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Abstract. An automorphic subset of the n-dimensional cube @),, is an orbit of a
subgroup of Aut(Q,), acting on the vertices. We develop a theory of such subsets,
and we show that those containing 0 coincide with the cwatsets introduced by
Sherman and Wattenberg in response to a statistical result of Hartigan. Using this
characterisation, together with results from finite group theory and number theory,
we answer two questions on cwatsets posed by Sherman and Wattenberg, and we
complete the proofs of some results outlined by Kerr.
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1. Introduction

Let V = Z%, an n-dimensional vector space over the field Z, = {0, 1}, or equivalently the
vertex-set of the n-dimensional cube @,. Sherman and Wattenberg [18], motivated by a
statistical result of Hartigan [11] (see also [1, 17]), introduced the concept of a cwatset,
a set C' C V which is ‘closed with a twist’ (the precise definition is given in Section 5).
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Their paper contains several open questions about the existence of cwatsets with certain
properties. Our aim is to extend the notion of a cwatset to that of an automorphic subset of
Qn, namely an orbit of a subgroup of Aut(Q,). We develop a general theory of such subsets,
and characterise cwatsets as the automorphic subsets containing the vector 0 € V. We use
this theory to construct infinite series of cwatsets which provide negative answers to two
questions posed in [18], and to complete some of the results on cwatsets outlined by Kerr in
[14]. An extended version of this paper, discussing links with other areas of combinatorics,
is available from the authors [13].

In Section 2 we establish the necessary background about the n-dimensional cube @),, and
its automorphism group &,. Section 3 contains definitions of an automorphic subset of @,
and of an automorphic orbit of £,, and discusses their properties. In Section 4 we prove some
of the assertions in [14], and we use some deep results from group theory and number theory
to construct an infinite series of counterexamples to one of the questions posed by Sherman
and Wattenberg. In Section 5 we recall the definition and basic properties of cwatsets from
[18]; in Theorem 5.2 we relate cwatsets to automorphic sets, and then we briefly consider
their connections with binary linear codes and with hypergraphs. In Section 6 we first give
some definitions and examples which refine the notions of cyclic cwatsets and direct sum
decompositions in [14, 18]; we then give a negative answer to a second question of Sherman
and Wattenberg, constructing an infinite series of cwatsets which are not direct sums of cyclic
and group cwatsets.

2. Preliminaries

The n-dimensional cube is a graph @, = (V, E) with vertex set V = Z7, an n-dimensional
vector space over the field Z; = {0, 1} of integers mod (2); vertices u,v € V form an edge
{u,v} € E if and only if the vectors u, v differ in exactly one coordinate. Thus each vertex v
of @, has valency n, being adjacent to v +e; fori = 1,...,n, where ¢; = (0,...0,1,0,...,0)
is the ¢-th standard basis vector of V.

The distance d(u,v) between vertices u,v € V (the least number of edges in any path
from u to v) is called the Hamming distance. If uw = (uq,...,u,) and v = (vy,...,v,) then
d(u,v) is the number of subscripts ¢ such that u; # v;; equivalently, d(u,v) is the weight
(number of non-zero coordinates) of the vector v — u.

We define the distance graphs Q\¥), where i = 1,...,n, to have vertex set V = Z2, with
vertices u,v adjacent in Q%) if and only if d(u,v) = i in Q,. In particular, Q") = Q,. Each
ng) is a regular graph of valency (7;), and the edges of Q,(ll), ceey Q,(l”) form a partition of the
edges of the complete graph with vertex set V.

In many applications, another interpretation of V' is useful. Let U denote the power set
P(N,) of N,, = {1,2,...,n}. This is a group with respect to the operation of symmetric
difference A\ B := (A\B)U(B\A); the empty set () is the identity element, and each A € U is
its own inverse. For each A € U we define the characteristic vector x(A) = (a1,-..,a,) €V,
where

,_{1 if i € A,
“=0 itig¢ A

This function x : U — V is an isomorphism between the groups (U,A) and (V,+): if
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a=(ay,...,a,) €V then x"'(a) = A= {i € N, | @; = 1}. By using x to identify U with
V', we can regard a vertex of (), as a vector or a subset of N,,. If vertices a and b correspond
to subsets A and B of N, then d(A, B) = d(a,b) = |AA Bj.

Another useful interpretation is to identify V with the set Z3™ of all functions ¢ : N,, —
Z,, by regarding each ¢ = (ay,...,a,) as a function i — a;, so that each subset A €
U corresponds to its characteristic function x4; under point-wise addition mod (2) these
functions form a group isomorphic to (V,+). If vertices a and b correspond to functions
¢ = xa and ¥ = xp, then d(¢, ) is the number of 7 such that ¢(i) # (7).

Our first goal is to describe the automorphism group Aut(Q,) of the graph @,; this is
well-known, but for completeness we include the result. If we think of vertices as vectors,
then V' acts on itself by addition, each v € V' sending a vector a € V' to a + v, while S,, acts
on V by permuting coordinates: each g € S, sends a = (ay,...,a,) to a? = b= (by,...,b,),
where b; = a; whenever ¢ = j, that is, (a,...,a,)? = (a;-1,...,a,,1). Clearly V and S,
preserve the edges of (,, so we can regard them both as subgroups of Aut(@,). If v € V
and g € S, then (if we compose mappings from left to right) g~ vg sends a to a + v9; thus
g lvg € V,s0 Vg = gV and hence the subset £, = S,V of Aut(Q,,) is a subgroup. It has V'
as a normal subgroup, with |S, NV| =1, so &, is a semi-direct product of V' by S, a group
of order 2"n! with &£,/V = S,. The action of S, by conjugation on V = Z? is to permute
the n direct factors (e;) = Z in the same way as it permutes N,,, so &, is isomorphic to the
wreath product Z, wr S, = Sy wr S,, of Sy by S,,. (Traditional Russian and western notations
for this group are S, 1S, and S21.S,; to avoid confusion we have used the notation in [6]. The
action of the wreath product described here is its primitive action of degree 2", as opposed
to its imprimitive action of degree 2n on Zy X N,,.)

For a useful equivalent description of £,, we regard V' as the set of functions ¢ : N,, — Zs.
Both S, and S, have actions on V = Z)"_ induced by their actions on N, and Z,: each
g € S, sends a function ¢ : N,, — Z, to the function ¢ = g~' o ¢ : i — ¢(i% '), and each
feV =2ZY sends ¢ to ¢/ = ¢+ f : i+ ¢(i) + f(i). The group of permutations of V
generated by S,, and Sj is their exponentiation &, = Sy 1 S, [8]. Each element of &, has a
unique representation of the form o = gf where g € S,, and f (€ V) is a function N,, — Z,,
and its action on V' is given by

6" =g 7 op+frir o)+ f(i).
If we denote o = gf by the pair (g, f), then the group structure of &, is given by
(9. N)g- 1) = (99,7 + F,
_ _ -1
(.7 = (¢ 19 ).

If we identify V' with P(IN,,), then the action of S,, on V is induced from its natural action on
N,,, while V' acts on itself by symmetric difference; thus if o = (g, f), where f corresponds
to FF'=f1(1) CN,, then A2 = A9 A F for all A C N,,.

Theorem 2.1. Aut(Q,) =&,.

Proof. We have shown that &, < Aut(Q,); since |E,| = 2"n!, it is therefore sufficient to
prove that |Aut(Q,)| < 2™n!. To do this, we regard the vertices of @, as the subsets of N,



306 G. Jones, M. Klin, F. Lazebnik: Automorphic Subsets of the n-dimensional Cube

with 0 = (). Now Aut(Q,) acts transitively on the vertices (since its subgroup V' does), so
|Aut(Q,)| = 2"|H| where H is the stabiliser in Aut(Q,) of (. If we can prove that H < S,
then |H| < nl, as required.

Suppose, therefore, that h € H. For each k, let M, denote the set of vertices at distance
k from () (the k-element subsets of N,,). Since h fixes (), it permutes the set M; of vertices
adjacent to (); these are the l-element subsets of N,,, so h acts on them as a permutation
g € S,. Since S, < H we have hg ! € H. Now hg ! fixes the vertices in My U M;, and by
induction on k it fixes those in M}, for all k: if A € My with k£ > 2, then there are exactly k
sets By, ..., By € My adjacent in @, to A, and A (= B; U---U By) is the only set in M},
adjacent to each B;; by the induction hypothesis, the vertices By, ..., By are fixed by hg™!,
and hence (by its uniqueness) so is A. Thus hg~! fixes every vertex in V, so it is the identity
permutation, giving h = g € S5, as required. [l

Comments. 1. This shows that the stabiliser in Aut(@),) of the vertex ) = 0 is the sub-
group Sy,.

2. The graph @, is distance-transitive, that is, if u,v,u’,v' € V with d(u,v) = d(v',v') then
there exists o € Aut(Q,,) such that v’ = ' and v” = v’. This is because the subgroup V of
&, is transitive on the vertices, and S, is transitive on the set M, of vertices at each distance
k from (.

3. Subgraphs of Q,

If X CV, we define I'; = I';(X) to be the subgraph Q¥ (X) of Q¥ generated (or induced) by
X. This graph has vertex set X, and its edges are those edges of Q) whose incident vertices
both lie in X. If we regard the integers ¢ = 1,...,n as colours, then by colouring the edges
of each I'; with colour i we obtain the complete coloured subgraph I' = T'(X) of @, generated
by X.

For each X C V we define Stab(X) := {0 € &, | X° = X}, the subgroup of &,
which stabilises X. Our definitions imply that each o € Stab(X), restricted to X, induces
automorphisms of the subgraphs [';(X). The group H = Stab(X) induces a permutation
group (H,X) on X, which is a homomorphic image of the permutation group (H,V).

The complete coloured graph I' = I'(X) has automorphism group

G := rn]Aut(Fi).

i=1

By our definitions, G contains H, but in general these two groups may be different.

We now consider some examples. For notational convenience, we will often write a vector
v = (v1,...,v,) € V as v;...v,. Even more concisely, we will sometimes denote v by
the integer 7, 2" 'v; whose binary representation is vvy . ..v,; thus the vertex (0,1,1) is
denoted by 011, or by 3.

Example 3.1. Let n =3 and X = {0, 3,7} C V. The subgraphs I'; are shown in Figure 3.1.
In this case G is the trivial group, and hence so is H, while H = {(0)(1,2)(3)(4)(5,6)(7)) has
order 2.
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Figure 3.1

Example 3.2. Let n = 4 and X = {0101,0110,0011,1010,1001,1100}. Each vertex in X
has distance 4 from one vertex in X, and distance 2 from the remaining four. The subgraph
[' of Q4 generated by X therefore has edges of colours 2 and 4, with 'y an octahedron, and
'y its complement 3K (the disjoint union of three complete graphs K3); thus G = Aut(T") =
Aut(Ty) = Aut(Ty), and the latter is the wreath product S, wrSs, of order (2!)3 - 3! = 48,
acting imprimitively with degree 6 on X.

To determine H we note that there are just two vertices of (Q4, namely v = 0000 and
w = 1111, adjacent in Qf) to every vertex in X. It follows that H acts transitively on
{v,w}, so |H : H,| = 2. It is easy to see that H, can be identified with S, in its natural
action on V (permuting coordinates), and H with Sy x S;. Now H acts faithfully on X,
so |[H| = |H| = 48 = |G| and hence H & H = (. As a corollary, we have proved that
the octahedral group and the groups S, wr S5 and S; x S5 are mutually isomorphic; indeed,
Theorem 2.1 gives Aut(Q3) = & = Sy wr Ss, so they are all isomorphic to &s.

Example 3.3. Our examples so far have all satisfied H = G, but the following example
shows that this is not always the case. Let n =7, with

X = {1100000, 1010000, 0110000, 0001100, 0001010, 0001001}.

The coloured graph I' generated by X has edges of colours 2 and 4, with I'y = 2K3 and T’y
its complement K33 (a complete bipartite graph). Thus G = Aut(I') = S;wr Ss, a group of
order (3!)?- 2! = 72 acting imprimitively with degree 6 on X. One can easily check that 0 is
the only vertex in ()7 adjacent in QgQ) to every vertex in X, so H stabilises 0 and is therefore
a subgroup of S; in its natural action on V. Now it is easy to see that H = H = S5 x Ss,
acting intransitively on X, so H < G.

(This example is simply a variation on the Whitney-Jung Theorem on the isomorphism of
line graphs [9].)

With each subset X C V we associate its orbit Orb(X) := {X? | 0 € &,}. The Orbit-

Stabiliser Theorem gives
2"n!

]
In Example 3.1, for instance, Orb(X) contains 24 triples, each consisting of two vertices
adjacent in ()3 together with a vertex adjacent to neither of them. We will refer to two

|Orb (X))
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subsets in the same orbit, and their corresponding coloured complete subgraphs, as internally
tsomorphic, or similar.

A subset X C V and its corresponding subgraph I' are called automorphic if (H,X)
is a transitive permutation group, in which case Orb(X) is an automorphic orbit. We are
interested in classifying all automorphic subsets and subgraphs of @, up to (internal) iso-
morphism.

If X is an automorphic subset, then each I'; is a regular graph; we let k; denote its valency,
and define ky = 1. We also define £ = |X| and b = |Orb(X)|. The distance-transitivity of
@, implies that the following parameters are well-defined:

7 is the number of subsets in Orb(X) containing a given vertex in V' (such as 0);

A; is the number of subsets in Orb(X) containing a given pair u, v of elements of X such
that the edge {u,v} has colour i.

We now list some basic properties of these parameters; the proofs are simple exercises.

Proposition 3.1. If X is an automorphic set in @), then

(1) 1<k<2m;

(2) b=2"n!/|H|;

(3) k divides |H|,|H| and 2"n!;

(4) ko ki = k;

(5) wvr = bk;

(6) kir= (7;) Xi- (Hint: show that bkk; = 2" (7;) A; and then apply (5).) dJ

One can enumerate the orbits of &£, on subsets of V' using cycle indices. The cycle index of
any permutation group G is the polynomial

where o .
z(g) = a{'a? ... aym

if g has 4 cycles of each length k. Replacing each variable z; in 2(G) with 1 + ¢, we obtain

a generating function f(x) = ¥, a;z", where qg; is the number of orbits of G on i-element

subsets.

Example 3.4. The cycle index of &3, acting on V = Z3 is

1
z(&) = 4—8(3:213 + 62122 + 8x2x2 + 1325 + 8wymg + 1222),

SO
f(@) =142+ 32° + 32% + 62" + 32° + 32° + 2" + 25,

and & has f(1) — f(0) = 21 orbits on the nonempty subsets of V. By detailed examination,

one finds that only 10 of these 21 orbits are automorphic. In the following table, the set X in

row ¢ is an automorphic set from the i-th orbit; the elements of X are decimal representations

of binary expansions.
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# | k X blr| k| ke | ks | A | Ao| As | |H||IH|| |G
11 {0} gl1|olofojo|lo|lo| 1] 6|1
2 |2 {01} |12|3]1]|0|o|1|0]|0]| 2| 4]?2
3|2 {03} |12|3]0o|1|0o|lo|1]0]| 2| 4]?2
4|2 {07y |4 l1|o]o|1]|oflo|1] 2 |12]2
53 {035 |8 |3lo0o|2|o|lo|2|0]| 6| 6|6
64| {0145} |6 |3|1|2|0|2]|1]|0] 8 | 8 |38
714 {0167} |6 (3|1 |1 |1|1]|1]3] 88|38
84| {0356} |2 ]1/0|3|0|0|1|0]|24]24]24
916[{023457}| 4|32 |2|1]|2|2]3]|12]|12]12
10 | 8 1% 11331 |1|1]1]48]|48 |48

Table 3.1: Automorphic orbits of &3

A natural problem is to find all possible sizes k£ of automorphic subsets of (),, for each n.
Proposition 3.1 shows that £ < 2™ and k | 2"n!, but are these simple necessary conditions also
sufficient? The answer is (trivially) yes for n < 2, and Table 3.1 confirms this for n = 3. For
n = 4 the conditions are satisfied by k£ = 1,2, 3,4,6,8,12,16, and one can find a k-element
automorphic subset in each case.

We will show that for n > 5 these conditions are insufficient. Our first counterexamples
are based on simple combinatorial principles.

Proposition 3.2. Let k = 2" — 2", where 5 < n < 14. Then k < 2" and k divides 2"n!,
but there is no automorphic subset X C V with k elements.

Proof. Clearly k < 2", and k = 2" * - 15 divides 2"n! for all n > 5. If X is a k-element
subset of V, then the subgraph I'(X) must have a vertex of valency less than the valency n
of @, for otherwise the connectedness of @, gives X = V. If X is automorphic then I'(X)
is regular, of valency less than n, so each of the k vertices in X is adjacent in @),, to a vertex
v € V' \ X. Now there are 2"~* such vertices v, each of valency n, so by counting edges we
get k < n2"* and hence n > 15, against our hypothesis. O

In Section 4 we will use more advanced methods to construct infinitely many counterexamples.

4. Group-theoretic analysis of automorphic subsets

The mapping ¢ : & — S,, 0 = (g, f) = g is an epimorphism, with ker(¢) = V. For
any H < &,, let H denote @(H). The Orbit-Stabiliser Theorem implies that if X is an
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automorphic subset and H = Stab(X), then
k=|X[=[H: Hyl
where H, is the subgroup of H fixing some z € X.
Lemma 4.1. k= |H: H,|- |[HNV]|.
Proof. Using ker(p|yz) = HNV and ker(¢|g,) = {0} C V, we have

H| _ |H|-[ker(eln)| _ |H]

k=|H:H,| = = — = —
|He|  |Hy| - [ker(pln,)|  [Hal

|ker(o|g)| = |H: Hy| - |[HNV|. O

Corollary 4.2. If k is odd then HNV = {0} and k = |H : H,|.

Proof. Since H NV is a subgroup of V, its order is a power of 2, so Lemma 4.1 gives
|[HN V| =1 and the result follows. O

The subgroup S,, of &, is the stabiliser of 0, and as such it is conjugate in &, to the stabiliser
of any other vertex, so we have a conjugacy class of subgroups isomorphic to S,. There are
2"=1 subgroups in this conjugacy class, each fixing two antipodal vertices. We are interested
in whether this is the only conjugacy class of subgroups isomorphic to S,.

Example 4.1. When n = 2 we have & = D,, the dihedral group of order 8 (the symmetry
group of a square). This has five subgroups isomorphic to S;, forming three conjugacy
classes: one consists of the two stabilisers of vertices, and the other two consist of one and
two subgroups of V.

Example 4.2. If n = 3 then, in addition to the conjugacy class of vertex-stabilisers, £5 has
a second class of subgroups isomorphic to S;5. If we regard ()3 as the vertices and edges of a
regular solid in R3, then its symmetry group is £3 & Sy x Sy (see Example 3.2). The rotation
group, corresponding to Sy, acts naturally on the four diagonals (edges in Q;@), so it has
four subgroups isomorphic to Ss3, each preserving a diagonal. These subgroups have orbits of
length 2 and 6 on V, so they are not vertex-stabilisers.

Example 4.3. The above example generalises to higher dimensions, though the concept of a
rotation is no longer valid. The stabiliser in &, of the vertex 0 consists of the automorphisms
o = (g,0) with g € S,,. If v denotes the vector 11...1 at maximum distance n from 0, then
the elements of &, preserving the diagonal {0,v} are those of the form ¢ = (g, f) where
g € S, and f € {0,v}, forming a subgroup isomorphic to S,, X Ss; those o with g even and
f =0, or with g odd and f = v, form a subgroup isomorphic to S,, which does not stabilise
any vector. We have therefore found two conjugacy classes of subgroups of £, isomorphic to
Sp; in each case, the normaliser of such a subgroup is S,, X Ss, so the number of subgroups
in each conjugacy class is equal to the index |£, : S, x Sp| =271,

Theorem 4.3. If n =3 orn > 5, then the subgroups described in Example 4.3 are the only
subgroups S < &, isomorphic to S,. If n = 4 then there are 16 additional subgroups S = Sy,
each satisfying |SNV| = 4.
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Proof. We will use the cohomology of groups; [2] or [12, 1.16-1.17] are good references.

Let n > 3 and let S be any subgroup of &£, isomorphic to S,,. Now V' is a normal subgroup
of £,, s0 SNV is a normal subgroup of S; being a subgroup of V, it has order a power of 2.
For n # 4 the only proper normal subgroups of S,, are the alternating group A, (of order
n!/2) and the trivial subgroup, while S, also has a normal Klein four-group K, so either
ISNV|=1or SNV = K with n = 4.

Suppose first that [S N V| = 1. Now V is normal in &,, so SV is a subgroup of &,
of order |S| - [V|/|S N V]| = 2"n!; thus SV = &,, so S is a complement for V in &,. In
general, conjugacy classes of complements for abelian normal subgroups can be studied using
cohomology theory, as follows.

Any group G, acting by automorphisms on an abelian group A (so that A is a G-module)
determines a sequence of cohomology groups H*(G, A), i > 1; in particular, if GA denotes the
semi-direct product (split extension) of A by G, then the conjugacy classes of complements
for A in GA are in one-to-one correspondence with the elements of H'(G, A) (see [2, IV.2.3]
or [12,1.17.3(a)]). In our case, this implies that the conjugacy classes of complements for V' in
&, = S,V correspond to the elements of H*(S,,V). Now S, acts on V = Z% by conjugation,
permuting the n standard basis vectors, so that V' is the natural permutation module for S,
over Z,. The permutation module M for any transitive group G is isomorphic to the induced
G-module N¢ obtained from the trivial 1-dimensional module N for a point-stabiliser in G,
so in our case V = Z5", where Z, is a trivial S,_;-module. Shapiro’s Lemma [2, I11.6.2] states
that if a G-module A is the induced module B¢ obtained from some H-module B, where
H < @G, then H'(G,A) & H'(H,B). (Strictly speaking, Shapiro’s Lemma applies to co-
induced modules, but for finite groups G these are the same as induced modules [2, IT1.5.9].)
In our case, we therefore have H'(S,,V) = H'(S,_1,Z,). If B is a trivial H-module, then
H'(H, B) = Hom (H, B), the group of homomorphisms H — B [2, IIL.1, Exercise 2]. For
n > 3 there are just two homomorphisms S, ; — Zs, so |H'(S,,V)| = 2 and there are
just two conjugacy classes of complements for V' in &,; these are the classes described in
Example 4.3, and we have shown that for n # 4 they provide the only subgroups of &,
isomorphic to S,.

There remains the case where n =4 and SNV is a Klein four-group normal in S. Then
0(S) =2 SV/V 2 5/(SNV) 2 S3 50 SV = ¢ }(T) where T is a subgroup of S, isomorphic
to S3. There are four such subgroups 7' < S;, namely the stabilisers of 1,2, 3 and 4, so there
are four corresponding subgroups SV < &4, each a semi-direct product 7'V of V by 7. Since
T acts on V by fixing one of its four standard basis vectors and permuting the other three
as Ss, it follows that TV = Sy X (SywrS3) = Sy x Sy x S, (see Example 3.2 for the last
isomorphism). This group has four subgroups isomorphic to S;: in addition to the direct
factor Sy, three others may be obtained from this one by multiplying the elements of Sy \ A4
by one of the three involutions in the factor Sy x S, (this is an adaptation of the construction
in Example 4.3). Since each such subgroup S is contained in a unique subgroup SV =TV,
we obtain 16 subgroups S with |S N V| = 4; each has normaliser SV, of index 4 in &, so
there are four groups in each of four conjugacy classes of such subgroups. U

The combinatorial interpretation of the extra subgroups for n = 4 is that there are four ways
of expressing V as a direct sum V; @ V5 of 1- and 3-dimensional subspaces by choosing a
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partition 1 + 3 = 4 of its standard basis vectors; in each case there is a subgroup & x &;
of &, preserving this decomposition, with & (the symmetry group Sy wr Sz = Sy x Sy of a
cube) containing two subgroups isomorphic to Sy, and two others obtained by composing the
elements of S, \ A4 with the non-identity element of & =2 5.

Lemma 4.4. If G is a subgroup of &, with an orbit of odd length in V, then G fizes a vertex
velV.

Proof. For each subset X of V, define v(X) = >,cxz € V. Each g € S,, acts on V as a
linear transformation, so

v(X9) = Z 79 = (Z x)g =v(X)’.

TeX reX
Each f € V acts on V' as a translation x — = + f, so

v(X) if |X| is even,

v X+ =Y @+H=(X)+[X|f=
zeX zeX v(X)+ f if | X| is odd.

Thus if |X| is odd and o = (g, f) € &, then v(X?) = v(X)?, and in particular if o leaves
X invariant then it fixes v(X). It follows that if a subgroup G of &, has an orbit X of odd
length then v(X) is fixed by G. O

(This result is a discrete analogue of the classical result that any finite group of isometries of
R” has a fixed-point: this is the centroid, or average, of the points in some orbit, found by
adding these points and then dividing by the number of them. In our case, with coefficients
in Zs rather than R, we need the number of points to be odd in order that this averaging

can take place. The proof we have given is an adaptation of an earlier proof shown to us by
M. Muzychuk.)

Theorem 4.5. (Kerr’s bound) If X is an automorphic subset of Q, and |X| is odd, then

Xl (LnJ>

Proof. Let G be the stabiliser of X in &,. Since | X| is odd, Lemma 4.4 implies that G has
a fixed-point in V. By replacing G' with a suitable conjugate we may assume that this point
is 0. Then G is contained in the stabiliser S,, of 0, so X, which is an orbit of GG, is contained
in an orbit of S,, on V. These orbits are the sets M; of i-element subsets of N,, for 0 < i < n,
with |M;| = (7;), so | X | is bounded above by the greatest of these binomial coefficients, which

corresponds to i = |n/2]. O

This result was stated, though without a complete proof, in [14]. For example, it implies
that there are no automorphic k-element subsets of @), for

a. n=>5, k=15,

b. n=6, k=45,

c. n=7,k=45,63,105,
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and so on, even though these values of n and k satisfy the conditions & < 2" and k | 2"n!
given by Proposition 3.1.
In the remainder of Section 4 we use more advanced results on finite groups to improve
on Kerr’s non-existence result. For background details, see [6, 16, 19].
For each prime p the affine general linear group AGL1(p) consists of the affine transfor-
mations
O=04p: T ar+b

of the field Z,, where a,b € Z, and a # 0. This is a doubly transitive permutation group of
degree p and order p(p—1). If K is any subgroup of the multiplicative group Z; = Z, \ {0},
then

H={o,|ac K, beZ,}

is a transitive group of degree p and order kp, where k = |K| divides p — 1; such groups H,
called affine groups, are in a sense the most ‘typical’ transitive groups of prime degree. More
precisely, we have:

Burnside’s Theorem. Fach transitive permutation group of prime degree is an affine group
or 1s doubly transitive.

(Note that AGL;(p) is affine and doubly transitive.) This theorem was first proved by
Burnside in [3] (see also [4]), using representation theory. The most elementary proof is in
[7] which, together with the editorial remarks in [20], gives further references and historical
details.

Proposition 4.6. Let p be any prime distinct from 11 and 23, and not of the form (¢% —
1)/(q—1) where q is a prime-power and d € N, d > 2. Then the only transitive permutation
groups of degree p are S,, A, and affine groups.

Proof. One consequence of the classification of finite simple groups is that the doubly tran-
sitive finite permutation groups are all known [5, 6]. Among them, the only groups of prime
degree p are the affine group AGL,(p), the symmetric group Sy, the alternating group A,,
three groups PSL,(11), My and Moz of degrees p = 11,11 and 23 respectively, and certain
subgroups of PT'Ly(q) where p = (¢¢ — 1)/(g — 1) for some prime-power ¢ and d > 2. (Full
details of these groups can be found in the sources given above.) Burnside’s Theorem now
completes the proof. O

Lemma 4.7. There are infinitely many primes p satisfying the hypotheses of Proposition 4.6.

Proof. The following argument is based on Cameron’s outline proof of his Proposition 7.2
in [5]. The Prime Number Theorem [10, §1.8 and Ch. XXII] states that the number 7(z) of

primes n < z satisfies
x

7(x)

We shall show that the set of primes of the form n = (¢¢ — 1)/(qg — 1), where ¢ = p°® is a
prime-power and d > 2, is significantly less dense than the set of all primes. (In fact, it is
not known whether there are infinitely many primes of this form.)

~ as T — +00.
log x
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First suppose that d = 2, so n = ¢+ 1. If n is prime then ¢ must be even, so p = 2 and
n=2°41. If n <z then e < log, z, so the number of such primes n < z is O(logx). (These
are the Fermat primes, of which only five are known to exist.)

Now suppose that d > 3. Then n > ¢%' > p?, so the number of primes p for which
n <zxis

_o( YN _ (VT
For any such p, we have (d—1)e < log,n = O(log ), so the number of pairs d, e giving n < x
is O((logz)?). (In fact, it is O(logz - loglog x), but the weaker estimate is sufficient here.) It
follows that the number of integers n < x of the form (¢¢ — 1)/(¢ — 1) with d > 3 is

o( Ve ) - O((logz)?) = O(V/z log ).

log x
Taking the cases d = 2 and d > 3 together, we see that the number of primes n < z of
the form (¢¢ —1)/(¢ — 1) is O(y/z log ). Since
vz logz  (logz)?
7(x) N7
‘most’ primes (and in particular, infinitely many) do not have the form (¢ — 1)/(¢ — 1), so
the result immediately follows. U

—0 as x — +o0,

The smallest odd primes satisfying the hypotheses of Proposition 4.6 are 19,29,37, ...

Theorem 4.8. There are infinitely many pairs of integers (k,n) such that 1 < k < 2™ and
k divides 2"n!, but there is no automorphic subset X C @, with | X| = k.

Proof. If there is an automorphic subset X where |X| = k is odd, then by Corollary 4.2 there
are subgroups H, < H < S,, with |I:I : ITLC| = k. It is therefore sufficient to produce infinitely
many pairs (k,n), satisfying the hypotheses of the theorem, for which & is odd and S, has
no pair of subgroups S > T with |S: T| = k.

By Proposition 4.6 and Lemma 4.7, there are infinitely many odd primes n such that
the only transitive groups of degree n are S,,, A, and affine groups. Given such a prime n,
choose an odd integer m such that 2 < m < (n — 1)/2 and m does not divide n — 1. For
instance, we can take m = (n — 3)/2 or (n — 5)/2 as n = 1 or 3 mod (4). We then define
k =mmn, so k is odd, k | 2"n! and k < 2".

Now suppose that T'< S < S, with |S : T'| = k, so that both m and n divide |S|. Since
n is prime, S contains an n-cycle and is therefore a transitive group of degree n. It cannot
be a subgroup of AGL;(n), since this has order n(n — 1) which is not divisible by m; thus
S=S,o0r A, and |T| =nl/k = (n—1)!/m or n!/2k = (n — 1)!/2m respectively.

In either case, n does not divide |T'|, so T is intransitive. If 7" has an orbit of length n—1,
then T is contained in SN S,_; (= S,_1 or A,_1) with index m; since 2 < m < n — 1, this is
impossible by the simplicity of A,_;. Hence T' < SN (S, x S,_,) for some r =2,3,...,n—2,

so|S:T|> (:f) > (72’), which is impossible since m < (n —1)/2. O

The smallest value of n provided by the proof of Theorem 4.8 is n = 19: here one can take
m =5 or 7, so that (Q19 contains no automorphic subsets of size £k = 95 or 133.
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5. Cwatsets and hypergraphs

Motivated by definitions introduced in [18], we now restrict our attention to automorphic
subsets containing 0.

Sherman and Wattenberg [18] define a subset C' C V' to be a cwatset (closed with a
twist) if, for each ¢ € C, there exists g € S,, such that C' +¢ = CY. For example, any additive
subgroup C' < V is a cwatset: take g = e (the identity permutation) for each ¢ € C. Since
each g € S, fixes 0, and since c+ ¢ = 0 for each ¢ € V| it is clear that each nonempty cwatset
contains 0.

Just as we defined the projection ¢ : &, — S, by 0 = (g,f) — g, we now define a
projection 7 : €, = V by 0 = (g, f) — f. Note that 0 =09+ f = f, so we have w(c) = 07.
Although ¢ is a homomorphism, 7 is not.

Proposition 5.1. A nonempty subset C CV is a cwatset if and only if it is the image w(G)
of some subgroup G < &, under the projection 7 : &, =V, o+ 0°.

For the proof, which is elementary, see Proposition 6 of [18].

Theorem 5.2. A nonempty subset C' C V s a cwatset if and only if C is an automorphic
subset of V' containing 0.

Proof. We have to show that C is a cwatset if and only if it is the orbit of 0 under some
subgroup G < &,. Since 7(c) = 0° we have 7(G) = 0¢ for each G < &, so the result is just
a restatement of Proposition 5.1. Il

Corollary 5.3. If C is a nonempty cwatset and H = Stab(C) then |C| = |H : Hy| =
|H|/|Hol-

Proof. This is a direct application of the Orbit-Stabiliser Theorem. O

While the results proved earlier for automorphic subsets remain valid for cwatsets, we can
use the special nature of cwatsets to deduce extra information. Recall from Section 3 that
subsets X; and X5 of V' are similar if X7 = X, for some o € £,. We regard the classification
of cwatsets up to similarity as the main problem of the theory of cwatsets. As defined in
Section 3, the invariant b = b(C) of a cwatset C is just the number of subsets of V' similar
to C. Similarly, Theorem 5.2 implies that the invariant » = r(C') defined in Section 3 is the
number of cwatsets similar to C.

Proposition 5.4. (a) Two cwatsets Cy and Cy are similar if and only if C{ = Cy for some
gEeS,.

(b) The number r of cwatsets similar to a k-element cwatset C' is given by

bk nl

7”:2—n— |H0|
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Proof. The proof of (a) follows easily from the definition of a cwatset, and then the Orbit-
Stabiliser Theorem, applied to S,, gives r = n!/|Hy|. Alternatively, one can deduce this
formula from r = bk /2" (Proposition 3.1(5)), using b = |&, : H| and k = |H : Hy. O

The origins of cwatsets go back to statistics (see the references in [18] and especially [11]),
where they are used for the construction of confidence intervals for the mean or median of
certain random variables. Roughly speaking, statisticians need subsets X of V' = P(N,)
(sets of samples) which are ‘smooth’ in the sense that certain parameters of each element of
X are equal. The existence of a subgroup of &, acting transitively on X guarantees this. For
technical reasons one also wants ) € X, so cwatsets satisfy the required conditions. This raises
two intriguing questions. Although the concept of a cwatset is sufficient, is it also a necessary
condition for this statistical smoothness? Secondly, although we have taken an essentially
group-theoretic approach to cwatsets, can they be axiomatised purely combinatorially, thus
leading to an alternative approach which might give additional insight into their properties
and applications? For a discussion of such an approach, see Section 7 of [13].

We will now consider the simplest class of cwatsets, namely the subgroups of V', called
group cwatsets, or simply groups.

For any cwatset C, we define d = d(C) =min{i | 1 <i < k and k; # 0}.

Proposition 5.5. (a) If C is a group cwatset of order k then k = 2* for somel =0,1,...,n.
(b) The number of group cwatsets of order 2! in 'V is

np (2" =12 - 1)L (2 )
[1]2 @2t —1)...(2-1)

(c) If C is a k-element group cwatset, then k < 2 d4+1,

Proof. Part (a) is an application of Lagrange’s Theorem. In (b), the numerator counts all
bases for such group cwatsets C' (sets of [ linearly independent vectors) in the n-dimensional
vector space V, and the denominator counts those bases generating a particular C. In (c),
the parameter d is simply the minimum size of any nonempty subset in C' C V = P(N,);
if Ay, Ay are distinct subsets of Ny_; (and thus elements of V') then the cosets C' A A; and
C A Ay of C in V are distinct, so |P(Ng_1)| < |V : C| giving k < 2n/2¢71 = gn-d+l, O

For each prime-power g, the Gaussian coefficient [’} ; is the number of [-dimensional subspaces
in an n-dimensional vector space over the field of order g; it is given by replacing each 2 with
¢ in the formula in Proposition 5.5(b) (see [15], for instance). Taking the limit as ¢ — 1, we
obtain the binomial coefficient (’l’)

In coding theory, a binary code of length n is a nonempty subset of V', the vectors being
regarded as codewords; a binary linear code is a subgroup of V', that is, a group cwatset. In
this case, the parameter d is the minimum distance of C', and the bound in Proposition 5.5(c)
is known as the Singleton bound. The codes attaining this bound form an interesting class,
the simplest example of which is given in row 8 of Table 3.1: the vertex set of a tetrahedron
contained in Q3. Thus automorphic sets and cwatsets form a generalisation of linear codes, a
theory where algebraic arguments have been successfully combined with purely combinatorial
reasoning. We finish our remarks on codes with an example.
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Example 5.1. If n = 4 then by Proposition 5.5(b) there are 15-7/3-1 = 35 group cwatsets
C of order k¥ = 4. Now Proposition 5.5(c) gives d(C) < 3, but in fact this bound is not
attained; this is shown by the description of the 35 cwatsets in following table. Each row
represents the similarity class of some group cwatset C' in V' = P(Ny). The numbers k; can
be interpreted as the coefficients of the weight enumerator polynomial of C'.

# C ki | ko | ks | ks r d
1| {0,{1},{2},{1,2}} 2111010 6 1
2 | {0,{1},{2,3},{1,2,3}} 1|1]1]0 12 1
3{0,{1},{2,3,4},{1,2,3,4}} | 1 |0 | 1 |1 4 1
4 | {0,{1,2},{2,3},{1,3}} 013010 3 2
5| {0,{1,2},{3,4},{1,2,3,4}} | 0 | 2|0 | 1 4 2
6 | {0,{1,2},{1,3,4},{2,3,4}} | 0 | 1 | 2] 0 6 2
Total: 35

Table 5.1: Group cwatsets in ()4 with k& = 4 elements

Here we introduce yet another notion which is suitable for studying cwatsets. A hyper-
graph is a pair H = (Q, F), where Q is a (finite) set and F is a family of subsets of Q2. The set
2, which we will identify with IN,,, is the set of vertices of H, while elements of F are called
hyperedges. Since 2 is fixed, H is uniquely determined by E, and we can write H = H(FE);
if no misunderstanding can arise, we will use the same notation for H and E, regarding H
as a set of subsets of IN,,. In particular, each cwatset determines a hypergraph: according to
the notation introduced in Section 3, it has k; hyperedges of size i, where ¢+ = 0,...,n, and
Yo ki = k. (See Table 5.1 for some examples.)

Two hypergraphs #; = H(E,) and Ho = H(E2) on 2 = N, are isomorphic if there is
some g € S, such that A € E; if and only if A9 € E,. It follows from Proposition 5.4(a)
that two cwatsets C; and Cy are similar if and only if the corresponding hypergraphs #(C')
and H(Cs) are isomorphic. Thus the classification of cwatsets up to similarity is equivalent
to the classification of hypergraphs up to isomorphism.

As mentioned in the Introduction, we aim to answer two questions posed in [18]. We
have (in effect) already answered the second question: if £ < 2™ and k divides 2"n!, does
(2, necessarily contain cwatsets of order £ 7 The results in Section 4 give a negative answer,
both for this and for the more general question about the existence of automorphic subsets.
The first question posed in [18] involves further concepts, which we will discuss in the next
section.
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6. Cyclic cwatsets

In addition to group cwatsets, Sherman and Wattenberg [18] defined another simple class of
cwatsets as follows: take any g € S, and f € V, and let C = C(g, f) = {f1, fo,---} CV,
where f; = f and f; = (fi_1)? + f for [ > 2. They proved that C is a cwatset, called a cyclic
cwatset.

Example 6.1. We repeat their example for n = 3: taking g = (1,2,3) € S3 and f =100 €
V', we have C'((1,2,3),100) = {100, 110,111,011, 001, 000}.

The following result is the analogue of Theorem 5.2 for the special case of cyclic cwatsets.

Proposition 6.1. A subset C' C V s a cyclic cwatset if and only if there is a cyclic subgroup
S < &, such that C = 0°.

Proof. Given a cyclic cwatset C = C(g, f) = {f1, fo,--.}, let S be the cyclic subgroup (o)
of &, generated by 0 = (g, f). Then f; = f =07, and f; = f7, for alll > 2, so C is the
orbit of S containing 0. Conversely, if S = (o) for some o = (g, f) € &,, then 0° is the cyclic
cwatset C(g, f). O

For instance, the cyclic cwatset C(g, f) considered in Example 6.1 is the orbit of the cyclic
subgroup S < &; generated by the element o = (g, f), where g = (1,2, 3) and f = 100.

Proposition 6.2. If S = (o) < &, and (o) = g € Sy, then |S| = m or 2m where m is the
order of g.

Proof. The epimorphism ¢ : &, — Sy, (g, f) + g restricts to an epimorphism ¢[s : S — S,
where S = (g) has order m. Now ker(p|s) = SNV is a cyclic subgroup of V, so it has order
e =1 or 2, and hence |S| = ¢|S| = m or 2m. O

Corollary 6.3. (Sherman and Wattenberg [18]) Let C be a cyclic cwatset C(g, f), and let
k =|C|. Then k divides 2m, where m is the order of g.

Proof. The proof of Proposition 6.1 implies that C' is an orbit of S = (o), where 0 = (g, f).
The result now follows from Corollary 5.3 and Proposition 6.2. O

Example 6.2. We look for the smallest dimension of a noncyclic cwatset. One can check
that all cwatsets of dimension n < 3 are cyclic. Now let n = 4 and

C = {0000, 0010, 0011, 0100, 0110, 0111, 1000, 1001, 1011, 1100, 1101, 1111}

The graph I'y = I';(C) generated by C' is shown in Figure 6.1.
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0010 0011

1100 1101

Figure 6.1

We note the following properties:

e T'; is a hexagonal prism, so Aut(['y) & Dg x Sy where Dg denotes the dihedral group of
order 12, the symmetry group of a hexagon; in fact Aut(I';) < Aut(T;) for i = 2,3, 4, so if
' =T(C) then G = Aut(I') = Aut(T'y) = Dg x Sy, a group of order 24.

e The group H = Stab(C) contains an automorphism ¢ = (e, 0100) with no fixed points.

e The ‘upper’ and ‘lower’ subgraphs of I'y, lying in the hyperplanes v, = 0 and v, = 1 of
(4, are two hexagons transposed by o.

e The six vertices of each hexagon form an automorphic subset of its hyperplane Qs, iso-
morphic to the subset in line 9 of Table 3.1 (see also Example 6.1)

e H2H~G=Dgx9,.

Thus C is the orbit of H on V containing 0000, so it is a cwatset. However, Dg X Sy has
no cyclic subgroups of order 12 (its elements have orders 1,2, 3 and 6), so C' is not the orbit
of any cyclic subgroup of &, and is therefore not a cyclic cwatset.

This cwatset C' was found by J. Kerr [14], using a computer. Our input is the proof that
C is a non-cyclic cwatset, and the visual interpretation. We will return to this example later.

Example 6.3. Here we consider another example from [14]. Again let n = 4, but now let

C = {0000,0011,0110,1111, 1100, 1001}.

To illustrate various techniques presented in this paper, we will treat this example in two
different ways. In particular, we will show that C' is cyclic.
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1001 0110
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0011 1111

P

Figure 6.2

First we consider the hypergraph #(C) = {0, {3, 4}, {2,3},{1,2, 3,4}, {1,2},{1,4}}. The
vertices of weight 2 generate a quadrilateral, with automorphism group Hy = D, of order 8.
It follows that

n! 2"y 2"n!

k=6, r=—=3, b=—=8 and |H|=

= 48.
| F i

Figure 6.2 shows the graph I'y = I';(C), and we see from this that |G| = 48. Note that
|Hy| = 8, and hence |H| = 48.

Secondly, we consider the subset X = {0101,0110,0011,1010,1001, 1100} in Example 3.2.
If f = 0101 € V then the automorphism o = (e, f) of Q4 satisfies X = X + f = C, so
X and C' are similar and have the same group-theoretic properties. In particular, H is the
symmetry group S; X Sy of an octahedron. This has a cyclic subgroup C3 x Sy = Cg which
permutes the six vertices regularly, so C is a cyclic cwatset (correcting the claim in [14]). In

fact, C' = C(g, f') where g = (1,3,2)(4) € Sy and f' =0011 € V.

So far, we have met two classes of cwatsets: group cwatsets and cyclic cwatsets. Further
examples can be constructed using the direct sum operation @. First, we give a simple
illustration.

Example 6.4. Let C; = {0000,0100} and Cy = {0000, 0010,0011, 1011, 1001,1000}. Clearly
these are both 4-dimensional cwatsets, contained in the subspaces v; = v3 = v4 = 0and v, =0
of V. If C is the cwatset in Example 6.2, then every ¢ € C has a unique representation of
the form ¢ = ¢; + 9, where ¢; € C;. We therefore write C' = C @ (', the direct sum of C
and Cs.

We now give the general definition of a direct sum of cwatsets. If I is any d-element subset
of N,,, then by choosing a bijection N; — I one can embed Q)4 in @),; its vertices form the
subspace P(I) of V (= P(N,,)) defined by the equations v; = 0 for all 7 ¢ I. In particular,
any d-dimensional cwatset C' C Q4 can be embedded in @, in this way.
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More generally, if N, = I; U - -- U I,, is a partition of N,, into nonempty disjoint subsets
I; with d; elements, then we have a decomposition

V=PL)® - ®P(ln)

of V as a direct sum of d;-dimensional subspaces P(1;), each defined by setting coordinates
from N, \ 1; equal to 0. If C; is a d;-dimensional cwatset for each i = 1,..., m, we can regard
it as a subset of P(I;), and we can form the direct sum

C=0C®---80C,CYV,

consisting of the elements ¢ = ¢; + - - - + ¢, where ¢; € (}; this representation of ¢ is unique,
so |C| = |C1]...|Cnl|. For instance, the decomposition C' = C; & C, in Example 6.4 arises
from using the partition Ny = {2} U {1, 3,4} to embed @; and Q3 in Q.

A more restricted definition of the direct sum of cwatsets was introduced by Sherman
and Wattenberg in [18], taking I, ..., I, to be consecutive subintervals of N,,; by permuting
coordinates, they then obtain the decompositions considered above.

Proposition 6.4. Any direct sum of cwatsets is a cwatset.

Proof. Let C = C1 & --- & C,, C V, as above. Since each C; is a cwatset it contains
the zero element of ()4, so C contains their sum, the zero vector of V. The embeddings of
Qdys-- -5 Qa, In Q, embed &y, ...,E,, as subgroups which generate their direct product in
En. Let H; = Stab(C;) < &y, and let H = Hy x --- x H,, < &,. Since each C; is an orbit of
H;, it follows that C' is an orbit of H, so it is an automorphic subset and hence a cwatset by
Theorem 5.2. ]

In Examples 6.2 and 6.4 we considered a cwatset which is neither a group nor cyclic, though
it is a direct sum of two cyclic cwatsets (one of which is also a group). Since any direct sum
of group cwatsets is another group cwatset, the most general direct sum of group and cyclic
cwatsets has the form

C=A0Ci®---®Cp,

where A is a group and each C;j is a cyclic cwatset. Sherman and Wattenberg [18, p. 113],
ask whether every cwatset has this form. To the best of our knowledge, this question is still
open. We will give a negative answer, showing that there are infinitely many cwatsets which
are not direct sums of groups and cyclic cwatsets.

Theorem 6.5. Suppose that w and n are integers such that 0 < w < n, and there are distinct
odd primes p and q dividing (z) with p + q¢ > n. Then there exists a cwatset C C Q,, with

(Z) elements, which is not a direct sum of groups and cyclic cwatsets.

Proof. Let B be the set of all vectors of weight w in @),,, where w and n satisfy the hypotheses
of the theorem, and let C' = B + b for some b € B. Since B is an orbit of S, (the stabiliser
of 0in &,), C is an orbit of a conjugate of S, (the stabiliser of b), so C' is an automorphic
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subset; since C' contains b+ b = 0, it is a cwatset by Theorem 5.2. We have |C| = |B| = (Z),
divisible by p and gq.

Now suppose that C has a direct sum decomposition C = A Cy & --- & C,,, where A
is a group and each Cj is a cyclic cwatset. Then |C| = |A| - []; |C;|, with |A| a power of 2,
so there must exist ¢ and j such that p divides |C;| and ¢ divides |C}|. If i = j then since
C; is cyclic, &, contains an element of order divisible by pg, and hence its epimorphic image
S, contains commuting elements g and h of orders p and ¢. If ¢ # j then the definition
of the direct sum implies that C; and C; are isomorphic to cwatsets in (4 and ). where
d + e < n; since C; and Cj; are cyclic, Sq and S, contain elements of orders p and ¢, so S,
(which contains Sy x S,) again contains commuting elements g and h of orders p and ¢. In
either of these two cases, g must have a cycle of length p on either the fixed-points or the
g-cycles of h in N, giving p + g < n or pg < n respectively. Both of these contradict our
hypothesis that p 4+ ¢ > n, so C does not have a decomposition of the given form. Il

Example 6.5. The integers n = 6 and w = 2 satisfy the conditions of Theorem 6.5, with
p =3 and ¢ = 5, so there is a 6-dimensional counterexample with |C| = (g) = 15; similarly
one can take n =7 and w = 2, with p=3, ¢ =7 and |C| = 21.

Lemma 6.6. There are infinitely many pairs of integers w and n which satisfy the hypotheses
of Theorem 6.5.

Proof. There are infinitely many primes p. By Bertrand’s Postulate (a theorem of Chebyshev,
see [10, §22.3 and notes for Ch. XXII]), if p > 3 there is a prime ¢ such that p < ¢ < 2p — 2.
Thus there exist infinitely many pairs of primes p and ¢ such that 2 < p < ¢ < 2p—1. Taking
w = p—1and n = g we then have p+ ¢ > n. Since max (w,n—w) =max(p—1,g—p+1) <
p < ¢ < n we have pq | (3), so w and n satisfy the required hypotheses. Il

This, together with Theorem 6.5, yields infinitely many cwatsets C' giving negative answers
to Sherman and Wattenberg’s question. For instance, one can take p =5 and ¢ = 7, giving
w =4 and n =7, so that |C| = 35.
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