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Abstract. A new, “spherical harmonics free” proof of mixed-volume inequalities
due to Schneider and to Goodey and Groemer, is presented.

Introduction

The Alexandrov-Fenchel inequality implies that if K7 and K5 are two convex bodies in
R", and if for 4,5 = 1,2, Vi; = V(K,, K;, B, ..., B) is the mixed volume of K;, K; with
n — 2 copies of the Euclidean unit ball B, then V4 > Vi;Vas. Moreover, it was proved by
Schneider and by Goodey and Groemer that one can control the difference V2 — Vi1Vas
in the following way :

(1) If Ky = B, Vi =V, =V (K4, B,...,B), By is the Steiner ball of K (see the definitions
below) and v, is the volume of B then

n+1 2

V2, Vi1 > ————w hi, — hg, ) do,

1 nVvVll Z n(n_ 1) n/S\nl( Ki Bl)

where o denotes the surface measure on the sphere S,,_1, and for a convex body K, hx
denotes its support function.

(2) If the Steiner balls of K1, Ko are the same, then

n+1 2
V122 —Vi1Va2 > mvn/s (hKl - th) do.

n—1
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The results (1) and (2) may be interpreted as stability results in specific cases of the
Alexandrov-Fenchel inequality. Using them one can derive further inequalities between
intrinsic volumes of different orders of a given convex body.

The proofs in [7] and [1] make use of spherical harmonics and of a representation of mixed
volumes which involves the action of differential operators on support functions of convex
bodies. We present here a new proof which is “spherical harmonics free” and which has a
more geometric flavor. This proof is based on a variational argument involving Santald’s
inequality. We believe that this variational method may prove useful for the treatment of
other problems as well.

In fact we prove the following more general result (which also admits a proof using spherical
harmonics):

(3) Let Ky,...,K, be convex bodies in R” and for 1 < i < p, let V; = V(K;,B,...,B),
h; = hg, and let B; be the Steiner ball of K;. Then the quadratic form ¢ : R” — R defined
by q(s1,.-.,8p) = Z?,j:l a;js;sj, where

n+1
aij = ViVi —vaVig — 0 Un/s (h; = hp,)(hj = hp;) do,

is non-negative.

The paper is organized as follows: after stating some lemmas, we give a new proof of (1),
and then extend it to prove (3), of which (2) is an easy consequence.

Notations. Let K be a convex body in R", endowed with its canonical scalar product
(, ). We denote by hx the support function of K: for all z € R, hx (x) = supyeg(z,y). If
C' is a Borel subset of R", we denote by |C| its Lebesgue measure (its volume). We denote
by S,_1 the unit sphere of the Euclidean space R", endowed with its surface measure o.
If zo € K, the polar body K** of K with respect to xy is defined by

K* ={y € R";(y — zg,z — x¢) < 1 for every z € K}.

If 0 is in the interior of K, we write K* = K*°. We define (see [8]) the Steiner point za of
a convex body A in R™ by the identity

/ (z,u) ha(x)do(z) = vy (za,u)
s

n—1

for every u € R"™. The Steiner ball B(A) of the convex body A is

B(A) =24+ #E,

where w(A), the mean width of A, is defined by

w(A) = i/s ha(z) do(z).

NUp,

n—1
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The Santald point of K is the unique point o € K with the property that x( is the center
of mass of K*®0. It is well-known that this point is characterized by the fact that

|K*0| = min |K*?] .
zeK

To say that xo = 0 means that for every u € R", one has

/*(x,u>da::O.

We define now the volume product P(K) of K by

P(K) = min [K|-|[K*| = |K| K*|.
rzEeR™

By a celebrated theorem of Santal6 (see [6], [4]), P(K) < P(B) for all K.
Lemma 1. Let K, A be two convex bodies with 0 in their interiors. Let
C={(y,t) e R" xR ; 1+tha(x)—(z,y) >0 forall z € K*},

and
D={teR; (y,t) € C for somey € R"}.
Define F : C'— R by

1
F) = [ ) g

Then there exists a > 0 satisfying | — a,+00[C D and such that for each t > —a, the
equation F(y,t) = min,,, yec F(w,t) has a unique solution y(t). Moreover, the mapping
t—y(t) is C* on |— a,+o0l.

Proof. Observe first that C' is an open convex subset of R" xR, that 0 € D and that F is C*°
and strictly convex on C' (because u — (14u)~™"! is strictly convex on |—1,+oc[ ). By the
proof of Lemma 2 below, for ¢ > 0 and (y, ) € C, one has F(y,t) = [(K+tA)*Y|. By [6] (see
also Theorem 9 in [5] for a more precise statement and a complete proof), F(y,t) — +oo
when (y,t) — 0C with fixed ¢ > 0. Thus by the strict convexity of F, for every ¢ > 0
there exists a unique y(t) such that (y(t),t) € C and F(y(t),t) = mingy,, nec F(y,t).
Thus (V,F)(y(t),t) = 0. Define G : C — R" by G(y,t) = (V,F)(y,t), and let D,G be
the differential of G at y € R". In the canonical basis of R", the matrix of D,G(y,t) is
H,F(y,t), the Hessian matrix of F' as a function of y at (y,t). For any (y,t) € C, one has

(z, w)?

x+ (L+tha(z) = (z,9))"*

(w, HyF (y,t)w) = (n+1)(n + 2) 5 dz > 0 for w € R™\ {0},

which implies det(H,F(y,t)) > 0. Hence from the implicit functions theorem it follows
that for ¢ > 0, the unique solution y(t) of the equation G(y,t) = 0 is C* on ]0, +o0|.
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We apply the same theorem in a neighbourhood of (y(0),0) to get that for some a > 0
and some neighbourhood U of y(0) such that Ux]— a,a[C C, there exists a C*° function
z :|— a,a[ — U such that G(z(t),t) = 0. Since y(t) is the unique solution of F(y(t),t) =
miny., ec F(y,t) for t > 0, it follows that y(t) = 2(t) for t > 0. Setting y(t) = 2(t)
for t € |—a,0[, y(t) becomes a C* function on |— a,+oc[. Moreover, again by the strict
convexity of F' on C, the equality G(y(t),t) = 0 implies that one has also F(y(t),t)) =
min,., ec F(y,t) for t €]—a,0[. O

Lemma 2. Let K, A be two convex bodies with 0 in their interiors, let

E ={t € R; hg +thy is convex and positive on R™ \ {0}},
and suppose that 0 is the Santalo point of K. Fort € E, denote by K +tA the convex body
with support function hx + thy. Then, there exist yi,ys € R™ such that for allt € E, the
Santald point y(t) of K +tA satisfies

y(t) = ty; + t2ys + t?e(t) where e(t) — 0 whent — 0,t € E.

Moreover y, is defined by the equality

/ (z,uyha(z)dr = (z,u)(z,y1)dx  for all u € R".
. K

Proof. With the notations of Lemma 1, one has E C D. For t € E and (y,t) € C one has

1

(K + tA)*Y| :/K* T e dz.

As a matter of fact, using polar coordinates,

n—1

1 R r
o (L+ tha(@) — (@, y) dm:/s (/0 A= G &

n—1

1 r G 1 1
“n /Sn_l[(1 +r(tha(0) — (9,y>)) }0 o= n /Sn_l (hx(0) + tha(0) — (0, y))" d0

1 / 1
=— df = [(K +tA)*Y].
nJs, , (hgtea—y)(0))"

By Lemma 1, y(t) is C* on a neighbourhood of 0 (and actually also on E), hence Taylor’s
formula of order 2 ensures the existence of the points y; and yo and of the function &(t).
Now, y(t) is characterized by the identity:

(z,u)

/K* (1 + tha(z) — (z,y(t)))"+?

dx = 0 for every u € R"
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(this is exactly the fact that y(t) is the center of mass of (K +tA4)*¥®*)). Using the expansion
of y(t), we get for every u € R",

_ (x,u)
0= /Iv{* (1 + thA(.’B) — <:1;7ty1 + 2y, + t2€(t)>)”+2

dr

:/*(x,u) dm—(n—|—2)t/*<$,u>(hA($)_<~’Uayl>)dﬂ7

+ t*(n + 2)/ ) ((ya2, ) + nT%(hA(x) — (z, yl))2) (z,u) dr + t%(t).
Thus y; satisfies

/ *<.’13,’U,>hA($) do = / *(:L‘,u><a:,y1) dr for all u € R"

(clearly, only one point satisfies this equality). O

Lemma 3. With the assumptions and the notations of Lemma 2, let

n(n

—1
K +tA| = |K|+nV,_11(K,A) t+ T)V"‘“(K’ AVt +t2n(t)

be the mized volume expansion of |K + tA|, where n(t) — 0 whent — 0, ¢t > 0. Then
P(K +tA) = P(K) + cit + cat® + t%(t)

with e(t) — 0 whent — 0, t > 0 and

c1 =n|K*\Vpo11(K,A) — (n+1)| K| ha(z)dz,
K*

—1
ey = MY ey (kA +

5 (n+1)(n+2)|K| (hA(.T)—<.’L',y1>)2d$

2 K-

*

(4 1)V 11(K, A) / hoa(x) do.

Proof. With the notations of Lemmas 1 and 2, for some functions € such that () — 0
when t — 0, ¢ > 0, one has

*y(t)| — 1
(K™= | @ =@y

:/ 1 .
K (U (ha(@) = (@)t = (@, 92)02 + 126(0) ™
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=|K*—(n+ l)t/ (ha(x) — (z,11)) dz

*

n+ 2

~(n+ 1)t2/ * ((:c,y2> -

Since by hypothesis [,..(z,u) dz = 0 for every u € R", we get

(ha(z) — (z, y1>)2) dz + t26(t).

(K +1A4)*0)] = |K*| ~ (n + Dt/ ha(z) dz
K*

(ha(z) —={z,y1))%dz + t2e(t).

*

2
The result follows. U

N (n+1)(n+2)t2/

The proof of the following lemma is easy.

Lemma 4. Let K1 and Ky be convex bodies in R™, with Steiner balls B1 and By and
Steiner points zx, and zk,. Then

/S (hi, () = hp, (2)) (hk, (z) — hp, (z)) do(z)

n—1

- /S (hacs (2) = (2160, 2) (haca (&) = (2165, ) dor ()

n—1

—%(/Snlhm (z) da(x)) (/S

The following result was originally proved by Schneider [7] and by Goodey and Groemer [1].

hx, (z) da(a:)).

n—1

Proposition 5. Let A be a convex body with Steiner ball B4. Then

R = 0Va(A) 2 s [ (ha(e) = haa () *do(a).

n—1

where V1(A) = V(A,B,...,B) and V5(A) = V(A,A, B,...,B) (B is the Euclidean unit
ball).

Proof. Let h =ha, V1 = V1(A) and Vo = V5(A4). By Santald’s inequality, we know that
P(B +tA) < P(B) =v2 for every t > 0.
Since

n|B|V1:vn/ h(z) da(x):(n+1)|B|/Bh(:c) dz,

S'n.—l
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it follows from Lemma 3 that

m0 D),y U0, [ (@) = @)ae < i+ 1)V [ nio) e

or

n(n—1) n+1
7']’1"/ n
9 Up V2 + 9 v /S

(h(z) — (2, y1))2do(z) < nVi / h(z) do(z).

Snfl

n—1

Observe that when K = B in Lemma 2, y; is the Steiner point of A.
1

Since Vi = — / h(z) do, the preceding inequality is equivalent to
n.Js

n—1

nve - My s ”;1%/5 (h(x) — (2, 10))?do (z).

n—1
It follows from Lemma 4 that

(n—1)

nZVl2 _n 5 vn, Va

> ([ () sy @) dot@) + —( [ ha)do(a)?)

n—1 n/Un Snfl

or equivalently

n(n—1)
2

(V2 ~ua¥a) > "L, /S (h(z) = ha)(2))’do (). 0

n—1

We want now to generalize the method we used to more than one convex body. For this
we use the so-called Minkowski differences or “érosions”. By the same arguments as in
the proofs of Lemmas 2 and 3, one gets :

Lemma 6. Let K1,...,K, be convezr bodies in R™ with support functions hq,..., hy,, and
let »
E={s=(s1,...,8p) ERP; hp+ Zsihi is convex on R™ and positive on R™ \ {0} }.
=1

For s € E, let K(s) := B+ Y ©_, 5,K; be the convex body whose support function is
hg + Y ¢_, sihi. Then for s € E, the Santald point y(s) of K(s) satisfies
P

y(s) = Zsiyi + Z 8iSjYij + (Zsf)a(s),

1<i,j<p i=1

where e(s) — 0 when s — 0, s € E, and for 1 < i < p, y; is the Steiner point of K; and
yij € R", 1 <14,j < p. Moreover for s € E,
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P
|K(s)*y(s)‘: |B| — (n + I)Zsi/ hi(z) dz
i=1 7B

USRI i /B (hs(z) = (@, 5) (hy (&) = (w,93)) dar+ (3 s7)e

2 =
,J=1
where e(s) — 0 when s - 0, s € E.
Lemma 7. With the notations of Lemma 6, assume that each K; has a C? boundary

with positive curvature ; then there exists a > 0 such that |— a, +oo[pC E. Moreover, if
Vi=V(K;,B,...,B) and V;; =V (K;,K;,B,...,B), one has for all s € |— a, +oo[’,

P
B+ s1K1+ ...+ s,K,| = |B| —I—nZVsZ Z Vijsisj + (Zs?) e(s),

=1 7,7=1 =1
where e(s) — 0 when s — 0.

Proof. For the first fact, see [8], Theorem 2.5.4. The second part follows from the extension
of mixed volumes to n-tuples of differences of support functions (see [8], Section 5.2, or
another proof in [3]). O

Now using Lemmas 6 and 7 and the same calculations as in Lemma 3, observing that
v, Vi = (n+ Vv, 5 hi(z) dz, we get

Lemma 8. With the notations of Lemma 7

(K(S ) = Z Cij8iS; + (Z 5%)6(3)

i,5=1
where e(s) — 0 when s — 0 and for 1 <i,j <p,

nin—1)
2

(n+1)(n+2)
2

Cij = v Vij +

on /B (ha(@) — () (B3 () — (,35) dx

—n(n+ 1)Vi/th(w) dx.

Theorem. Let K4,...,K, be conver bodies in R" and let B be the Fuclidean ball. For
1< ’[,,_] Sp, let V; = V(Ki,B,...,B), ‘/ij = V(Ki,Kj,B,...,B), hz = hK“ let Bi be the
Steiner ball of K; and

=ViV; —v --—ni—l_lv i(x) — hp, (7 i(r) — hp,(x))do(x
iy = ViV = Vi = s [ ((0) = b () 1y (@) = B () dr (o)

n—1
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Then the quadratic form q : R? — R defined by q(s1,...,sp) = f,j=1 @;jS;S; is non-
negative.

Proof. We approximate K; by bodies having C? boundaries with positive curvature. Using
homogeneity, we may assume, due to Lemma 7, that h B+Zf:1 s;h; is the support function
of a convex body K(s) for all s = (s1,...,5p) € [—1,1]P. Then by Santalé’s inequality,
P(K(s)) < P(B). The result follows now from Lemmas 4 and 8, with the same proof as in
Proposition 5 (we needed here the fact that g(s) > 0 for s in a neighborhood of 0, this is
what necessitated the introduction of Lemma 7, that is the extension of Steiner’s formula
to negative values of s;). O

Remark. Note that Proposition 5 is a corollary of the theorem, since the latter implies
ai; > 0.

Corollary 9. ([7], [1]) If the Steiner points and the mean widths of K1 and K are the

same, then
n+1

nn=1) sn,(hl(x) — ha(z)) do(x).

1

2Vig = Vi1 — Voo >

Hence, for any K1 and K5 one has

n+1

VE = Vi Vg > ——————
12 11V22 = n(n—l)

cho2wn/Q (hi, (2) — b, (2))2do (z)

where K1, Ko are homothetic copies of K1, Ko, with w(f(l) = w(K}) =1landzg = zg,.

Proof. The second assertion is an easy consequence of the first one (see [7] and [1]). To
prove the first assertion, one may assume that B is the common Steiner ball of K; and
K5. Then, with p = 2 in the theorem,

_2_,U _ n+1_v xT) — Tr) — o\x
= 2 = Via = 2w, [ (@) = D(hale) ~ 1 do (o).

n—1

From the non-negativity of the quadratic form we get a11 + ass > 2\/a11022 > 2a12, which
is the first assertion. O
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