparation.
Lemma 4.3. Foralln € N, z,y € C one has
n o n n n _ _ n 2(n—j) n 2(’/1—]) .
S5 (M) () ap - aptgt ()7 7) o
i=0 k=0 \J i=0 k=0
Proof. The two expressions are obtained by applying the binomial formula to
(T+2)+y"(L—2)+y)" = (1 +y)*—2")". O

Lemma 4.4. For alln € N, m € Z with —n < m < n, x € C one has

S (D)2 et 3 (2079)(7) ey

= k) \k—m = n+m j

Proof. Compare the coefficients of ™™ in Lemma, 4.3. O
Proof of Lemma 4.2. Set m = 0 in Lemma 4.4. O

As a consequence of Theorem 4.1 and Lemma 4.2 we get the representation

o) #‘lnl ["255] (2(nn—_k1— 1)) (n ; 1) (= (dt)?)"

k=0

Theorem 4.5. We have
e
Ox,w(t) — ﬁe = 92%2(75)

for n — oo, uniformly for t € R. Also, ox,u —> g1 in Li(R), for n — oc.
2e

Proof. This requires a longer argument using Stirling’s formula. As an essential part for the
asserted convergences we show that the coefficients of the polynomial ¢x, , are bounded by
the coefficients of the power series of ﬁeew. X
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5. Results for the regular simplex

In this section we prove a discrete version of the central limit property for the regular sim-
plices: We will not take the mean over all directions in S™~! but only over those belonging to
partitions of the vertices of the given simplex. As an appropriate weight of these directions
we will use the (n — 1)-dimensional volume of the Dirichlet-Voronoi cells on the unit sphere
Sn-lL,

In order to fix the notation let A, be the standard n-dimensional regular simplex in R*t?,
ie.,

A, =conv{ey,... e 1}

We first compute the desired function for A, and obtain the final formula by suitable scaling.
Let 1<k <n, m:=n+1-—k. We calculate

Gu(t) =M 1({z € Ay z-u=1})

for u pointing from the centre of an (m — 1)-dimensional face to the centre of a (k — 1)-
dimensional face of A,; without restriction

km /1 1
= U=/ —1,...,1,0,...,0——0,...,0,1,...,1)
¢ Uni n+1(l€(\—\/—/ ) m( H/—)

k m
:;(m,...,wk, k..., —k).

\/(n-l-l)km ~ ﬂkr — ;nr

Noting that {z € Ayz-u= t} is the orthogonal cartesian product of suitably scaled copies
of these faces one obtains the formula

o vm VE [ m B\ Lk AN
(’Du(t)_(m—l)!(/ﬁ—l)!(n—i—l—’_\/;t) (n—i-l_ n—{—1t> )

Here we have used the expression % for the (k — 1)-dimensional volume of the standard

embedded simplex. In order to obtain the regular simplex A, of volume 1 one has to blow
1

up A, by a factor of (%) e cn- Hence, letting

0u(t) = pa,ut) = {z € Apyz-u=1})

we find
L t
Qou(t) = CZ 190u <_)

n! P m P m-l k J kol
T (m =1k —1)! "”“(n+1+ ””“t) <n+1_ ””“t) ’
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with dx = -1/2%. We want to show that, for large n, the function ¢, is close to the
appropriate Gaussian density for ‘most’ of the directions u considered above. These direc-
tions, however, are not evenly distributed on the unit sphere S”~!. After the proof of the
following theorem we will present considerations showing that this result can be interpreted

as a discrete version of the central limit property.

Theorem 5.1. For k — oo one has

SUP{||Pan i (1) = 93, [loo; n € N, 2> 2k} — 0,
sup{lloanu, () = 9 ll; n €N, n > 2k} — 0.

Remark 5.2. The radius of inertia for A, is

I (n!)%
"+ D)+ 2)(n+ 1)

I

and Stirling’s formula implies L, — % (n — o0), showing that one may substitute g E for
gr2_ in Theorem 5.1. )

Proof of Theorem 5.1. In the first step one rewrites, using Stirling’s formula,

Pun i (t) = Cn,kwun,k (t)a

1
Crop = n A (1 40 (—)) ,
9 (b=D(m—1) k

n—1
T m—1 T k—1
t)=11 1—
b= () (- 2)”
with
k—m
= d — 1)t
71 _+_ 1 —+_ 71;k (71 )
In the following steps one then shows
e
1 —
o Cnk = o=
and
e2t?
lim ¢, (t)=e 2,
k,m—00 ’

uniformly for |¢| < ¢y, for all 5 > 0.
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Finally one shows that, for #, large enough, the functions ¢, ,, outside [—to, to], are
dominated by max(py, , (—=t0), Pu, . (to))-
Combining these observations one obtains the assertions. X

The next part of this section is devoted to determining smallest spherical caps containing the
Dirichlet-Voronoi cells belonging to the vectors u, , (k =1,...,n) defined above. We define
D,, as the set of unit vectors in S™ which are, up to a permutation of the components, the
vectors u,x (k= 1,...,n); the set D, consists of 2"*! — 2 vectors. We now introduce the
(n — 1)-dimensional sphere

S ti={re Sz w=0},

where, as before, w = —=(1,...,1) € R**".

With any u € D,, we associate the Dirichlet-Voronoi cell (DV-cell for brevity)
Cu:i={z €S|z —u| <inf{lz—a|; @ € D,}}.

We want to associate with v € D,, the (n—1)-dimensional volume p,,_1(C,,) as the appropriate
weight.

For fixed k € {1,...,n} there are ("}") vectors arising from wu, by a permutation of
the coordinates; these vectors and the corresponding DV-cells will be called of type &.

For 1 < k < % let a, be the largest number such that the set
Wﬂ(an,k) = {u € 5371; |u|oo Z an,k}

covers all DV-cells of types k and n + 1 — k. (Here, | - |, denotes the maximum norm on
Rn—i—l_)

Proposition 5.3. The numbers ay, , defined above satisfy

D[

(25 -
2k - - . =\ 2
Qg = 2k+mz_kz+l(\/’b(n+l—l)—\/(2—1)(n+2—2)) .

and Wy, (an i) covers all DV-cells of types 1,... ,k,n+1—k,... , n.

Proof. The first task is determining the minimum of ||, for z in a DV-cell of type k or
n+ 1 — k. For this it is sufficient to consider the DV-cell C,, , .

A longer argument shows that this minimum is attained for the vector z with components
T =... =T = a,

xi:a\/ﬁ <\/i(n+1—i)—\/(i—l)(n+2—i)>

fork+1<i<n—k+1, x4 gio=... = Tpy1 = —a, where a > 0 is such that |z| = 1. Then
ank = |Z|oo = @ yields the expression of a,  as asserted.
The second assertion is shown by proving that (a, ) is decreasing in k. X
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Proposition 5.4. Let (k) be a sequence in N satisfying k, = O(n'~¢) for some e > 0. Then
s (W () = 0(n=2) for all o> 0.

Proof. Let 0 < a < 1. Using the inequality in the proof of Lemma 2.4 we get

tin—1(Wn(a)) < 2(n+ )pp—1 ({u € SZ75 ur > a})

n—1

<(n+1) (1—a2"+1> ’

n

+1)(n—1
g2 (a1

<(n+1e
Combining this inequality with a suitable lower bound for a, , we obtain the assertion. X

Remarks 5.5. (a) Combining the results of Theorem 5.1 and Proposition 5.4 one finds state-
ments analogous to the central limit property in Definition 1.1 (a), (b): For large dimensions,
the measure of points u € D, (weighted by the volumes of the corresponding DV-cells) for
which ¢a, , is not close to the appropriate Gaussian density is small.

(b) A more careful inspection of the proofs would probably yield a quantitative statement in
the spirit of Theorems 2.1 and 2.2.
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