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Abstract. A Euclidean d-simplex S is called k-self-similar if S can be dissected
into k > 2 simplices, each similar to S. Each triangle (d = 2) is k-self-similar for
k = 4 and k > 6 whereas for d > 2 most d-simplices are not self-similar. A first class
of 3-simplices which are m?-self-similar for all positive integers m is characterized.

1. Introduction

The concept of self-similarity comes from fractal geometry, cf. [2]. Let ¢, be similarities of
the Euclidean d-space RY, i.e.

A (le@) = i) = Nlz =)

d
zyeR

where 0 < \; < 1 (i =1,...,k). Then a subset M of R is called k-self-similar (k > 2) if
M is invariant under ¢y, ... , @, i.e. if

M =UL ¢:(M).
We look for k-self-similar d-simplices. A d-simplex S is the convex hull of d + 1 affinely
independent points py, ... , ps € R%:

S =conv{p,...,pa} ={z€R 2 =L Mg A XL N=1AN>03G=0,...,d)}

(we don’t distinguish points and vectors in notation). Thus, the set vert(S) := {po, ... ,pas}
is the set of vertices of S. Another way of specifying a d-simplex will be useful, namely

S = (po; a1, - - aad>={$3$:P0+Z§i)\iai ANL> X > > )\ >0}
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where a; :== p; —p;_1 (1 =1,...,d) denote the edges (edge-vectors) of a maximal simple edge
path beginning in the vertex p, (cf. Figure 1).
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Figure 1
Furthermore, we say a set S is dissected or S admits a dissection into sets Sy,...,Sg
k k
§=) 8 = S§=JS8 A mt(Sin8)=0(i#). (1)

i=1 i=1

2. General k-self-similarity

Now, we define the (general) self-similarity of simplices in a slightly more special manner
than above:

Definition 1. A d-simplex S is called k-self-similar if S admits a dissection into k > 2
simplices, each similar to S.

For d = 2 one has a complete classification of self-similar simplices (triangles), cf. [3, 6]:

Proposition 1. a) Fach triangle is k-self-similar with k = 4 and k > 6.
b) A triangle S is 2-self-similar if and only if S is a right triangle.
c) A triangle S is 3-self-similar if and only if S is a right triangle.
d)j triangle S is 5-self-similar if and only if S is a right triangle or 8 has angles of size %’r
and %.
6

k=6
Figure 2
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Figure 3

Figures 2 and 3 show the sufficency of the conditions in Proposition 1 (the principles of
construction).

Also, in the two-dimensional case each simplex is (general-) self-similar. It’s remarkable that
the situation for d > 2 is quite different:

Lemma 1. Most d-simplices are not k-self-similar for d > 2.

Indeed, each k-self-similar d-simplex S admits a dissection (tiling) of the whole space R%. By
a theorem of Debrunner [1], such a simplex S must be equidissectable to a d-cube. Hence, S
has vanishing Dehn-functionals (Lemma 1 holds for any d-polyhedra with d > 3).

3. Perfect k-self-similarity
Now we restrict our consideration to a first special case of k-self-similar simplices.

Definition 2. A simplex S is said to admit a perfect k-self-similar dissection, or, in short,
S is called k-perfect, if S admits a dissection (1) into k > 2 simplices S; that are mutually
incongruent (but similar to S).

For d = 2 one has the following results:

Proposition 2. a) Fach non-equilateral triangle is 2m-perfect for all m > 4.
b) The equilateral triangle is non-k-perfect for any k > 2.
c) A triangle S is k-perfect for all k > 2 if and only if S is a non-isoceles right triangle.

Figure 4

The principle of construction in case a) is shown in Figure 4, cf. [7]. Statement b) is a
consequence of the fact that there is no dissection of R? into mutually incongruent equilateral
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triangles, one of them being minimal [8], cf. also [10]. Concerning statement c) see Figure 3
(k = 3).
What happens in the situation of d > 27 We have only the following

Conjecture 1. For d > 3 there isn’t any perfect d-simplex.

4. Reptiles
Finally, we consider the following special case of self-similarity:

Definition 3. A d-simplex S is called a replicating tile, or, in short, S is called a k-reptile

if S admits a dissection (1) into k > 2 simplices S; that are mutually congruent (and similar
to S).

For d = 2 the k-reptiles (triangles) are well known, cf. [9]:

Proposition 3. A triangle S is a k-reptile if and only if

a) k =m? (m > 2; any triangle), or

b) k=3m? (m > 1; S is a right triangle with acute angles § and %), or

c) k=m?+1?(m,l > 1; S is a right triangle with cathetuses in the length ratio m : I.

4

N

Examples for the three cases are shown in Figure 5.

o
|
[N}

m k=3 -m? k=m2+12
Figure 5

Thus, each triangle S is a k-reptile (with ¥ = m?). The corresponding dissection should be
called standard: Divide each side (edge) of S by m — 1 points into m parts of equal length.
Then dissect S by straight lines through these points parallel to the sides of S.

The situation for dimensions d > 3 is rather more difficult (see Lemma 1). But we can apply
the above standard dissection to a 3-simplex: Divide each edge p;py of the tetrahedron

S = conv{py, p1,p2,p3}

into congruent parts and dissect S by planes through these points parallel to the facets of
S. If we assume that S can be dissected in this way (on the analogy of proposition 3 a) into
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m? congruent tetrahedra, each similar to S, then S also admits such a dissection into 8 = 23

tetrahedra. Let m; be the midpoints of the edges of S (i = 1,...,6), cf. Figure 6.

Figure 6

Thus, S is dissected into the four tetrahedra
So = CODV{pO, m1,m4,m6}a S = COHV{ml,pl, ma, m5},
Sy := conv{ms, p2, m3, ms}, Ss := conv{ms,ps, m4, ms}

and the “middle octahedron” O := conv{my, ... ,mg}. Obviously, the middle octahedron of
any tetrahedron is centrally symmetric. We need the following

Lemma 2. If a centrally symmetric octahedron O is divided into four tetrahedra
0=8+852+S83+8,

then two of them form a quadrangular pyramid, and hence the others do as well.

Proof. Each edge of §; is either an edge of O or its relative interior is in the interior of O.
Hence, each triangular facet of O is an “outer” facet of exactly one of the simplices S;. We
consider any vertex p of O = conv{a,b,c,d,p,q}. At p there meet outer facets of a) four, b)
three, or ¢) two tetrahedra.

In case a) the four simplices must be
S = conv{a, b, p, q}, Sy = CODV{b, ¢ D, Q}a
S; =conv{c,d,p,q} and S, =conv{d,a,p,q}.

Hence 81 + S5 is the pyramid P = conv{a, p, ¢, ¢, b} with the parallelogram apcqg as base.
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Figure 7

In b), for example, S; has facets abp and bep while cdp is a facet of Sy and dap is a facet of
S3. Then &3 + &3 must form the pyramid apcgd with the base apcq.

In ¢), let abp and bep be facets of S and edp and dap facets of S;. Then S; + Sy is the
pyramid abcdp with the base abcd which completes the proof.

Now we go back to the standard dissection of the tetrahedron S into four tetrahedra S; and
the middle octahedron O. If § is an 8-reptile then O must admit a dissection into four
mutually congruent tetrahedra

O=T1+To+Ts+ T4,

each of them similar to S. Without loss of generality we will assume that P =conv{m, ..., ms}
is the pyramid in accordance with Lemma 2, cf. Figure 6. This pyramid is dissected into two
tetrahedra 71 and T4, each congruent to the tetrahedron

S1 = conv{my, p1, Mz, ms}.

Hence, P+8; = T1+ T2+ 8, is a triangular prism that can be dissected into three mutually
congruent tetrahedra. Then S, and also §, must be a Hill-tetrahedron, cf. [5, 4]. A d-simplex

S= <p0;611,a2,--- ,ad>

is called a Hill-simplex (of the first type) if there exist real numbers ¢ > 0 and o (0 < a < &)

with
c? fori =k,
i - A =\ , .
c’cosa  fori # k.

Therefore, in contrast to the twodimensional case, we have only a very special class of 3-
simplices which are m3-reptiles by the standard construction:

Theorem. Any 3-simplex S is an m®-reptile using the standard dissection if and only if S
18 a Hill-simplex.

Finally, we postulate the following

Conjecture 2. A tetrahedron § is a k-reptile if and only if § is a Hill-simplex.
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