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Rational Summation of Rational Functions
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Abstract. In this article we characterize rational functions for which their indefi-
nite sum is again a rational function.

1. Introduction

Let k£ be a field of characteristic 0 and let r be a rational function in one variable over k.
Pick an integer jo such that r(j) is defined for j > jy, and consider

x

Yz = Zr(])a x >j0'

J=jo

If there exists a rational function y such that y(z) = y, for all x > jy, we say that r
is rationally summable. Notice that r is rationally summable if and only if the difference
equation

Ay=ylr+1) —y(z) =r() (1)

has a solution in the field k(x) of rational functions in one variable. Of course, this is
equivalent to requiring the equation

Vt=t(z) -tz —1) =r(z)

to have a rational solution.
We consider the question, suggested by Alberto Griinbaum, of finding necessary and
sufficient conditions for rational summability. This is accomplished in Theorems 10 and 11.
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The rational summation problem has been studied by Abramov ([1]), Paule ([2] and
[3]), Pirastu and Strehl ([4] and [5]). These authors give algorithms, based on either the
Gosper-Petkovsek representation or the shift saturated representation of a rational function,
to decide whether a rational function is rationally summable or not. In the affirmative case,
a rational solution to (1) is found. Otherwise, the output is a rational function, closest to a
solution of (1) in some suitable sense.

Example 1. Let r be a polynomial of degree d in k[z]. We can write 7(n) = 3.0, a; ™),
where a; € k. Define y(n) = ., a; (Zfl) Then Ay = r.
In view of the division algorithm and Example 1, we assume from now on that r = p/q, with

p, ¢ polynomials, and deg(p) < deg(q).

2. Characterizing rational summability

We define the forward shift operator, denoted by o. That is,
(oy)(n) = y(n +1).

Definition 2. Let f be a polynomial. The dispersion of f is

disp f = max{|l|: | €Z, ged(f,o'f) #1}
= max{|a—b| : a,b €k areroots of f and a — b € Z}

where k is an algebraic closure of k. If disp f = 0, then we say that f is shift-free.
The concept of dispersion was first introduced by Abramov ([1]).

Lemma 3. Let y € k(z) and 0 # Ay = g, with P and ) not necessarily coprime polynomi-
als. Then disp @@ > 0.

Proof. Say y = f/g in lowest terms (that is, f and g are relatively prime polynomials). Let a
be a root of g (in an algebraic closure of k), and ¢ a nonnegative integer such that g(a—t) =0,
but g(a + 1) and g(a —t — 1) are nonzero. We claim that Q(a) = Q(a —t — 1) = 0. Thus
disp @ > t+1 > 0. To see this, look at

P f_g9@)fl@+1)—g(z+1)f(=z)

Q g g(z)g(z +1)
The numbers ¢ and a —t —1 are roots of g(z)g(x+1), but not of g(z) f(z+1) —g(z+1) f(z),
so the factors (z —a), (x —a+t+1) of g(x)g(x + 1) could not have been cancelled. O

Now we investigate the rational summability of functions of the form
-1 ’;
(3
r= g — pi,q € klx
1=0 0'71(] ot [ ]

where the numerators and denominators are not necessarily coprime.
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Lemma 4. Let r = Zi;é pi/o"tq. Consider the rational function

-1
*:Zazpi :Zl (1)ng

i ¢ q

Then r 1s rationally summable if and only if r* is rationally summable.

=l

Proof. First notice that » — o~'r* is rationally summable. To see this write:

-1
—1_ % Di il Di
r—o r = —) — 0 _— .
> (o (%)

Call s; = p;/o~"q. The telescoping identity

1—i—1 l—i—1
s — ol = E (0775 —o 77 1sy) E os;

J=0

l l

implies that each summand of » —o~'r* is rationally summable, so that » —o~‘r* is rationally
summable as well.

Pick a rational function s such that » — o~ !r* = As. If r is rationally summable, then
there exists a rational function y with Ay = r. This means that A(y — s) = o lr* and
hence r* = Ac'(y — s). Conversely, if 7* is rationally summable, then there exists a ratlonal

function u such that Au = r*. Hence r = A(s — o~'u). O

Proposition 5. Let r = Eé;é pi/o7q, and suppose q is shift-free. Then r is rationally
summable if and only if po + op1 + -+ + c"'pi_1 = 0. In that case, the rational function

-2 i (z—}—l)p

Z z+1

1=0

satisfies Ay =r.

Proof. Assume that r is rationally summable. By Lemma 4, so is r , whose denominator is
shift-free. From Lemma 3 we conclude that r* = 0, so that Z 00 ‘p; = 0. The converse
follows by direct verification of the formula for y. Il

Notice that if we do not assume ¢ to be shift-free, the previous condition is still sufficient,
but no longer necessary, as the following example shows.

Example 6. Let

—(z+1)(z —2) N -3
(z+Dz(z—1)(z-2) z(x-—1)(z—-2)(xz—3)

The condition of Proposition 5 is not satisfied; however,

r=A (ﬂc(x— 11)(33—2) " x(xl_ 1)> .

r(r) =
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The goal now is to break up any given r € k(z) into summands of the form of Proposition 5.
If f is a polynomial, we denote:

7= F 7 ) ().
Definition 7. Two polynomials f and g are called shift-coprime if
ged(o'f,g) =1 Vi€ Z.

Take r = p/q written in lowest terms, with ¢ monic. We want to have control over the factors
of ¢ that differ by an integer. To achieve that, we are going to replace ¢ by a polynomial

Q = [Q1]*- - - [@Q]t such that:
1. ¢ divides Q.
2. The polynomials (); are all shift-free and pairwise shift-coprime.

Following Peter Paule, such a @) is called a shift-saturated multiple of q. For any polynomial,
there is a unique shift-saturated multiple of minimal degree. An algorithm for calculating
it was proposed in [2]. Unfortunately, the RISC report is not available, and the algorithm
does not appear in the published version ([3]). Paule’s algorithm has been implemented in
Mathematica by Christian Mallinger, and it is from the comments in the code (kindly sent to
me by Peter Paule) that the reference to [2] was obtained. Another algorithm can be found
in [4].

Example 8. Let
q=x(z—10)®(x — 17)(z — 25)*(x — 1/2)(z — 3/2)(x — 1/3)(x — 4/3)*(z — 1/5).
The polynomials
Q= [z —1/5][(z — 1/2)(z — 1/3)* 2]
and
Q' = [z - 1/5][((z — 1/2)(z — 1/3))*PP[(z — 1/7)2"°}*
are shift-saturated multiples of ¢. Among all such multiples, Q has minimal degree.

Now suppose 7 = p/q. Compute Q = [Q1]*---[Q;]* a shift-saturation of q. Then r = H/Q
for H = pQ/q. Since the @; are pairwise shift-coprime, we can write (using the extended

ged):

|

Lo
r= -
21l

for some polynomials h;.

Proposition 9. Anr as above is rationally summable if and only if all h;/[Q;]t are rationally
summable.
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Proof. The following claim gives a slightly stronger statement than what we need for an
induction on [.
Let R = Ry + Ry € k(z); R; = pi/qi, with ¢, and g, shift coprime. Then R is rationally
summable if and only if Ry and Ry are rationally summable.
The “if” implication is trivial. For the “only if”, we assume that R; are in lowest terms
(cancellation does not effect shift-coprimeness). Let y = f/g, with f, g coprime, such that
Ay = R. Then g = ABC, where A = [[(z — ), over the a that are the roots of ¢ (in k)
and of some integer shift of ¢;; analogously for B and ¢, and C' is the leftover. Notice that
A, B, C are polynomials over k, because A = ged(g, ([¢1]=2)Y), for t = disp ¢1, and N a
sufficiently large integer. Likewise for B.

As ¢ and ¢, are shift coprime, A, B and C are pairwise relatively prime. Then we can
write (using the extended ged) y = % + % + % , for some polynomials A, B;, C1, and then

Al B]_ C\11
0=Ay—R=(A——-R A— —R A—.
Y ( A 1) + ( B 2) + e
So we have three rational functions that add up to zero, and whose denominators are pairwise
coprime. Taking into account that the denominators of the first two summands are noncon-
stant (since the ¢; are nonconstant) we see that this cannot happen unless those rational
functions are zero. In particular Ry = A4l and R, = AZL, O

Theorem 10. Let r = 22:1 hi/[Q:]¢ in the form of Proposition 9. In particular, the Q; are
shift free, so that the 07 Q; are relatively prime. Using the extended ged, write

1 i—1
T‘ZE E 7[);&2
O'_ .

i=1 j=0 ¢

Then r is rational summable if and only if pio +opi1+ -+ 0" 'pi; 1 =0 for all i. In that
case, the rational function:

I -2 Zt O_jf(t+1) o
. =0 DPiyj
Y= Z Z ‘7_(t+1)Qi
satisfies Ay =r.

Proof. Propositions 5 and 9. O

3. Remarks

e Given r = p/q, it is possible (even symbolically) to find a shift free multiple of ¢, so that
multiplying and dividing by an adequate polynomial, Proposition 5 applies. However, the
denominator in such a representation of r will have much larger degree than the one we get
by using Theorem 10.

e If we know the complete partial fraction decomposition of our rational function, the previous
results can be restated as follows:
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Theorem 11. Suppose we are given:

Anij
T(x) = ZZZ (33 _ a;l,_ i)j

where oy, — aum, s not an integer for n # m and the A,;; are (not necessarily nonzero)
constants. Then r is rational summable if and only if > ;_ Ani; = 0 for all j,n. In that
case, the rational function

ZZZ oo T;”

n=1 j=1 t=1
satisfies Ay =r.
Proof. The difficult implication is a straightforward consequence of Propositions 5 and 9. [
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