Self-similar Simplices

Eike Hertel

Mathematisches Institut, Friedrich-Schiller-Universität Jena Ernst-Abbe-Platz 1-4, D-07743 Jena, Germany e-mail: hertel@minet.uni-jena.de

Abstract. A Euclidean d-simplex S is called k-self-similar if S can be dissected into $k \geq 2$ simplices, each similar to S. Each triangle (d = 2) is k-self-similar for k = 4 and $k \geq 6$ whereas for d > 2 most d-simplices are not self-similar. A first class of 3-simplices which are m^3 -self-similar for all positive integers m is characterized.

1. Introduction

The concept of self-similarity comes from fractal geometry, cf. [2]. Let φ_i be similarities of the Euclidean d-space \mathbb{R}^d , i.e.

$$\bigwedge_{x,y \in \mathbb{R}^d} \left(|\varphi_i(x) - \varphi_i(y)| = \lambda_i |x - y| \right)$$

where $0 < \lambda_i < 1$ (i = 1, ..., k). Then a subset \mathcal{M} of \mathbb{R}^d is called k-self-similar $(k \geq 2)$ if \mathcal{M} is invariant under $\varphi_1, ..., \varphi_k$, i.e. if

$$\mathcal{M} = \bigcup_{i=1}^k \varphi_i(\mathcal{M}).$$

We look for k-self-similar d-simplices. A d-simplex S is the convex hull of d+1 affinely independent points $p_0, \ldots, p_d \in \mathbb{R}^d$:

$$S = \text{conv}\{p_0, \dots, p_d\} := \{x \in \mathbb{R}^d : x = \sum_{i=0}^d \lambda_i p_i \land \sum_{i=0}^d \lambda_i = 1 \land \lambda_i \ge 0 \ (i = 0, \dots, d)\}$$

(we don't distinguish points and vectors in notation). Thus, the set $\operatorname{vert}(\mathcal{S}) := \{p_0, \ldots, p_d\}$ is the set of vertices of \mathcal{S} . Another way of specifying a d-simplex will be useful, namely

$$\mathcal{S} = \langle p_0; a_1, \dots, a_d \rangle = \{ x : x = p_0 + \sum_{i=1}^d \lambda_i a_i \land 1 \ge \lambda_1 \ge \dots \ge \lambda_d \ge 0 \},$$

0138-4821/93 \$ 2.50 © 2000 Heldermann Verlag

where $a_i := p_i - p_{i-1}$ (i = 1, ..., d) denote the edges (edge-vectors) of a maximal simple edge path beginning in the vertex p_0 (cf. Figure 1).

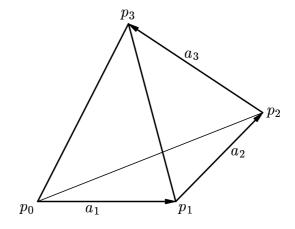


Figure 1

Furthermore, we say a set S is dissected or S admits a dissection into sets S_1, \ldots, S_k

$$S = \sum_{i=1}^{k} S_i \quad :\iff \quad S = \bigcup_{i=1}^{k} S_i \quad \land \quad \operatorname{int}(S_i \cap S_l) = \emptyset \ (i \neq l). \tag{1}$$

2. General k-self-similarity

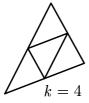
Now, we define the (general) self-similarity of simplices in a slightly more special manner than above:

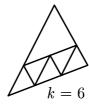
Definition 1. A d-simplex S is called k-self-similar if S admits a dissection into $k \geq 2$ simplices, each similar to S.

For d=2 one has a complete classification of self-similar simplices (triangles), cf. [3, 6]:

Proposition 1. a) Each triangle is k-self-similar with k = 4 and $k \ge 6$.

- b) A triangle S is 2-self-similar if and only if S is a right triangle.
- c) A triangle S is 3-self-similar if and only if S is a right triangle.
- d) A triangle S is 5-self-similar if and only if S is a right triangle or S has angles of size $\frac{2\pi}{3}$ and $\frac{\pi}{6}$.





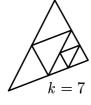


Figure 2

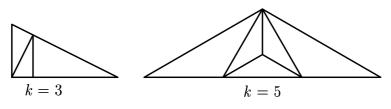


Figure 3

Figures 2 and 3 show the sufficency of the conditions in Proposition 1 (the principles of construction).

Also, in the two-dimensional case each simplex is (general-) self-similar. It's remarkable that the situation for d > 2 is quite different:

Lemma 1. Most d-simplices are not k-self-similar for d > 2.

Indeed, each k-self-similar d-simplex S admits a dissection (tiling) of the whole space \mathbb{R}^d . By a theorem of Debrunner [1], such a simplex S must be equidissectable to a d-cube. Hence, S has vanishing Dehn-functionals (Lemma 1 holds for any d-polyhedra with $d \geq 3$).

3. Perfect k-self-similarity

Now we restrict our consideration to a first special case of k-self-similar simplices.

Definition 2. A simplex S is said to admit a perfect k-self-similar dissection, or, in short, S is called k-perfect, if S admits a dissection (1) into $k \geq 2$ simplices S_i that are mutually incongruent (but similar to S).

For d=2 one has the following results:

Proposition 2. a) Each non-equilateral triangle is 2m-perfect for all $m \geq 4$.

- b) The equilateral triangle is non-k-perfect for any $k \geq 2$.
- c) A triangle S is k-perfect for all $k \geq 2$ if and only if S is a non-isoceles right triangle.

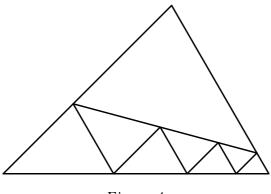


Figure 4

The principle of construction in case a) is shown in Figure 4, cf. [7]. Statement b) is a consequence of the fact that there is no dissection of \mathbb{R}^2 into mutually incongruent equilateral

triangles, one of them being minimal [8], cf. also [10]. Concerning statement c) see Figure 3 (k = 3).

What happens in the situation of d > 2? We have only the following

Conjecture 1. For $d \geq 3$ there isn't any perfect d-simplex.

4. Reptiles

Finally, we consider the following special case of self-similarity:

Definition 3. A d-simplex S is called a replicating tile, or, in short, S is called a k-reptile if S admits a dissection (1) into $k \geq 2$ simplices S_i that are mutually congruent (and similar to S).

For d=2 the k-reptiles (triangles) are well known, cf. [9]:

Proposition 3. A triangle S is a k-reptile if and only if

- a) $k = m^2$ ($m \ge 2$; any triangle), or
- b) $k = 3m^2$ ($m \ge 1$; \mathcal{S} is a right triangle with acute angles $\frac{\pi}{3}$ and $\frac{\pi}{6}$), or c) $k = m^2 + l^2$ ($m, l \ge 1$; \mathcal{S} is a right triangle with cathetuses in the length ratio m: l.

Examples for the three cases are shown in Figure 5.

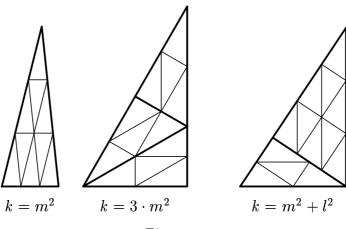


Figure 5

Thus, each triangle S is a k-reptile (with $k=m^2$). The corresponding dissection should be called standard: Divide each side (edge) of S by m-1 points into m parts of equal length. Then dissect \mathcal{S} by straight lines through these points parallel to the sides of \mathcal{S} .

The situation for dimensions $d \geq 3$ is rather more difficult (see Lemma 1). But we can apply the above standard dissection to a 3-simplex: Divide each edge $p_i p_k$ of the tetrahedron

$$\mathcal{S} = \operatorname{conv}\{p_0, p_1, p_2, p_3\}$$

into congruent parts and dissect S by planes through these points parallel to the facets of \mathcal{S} . If we assume that \mathcal{S} can be dissected in this way (on the analogy of proposition 3 a) into m^3 congruent tetrahedra, each similar to \mathcal{S} , then \mathcal{S} also admits such a dissection into $8 = 2^3$ tetrahedra. Let m_i be the midpoints of the edges of \mathcal{S} (i = 1, ..., 6), cf. Figure 6.

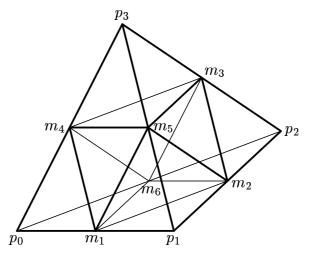


Figure 6

Thus, \mathcal{S} is dissected into the four tetrahedra

$$\mathcal{S}_0 := \operatorname{conv}\{p_0, m_1, m_4, m_6\}, \quad \mathcal{S}_1 := \operatorname{conv}\{m_1, p_1, m_2, m_5\},$$

 $\mathcal{S}_2 := \operatorname{conv}\{m_2, p_2, m_3, m_6\}, \quad \mathcal{S}_3 := \operatorname{conv}\{m_3, p_3, m_4, m_5\}$

and the "middle octahedron" $\mathcal{O} := \operatorname{conv}\{m_1, \dots, m_6\}$. Obviously, the middle octahedron of any tetrahedron is centrally symmetric. We need the following

Lemma 2. If a centrally symmetric octahedron \mathcal{O} is divided into four tetrahedra

$$\mathcal{O} = \mathcal{S}_1 + \mathcal{S}_2 + \mathcal{S}_3 + \mathcal{S}_4$$

then two of them form a quadrangular pyramid, and hence the others do as well.

Proof. Each edge of S_i is either an edge of O or its relative interior is in the interior of O. Hence, each triangular facet of O is an "outer" facet of exactly one of the simplices S_i . We consider any vertex p of $O = \text{conv}\{a, b, c, d, p, q\}$. At p there meet outer facets of a) four, b) three, or c) two tetrahedra.

In case a) the four simplices must be

$$\mathcal{S}_1 = \operatorname{conv}\{a, b, p, q\}, \quad \mathcal{S}_2 = \operatorname{conv}\{b, c, p, q\},$$

$$\mathcal{S}_3 = \operatorname{conv}\{c, d, p, q\} \quad \text{and} \quad \mathcal{S}_4 = \operatorname{conv}\{d, a, p, q\}.$$

Hence $S_1 + S_2$ is the pyramid $P = \text{conv}\{a, p, c, q, b\}$ with the parallelogram apcq as base.

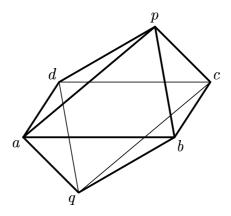


Figure 7

In b), for example, S_1 has facets abp and bcp while cdp is a facet of S_2 and dap is a facet of S_3 . Then $S_2 + S_3$ must form the pyramid apcqd with the base apcq.

In c), let abp and bcp be facets of S_1 and cdp and dap facets of S_2 . Then $S_1 + S_2$ is the pyramid abcdp with the base abcd which completes the proof.

Now we go back to the standard dissection of the tetrahedron S into four tetrahedra S_i and the middle octahedron O. If S is an 8-reptile then O must admit a dissection into four mutually congruent tetrahedra

$$\mathcal{O} = \mathcal{T}_1 + \mathcal{T}_2 + \mathcal{T}_3 + \mathcal{T}_4,$$

each of them similar to S. Without loss of generality we will assume that $\mathcal{P} = \text{conv}\{m_1, ..., m_5\}$ is the pyramid in accordance with Lemma 2, cf. Figure 6. This pyramid is dissected into two tetrahedra \mathcal{T}_1 and \mathcal{T}_2 , each congruent to the tetrahedron

$$S_1 = \operatorname{conv}\{m_1, p_1, m_2, m_5\}.$$

Hence, $\mathcal{P} + \mathcal{S}_1 = \mathcal{T}_1 + \mathcal{T}_2 + \mathcal{S}_1$ is a triangular prism that can be dissected into three mutually congruent tetrahedra. Then \mathcal{S}_1 , and also \mathcal{S} , must be a Hill-tetrahedron, cf. [5, 4]. A *d*-simplex

$$\mathcal{S} = \langle p_0; a_1, a_2, \dots, a_d \rangle$$

is called a *Hill-simplex* (of the first type) if there exist real numbers c>0 and α ($0<\alpha<\frac{2\pi}{3}$) with

$$a_i \cdot a_k = \begin{cases} c^2 & \text{for } i = k, \\ c^2 \cos \alpha & \text{for } i \neq k. \end{cases}$$

Therefore, in contrast to the two dimensional case, we have only a very special class of 3-simplices which are m^3 -reptiles by the standard construction:

Theorem. Any 3-simplex S is an m^3 -reptile using the standard dissection if and only if S is a Hill-simplex.

Finally, we postulate the following

Conjecture 2. A tetrahedron S is a k-reptile if and only if S is a Hill-simplex.

References

- [1] Debrunner, H. E.: Über Zerlegungsgleichheit von Pflasterpolyedern mit Würfeln. Arch. Math. **35** (1980), 583–587.
- [2] Falconer, K. J.: Fractal Geometry. Mathematical Foundations and Applications. John Wiley & Sons, New York 1990.
- [3] Freese, R. W.; Miller, A. K.; Uskin, Z.: Can every triangle be divided into n triangles similar to it? Am. Math. Monthly 77 (1990), 867–869.
- [4] Hertel, E.: Hill-Tetraeder. Fo-Erg. FSU Jena Math/Inf/99/23.
- [5] Hill, M. J. M.: Determination of the Volumes of certain Species of Tetrahedra. Proc. London Math. Soc. 27 (1896), 39–53.
- [6] Kaiser, H.: Selbstähnliche Dreieckszerlegungen. Forschungsergebnisse Universität Jena, Preprint 1990.
- [7] Kaiser, H.: Perfekte Dreieckzerlegungen. Elem. Math. 46 (1991), 106–111.
- [8] Scherer, K.: The impossibility of a tesselation of the plane into equilateral triangles whose sidelengths are mutually different, one of them being minimal. Elem. Math. **38** (1983), 1–4.
- [9] Snover, St. L.; Waiveris, Ch.; Williams, J. K.: Rep-tiling for triangles. Discrete Math. 91 (1991), 193–200.
- [10] Tuza, Z.: Dissection into equilateral triangles. Elem. Math. 46 (1991), 153–158.

Received August 13, 1999