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Abstract. For commutative algebras over a field, we describe all varieties closed
for taking algebras which are sums of their two subalgebras in the variety.
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Properties of rings which are sums of their two subrings have been investigated by Bah-
turin, Beidar, Bokut, Ferrero, Fukshansky, Giambruno, Herstein, Kegel, Kepczyk, Mikhalev,
Puczylowski, Salwa, Small, and other authors (see [7] for references). In particular, several
interesting results deal with PI-rings which are sums of two subrings (see [1], [2], [4]).

This note is devoted to varieties of algebras over a field F. We say that a (commutative)
variety V' is closed for sums of two subalgebras if V' contains every (commutative) algebra
which is a sum of two subalgebras from V.

We describe all commutative varieties closed for sums of two subalgebras. It turns out
that these varieties are abundant. In contrast, it follows from the main theorem of [8] that
only trivial varieties of non-commutative algebras are closed for sums of two subalgebras.
A variety (of commutative algebras) is said to be trivial if it contains either all algebras
(respectively, all commutative algebras), or only zero algebras.

A product of two varieties V,W is a class VW consisting of all F-algebras R with an
ideal I € V such that R/I € W. It is well-known that a product of varieties is a variety (see,
for example, [6]). A variety is said to be semisimple if it is generated by a finite (possibly
empty) set of finite fields. It is known that a variety is semisimple if and only if it consists
of Jacobson semisimple rings (see [6]). Put N, = var[z*=0].
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Theorem 1. Let F' be a field of characteristic p, and let V' be a nontrivial variety of com-
mutative F-algebras. Then V' s closed for sums of two subalgebras if and only if p > 0 and
V = N Vs, where k > 0 and Vs is a semisimple variety.

Proof. Further, by an algebra we mean a commutative F-algebra. For any algebra R, denote
by J(R) the Jacobson radical of R. Let Vy and Vg be the classes of all nil, respectively,
semisimple algebras in V. It is known and routine to verify that Vy and Vg are varieties,
too.

The ‘only if’ part. Suppose that V' is closed for sums of two subalgebras. First we show
that V = VyVs. The inclusion V' C Vy Vs is obvious. Indeed, every nontrivial commutative
variety satisfies an identity f(z) = 0; whence J(R) € Vi for every R € V, and R/J(R) € V5.

If |[F| = oo, then it is known and easy to show that V consists of nil algebras, and
therefore V = Viy = Vy Vs, as required.

Next, we consider the case where |F'| < oo, and so p > 0.

Choose any R in VyVs. Let I € Vi be an ideal of R such that R/I € Vs. Clearly,
I = J(R). In order to show that R € V, it suffices to verify that every finitely generated
subalgebra of R belongs to V. Hence we may assume that R is finitely generated itself.
Every nontrivial variety of commutative algebras is locally finite, since it satisfies f(z) = 0
and zy = yx. Hence both I and R/I are locally finite. Therefore R is locally finite, and so
R is finite dimensional. Since every finite field is perfect, the Wedderburn’s classical theorem
tells us that every finite dimensional algebra over F'is a sum of its nil ideal I and a semisimple
subalgebra S = R/I (see [3, Theorem 72.19] or [10, §11.6]). Given that V is closed for sums
of two subalgebras and I, 5 € V, we get R € V.

Thus V' = VyVs. It remains to show that p > 0 and Viy = Ny for some k > 0.

Denote by F*[z] the algebra of polynomials over F' in z without constant terms. Ob-
viously, F*[z]/(z') = 0 belongs to V. If V contains all algebras F*[z]/(x*t), for all £ > 1,
then F*[z] € V, and so all algebras are in V. Therefore we may assume that there exists a
maximum integer ¢ such that F*[z]/(zf) € V.

If £ =1, then V does not contain F*[z]/(2?); whence V is a semisimple variety (see [6,
Theorem 5]), and V' = N0V, as required.

Further, assume that ¢ > 2. Given a finitely generated algebra A satisfying z¢ = 0, we
claim that A € V. Indeed, as we have already remarked dimp(A) = n < oco. Since A is
commutative, A = 0. We now proceed by induction on n. The case n = 1 is obvious.
In the inductive step n > 1, we first note that A2 C A, because A is nilpotent. Choose
T1,T9,...,T,m € A such that the set {z; + A? | 4 =1,2,...,m} is a basis of the vector space
AJA?%. Set B=Y",Fz;+ B? and D = Zﬁf:l Fz). Clearly, both B and D are subalgebras
of Aand A = B+ D. Since B C A, B € V by the induction assumption. If D = A, then
A € V, because it is a homomorphic image of F*[z]/(z*) € V. If D C A, then D € V by
the induction assumption, and so A € V by the hypothesis of the theorem. Thus in both
cases A € V', and our claim is proved. Next, any variety is generated by its finitely generated
subalgebras and so N, C V. Clearly N, C V. Given any algebra A € Vy, it satisfies the
identity z¢ = 0 by the choice of ¢, and so A € N,. We conclude that Vy = N,.

Suppose that either p = 0 or £ is not a power of p. We set ¢ = 1 if p = 0; otherwise

g = p® where a is the largest integer such that p®|¢. Then (i > # 0 in F. Look at
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F*[z,y]/(z* y%). It is the sum of subalgebras xF[z,y]/(z¢ v%) and yF[y]/(x% y*), which are
in var[z;---x, = 0]. Therefore it belongs to V. However, if we expand (z + y)¢, then the

summand x%* ¢ has the coefficient ( 5 ) that is nonzero. Hence (z +y)* # 0 and obviously

(z +y)* = 0. This contradicts the minimality of £ and shows that p > 0 and ¢ is a power of
p. Thus ¢ = pF.

The ‘if” part. Suppose that V' = N,xVs, where Vs is a semisimple variety.

First, we show that Vys is closed for sums of two subalgebras. Take any algebra R which
is a sum of subalgebras A, B € V. Consider a primitive homomorphic image R/I of R. We
claim that it is a finite field which belongs to V.

Let m be the least common multiple of all n» such that Vg contains the finite field GF (p™).
Then (A+1)/I,(B+1I)/I € Vs satisfy z = 2zP™. Since every ring of characteristic p satisfies
the identity (x + y)? = 2P + P, it follows that the identity z = x" is inherited by sums of
subrings. Hence R/I satisfies x = 27" . Therefore R/I is a subfield of the finite field GF(p™).

The images (A + I)/I and (B + I)/I are subrings of R/I, and so they are finite fields.
Suppose that (A+1)/I and (B+1)/I are not included one in another. The lattice of subfields
of GF(p™) is isomorphic to the lattice of divisors of m ([9], Theorem 13.10). Therefore
(A+I)/I = GF(p*) and (B+1)/I = GF(p*) for some positive integers a, b, ¢, where a and b
are coprime, a, b > 2. Since (A+1I)/I and (B+1)/I are subfields of R/I = GF(p*) C GF(p™),
we see that k = abcd for a positive integer d.

Look at the dimensions over GF'(p®). The field (A+1I)/I has dimension a, and (B+1)/I
has dimension b. Therefore (A + I)/I + (B + I)/I has dimension a + b — 1. However, R/I
has dimension > ab > a + b — 1. This contradiction shows that one of the fields (A + I)/I
and (B + I)/I is contained in another, say (A+1)/I C (B+1)/I. Hence R/I = (B+1)/I
is a finite field in V.

Given that R is semisimple, it is a subdirect product of its primitive homomorphic images.
Therefore R is a subdirect product of finite fields which are in V. Thus R is in V.

Second, we show that V' is closed for sums of two subalgebras. Take any algebra R = A+ B
with subalgebras A, B € V. Given that V = N, Vs, we see that J(A), J(B) € Ny. Since
charR = p, it follows that all elements of the F-module J(A) 4+ J(B) satisfy a#" = 0.
Therefore the subalgebra I of R generated by the F-module J(A) 4+ J(B) belongs to Np.
The quotient algebra R/I is a sum of two subalgebras (A+1)/I = (A/J(A))/(I/J(A)) € Vs
and (B+1)/I € Vs. As we have proved, Vs is closed for sums of two subalgebras. Therefore
R/I € Vs. Thus R € V. This completes our proof. O

The variety V = var[z?=x3] of algebras over F' = GF(2) contains both F and the two-
element algebra F° = {0,a} with zero multiplication. However, it does not contain the
ideal extension (F°)! = F + F°, because (1 +a)? = 1 and (1 +a)® = 1+ a. Thus not
all commutative varieties are products of their nil and semisimple subvarieties, and not all
commutative varieties are closed for sums of two subalgebras.
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