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Abstract. We extend the extended Thas-Walker construction by introducing the
concept “flocklet” of the Klein quadric. Thus we have a tool to construct spreads
with asymplecticly complemented regulization.
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1. Introduction

Independently, M. Walker [15] and J. A. Thas (unpublished) discovered that to each flock of
an elliptic or hyperbolic quadric or of a quadratic cone of PG(3, ¢q) a spread of PG(3,¢) and,
consequently, a (finite) translation plane is constructable; compare [1, p. 8], [12, p. 441] or
the surveys [3], [13, p.95-96], [14]. The Thas-Walker construction remains valid for flocks of
PG(3,K) with arbitrary commutative field K; cf. [6, p. 146-149]. In [7] the author used flocks
of PG(3,R) to construct spreads representing topological translation planes. The extended
Thas-Walker construction exhibited in [8], hereafter called [ETW], starts with a flockoid of
a Lie quadric of PG(4,K) and yields also a spread; a Lie quadric L4 is a hyperquadric of a
Pappian projective 4-space such that L, has no vertex and contains a line; a collection D of
conics contained in a Lie quadric Ly of a Pappian projective 4-space is called a flockoid of
Ly, if the following two conditions hold:

(FD1) For each generatrix g of L, there exists exactly one conic k € D with g Nk # (.
(FD2) There are at most two improper conics in D.

In view of the present article, the paper [ETW] deals with the first extension of the Thas-
Walker construction.
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Let IT = (P, L) be a Pappian projective 3-space with point set P and line set £. As we
deal with spreads composed of reguli and at most two exceptional lines, so we standardize
by defining: A proper requlus R is the set of lines meeting three mutually skew lines; the
directrices of R form the complementary (opposite) regulus R¢; if z € £, then {z} is called
an improper requlus; {z}¢ = {z}.

Definition 1. Let S be a spread of 11 and let ¥ be a collection of (proper or improper) reguli
contained in §. We call X2 a regulization of S, if the following hold:

(RZ1) Each line of S belongs either to exactly one regqulus of ¥ or to all requli of ¥.
(RZ2) There are at most two improper reguli in X.

The set U(R|R € X) =: 8% is named complementary congruence of S with respect to ¥. If

¢, is an elliptic linear congruence of lines, then X is called an elliptic requlization of S. If S5,
belongs to a linear complex of lines, then we say that ¥ is a symplecticly complemented regu-
lization, otherwise we speak of an asymplecticly complemented regulization. If S5 belongs to
a single linear complex of lines, then X is called a unisymplecticly complemented requlization.

The papers [ETW], [9], and [10] are devoted to the construction and investigation of spreads
with symplecticly complemented regulization. For the real projective 3-space PG(3,R) an
example of a non-regular spread with an asymplecticly complemented regulization is given
in [6, (4.1.7)].

Let A be the well-known Klein mapping of £ onto the Klein quadric Hs which is embedded
into a projective 5-space II5 with point set Ps; cf. e.g. [4] and the translation table in [2,
p.29-30]. A Latin <Greek> plane on Hj is the A-image of a star of lines <a ruled plane>. If
R is a proper or improper regulus, then A(R) is an irreducible conic or a point. For obvious
reasons, we speak of proper or improper conics. If § is a spread of I with the unisymplecticly
complemented regulization €2, then {A\(R°)|R € Q} is a flockoid of a uniquely determined
Lie quadric L, with Ly C Hj; cf. [ETW, Prop. 1].

Recall the extended Thas-Walker construction [ETW, Prop. 2]: If D is a flockoid of a Lie
quadric Ly with Ly C Hj, then U(A7'(k))¢|k € D) is a spread of IT with the regulization
{(A7(k))¢|k € D} which is either unisymplecticly complemented or elliptic.

In Proposition 1 we start with a spread S of Il admitting an asymplecticly complemented
regulization’ T’ and investigate the set {A(R¢)|R € T'} =: C of conics. In the proof of
Proposition 1 we shall find that C is a “flocklet” of the Klein quadric Hs; we define the
concept “flocklet”, as follows.

Definition 2. A collection B of (proper or improper) conics contained in the Klein quadric
Hj is called a flocklet <flockling> of Hs, if the following two conditions hold:
(FT1)<(FG1)> For each Latin < Greek> plane v on Hy there ezists exactly one conic k € B
with y N k # 0.

(FT2)<=(FG2)> There are at most two improper conics in B.

Depending on the intersection M of the carrier planes of the participating proper conics we
distinguish three types of flocklets:

!The assumption in Proposition 1 is more comprehensive; cf. Remark 1 and Definition 3.
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1) M is empty (unbundled flocklet)
2) M consists of exactly one point (star flocklet)
3) M is a line (linear flocklet)?>.
In the same way unbundled flocklings, star flocklings, and linear flocklings are defined.

The second extension of the Thas-Walker construction starts with a flocklet A of the
Klein quadric Hs. Then U((A\7!(k))¢|k € A) is a spread of II admitting the regulization
{(A\"1(k))¢|k € A} which is either asymplecticly complemented or unisymplecticly comple-
mented or elliptic; cf. Proposition 2 and Remark 1. Each flockoid of a Lie quadric L, can be
interpreted as flocklet and also as flockling of a Klein quadric Hs containing L4; cf. Remark 3.
Each flock of an elliptic quadric @, can be interpreted as flocklet and also as flockling of a
Klein quadric Hy containing Q).; cf. Remark 4. Note, that a flock of a quadric @) covers @,
but a flocklet of a Klein quadric Hjy is no covering of Hs.

In Section 3 we introduce Thas-Walker plane sets of Latin type to get further properties
of the second extension of the Thas-Walker construction.

2. The second extension of the Thas-Walker construction

Definition 3. Let X be an arbitrary requlization of a spread S of II. We call

i(%) == # (ﬂ R) (1)

REX

the intersection number of ¥. If i(X) = 0, then we say that the regulization ¥ is of intersection
number 0.

By [6, Remark 2.4], i(X) € {0,1,2}. From [6, Remark 2.5 and 2.6] we deduce:

Remark 1. A requlization ¥ is of intersection number 0 if, and only if, X is asymplecticly
complemented or unisymplecticly complemented or elliptic.

In the following remark we sum up further properties of a regulization of intersection number
0; for (1) and (2) see [6, Remark 2.8 resp. 2.9], the statements (3) and (4) are evident.

Remark 2. Let § be a spread of 11 admitting the regulization X of intersection number 0.
Then following statements hold true:

(1) Each element of S belongs to exactly one regulus of X.

(2) The complementary congruence S5, = U(R¢|R € X) of S with respect to 3 is also a spread
of 1I.

(3) {R¢|R € X} =: 3¢ is a regulization of 8% with i(X¢) = 0.

(4) The complementary congruence (8%)%. of 8§ with respect to X¢ coincides with S; in
symbols:

(5%)5: = S. (2)

2Tn contrast to a linear flock, a linear flocklet is not uniquely determined by the common line of the carrier
planes of the participating proper conics.
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The rest of this section generalizes [ETW, Section 3].

Proposition 1. Let S be a spread of 11 and let I' be a requlization of S with intersection
number 0. Then {\(R¢)|R € T'} =: C is a flocklet of the Klein quadric Hs.

Proof. Clearly, (RZ2) implies (FT2). By Remark 2 (3), Sg is a spread admitting the reguli-
zation I'® with 4(I'°) = 0; we can say that C is the A\-image of the regulization I'°. Let n be
an arbitrary Latin plane on Hs, then A\~!(n) is a star of lines with a vertex, say Y. A conic
k of C has a non-empty intersection with 7 if, and only if, the regulus A\ ' (k) of I'¢ contains
a line incident with Y. In the spread S} there exists exactly one line, say sy, incident with
Y. Because of i(I'*) = 0 and Remark 2 (1), sy belongs to exactly one regulus, say RS, of ['°.
Now Y € sy € RS € I'“ implies A(sy) € N A(RS,) and A(R$,) € C, i.e., the conic A(R$) is
the only element of C having at least one common point with 7. O

Remark 3. Let D be a flockoid of the Lie quadric Ly with Ly C Hs. Then D s a flocklet
and also a flockling of Hs.

Proof. Let £ be an arbitrary (Latin or Greek) plane on Hs. Then £ Nspan L, is always a
line, say x. Because of (FD1)3, there exists exactly one conic k, € D with k, N z # () and
thus &k, N & # 0. O

By [ETW, Remark 4], each Lie quadric of PG(4, K) is embeddable into the Klein quadric Hj
of PG(5,K), hence each flockoid of a Lie quadric can be interpreted as flocklet and also as
flockling of a suitable Klein quadric.

Remark 4. Let F be a flock of the elliptic quadric Q. with Q. C Hs. Then F is a flocklet
and also as flockling of Hs.

Proof. Let £ be an arbitrary (Latin or Greek) plane on Hs. Then £ Nspan Q. is always a
point, say X. In the flock F there exists exactly one conic kx with X € kx. O

By [ETW, Remark 9], each elliptic quadric of PG(3,K) is embeddable into a Lie quadric
of PG(4,K) which in turn is embeddable into the Klein quadric of PG(5,K), by [ETW,
Remark 4]. Hence each elliptic flock can be interpreted as flocklet and also as flockling of a
suitable Klein quadric.

Before formulating and proving the converse of Proposition 1 in Proposition 2 we ex-
pose two lemmas about flocklets. The statements of the following Lemma 1 are immediate
consequences of (FT1) and the properties of a plane section of a quadric.

Lemma 1. Let A be a flocklet of the Klein quadric Hs.

(i) Then different conics of A are disjoint.

(ii) If {P1} and { P} are different improper conics of A, then P,V Py ¢ Hs.

(iii) If n is a Latin plane on Hs and k € A satisfies k N\n # 0, then n # span k, n N span k
is no line, and #(kNn) = 1.

Lemma 2. Let A be a flocklet of the Klein quadric Hs and let ki be a proper conic of A. If
ky € A\ {k1}, then there exists no tangent cone Cy of Hs with ki U ko C Cy.

3Compare [ETW, Definition 3].
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Proof. Let C, be a tangent cone of Hs with a vertex, say V', and with k; C C,. In span C4
there exists a 3-dimensional subspace, say S3, with V' ¢ S3. Now C, N S3 =: @y, is a
hyperbolic quadric and the Latin planes on Cj4 give rise to a regulus Rg, on Q. By kT
we denote the image of k; under the projection from centre V onto S3. The proper conic
kT C @Qp meets each line of the regulus R, in exactly one point. Consequently, £, and each
Latin plane on Cy4 have exactly one common point and, because of (FT1), C; cannot contain
further (proper or improper) conics of A. O

Proposition 2. If A is a flocklet of the Klein quadric Hs, then

U((ATH(R)) |k € A) =: T, (A) (3)
15 a spread of I1 admitting the regulization

{(ATH (k) [k € A} =: T, (A) (4)
and Trg,(A) is of intersection number 0.

Proof. Let X be an arbitrary point of IT and denote the star of lines with vertex X by L[ X].
In Tg,(A) there exists a line incident with X if, and only if, there is a conic kx € A such that
X is on aline h of the regulus A\™!(kx), i.e., h € L[X]NA"(kx) and thus A(h) € A(L[X])Nkx.
As M(L[X]) is a Latin plane on Hj, so there is a unique kx € A with kx N A(L[X]) # 0, by
(FT1) . Hence there is a unique regulus in Tg,(A), namely (A~!(kx))¢, which contains a line
incident with X. Consequently, T, (A) is a spread.

Next we prove the validity of (RZ1) and (RZ2) for Tg,(A). Clearly, (FT2) implies (RZ2).
Instead of (RZ1) we show even more:

(RZ1*) Each line of Tg,(.A) belongs to exactly one requlus of Tg,(A).
Let b € Tg,(A) be arbitrary. We assume, to the contrary,

be ()\_l(kl))c N (A_l(kz))c, {kl, kg} - .A, kl ?é kQ. (5)

In the case that both (A71(k{))¢ and (A~ (k2))¢ are improper reguli with (A~1(%;))¢ = {¢;} and
gi € L, (i =1,2), the lines g; and g, are skew and (5) yields the absurdity b € {g,}N{g.} = 0.
Hence we may assume, without loss of generality, that (A\~!(k1))¢ is a proper regulus. Each
line of (A7 (k1)) U (A\™"(k2)) meets b. Thus k; U ks is contained in the tangent cone of Hj at
the point A(b), a contradiction to Lemma 2. Thus Tg,(A) is a regulization and the validity
of (RZ1*) implies i(Tg,(A)) = 0. O

The process of gaining a spread from a flocklet via formula (3) is called second extension of
the Thas-Walker construction.
We combine Proposition 1 and 2 and get

Corollary 1. To each spread of PG(3,K) admitting a regulization of intersection number 0
there corresponds a flocklet of the Klein quadric of PG(5,K), and vice versa.
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3. Thas-Walker plane sets of latin type

Let @ be an elliptic or hyperbolic quadric of PG(3,K) with bijective polarity mg. A point
set T' of PG(3,K) is called a Thas- Walker point set with respect to @, if {mo(X)N Q | X €
T A mo(X)NQ # 0} is a flock of Q. Let Ly be a Lie quadric of PG(4, K) with polarity my. A
line set T, of PG(4, K) is called a Thas-Walker line set with respect to Ly, if {my(X)N Ly | X €
Ty N 74(X) N Ly # 0} is a flockoid of Ly. In [7, Section 2.2], we considered a Thas-Walker
point set T" with respect to an elliptic quadric E C Hj and got the A-image of a spread 7 by
projecting T from the line e = 7m5(span E), with 75 the polarity defined by the Klein quadric
Hs, into Hs, in symbols A(7) = U((XV e)N H;| X € T). In [ETW, Section 4], we took
a Thas-Walker line set 7, with respect to a Lie quadric L, C Hj and got the A-image of a
spread 7; by projecting T, from the point Z = 7s(span L4) into the Klein quadric Hs, in
symbols A\(7;) = U((zV Z) N Hs|z € T;). In the present section we continue this process:
we shall take a Thas-Walker plane set 77, of Latin type* with respect to the Klein quadric
Hj; and shall get the A-image of a spread Tz, by projecting Ty, from 75(span Hs) = () into
the Klein quadric Hs. As this projection is the identity of Ps, so the following statements
and formulas concerning Thas-Walker plane sets of Latin type are of simplier appearance as
their analogues in the case of Thas-Walker point resp. line sets.

A set T}, of planes of Il5 is called Thas-Walker plane set of Latin type with respect to
Hs, if

Dy(Tpa) :=A{ms(§) N Hs | § € Ty} with Tj,:={§ € Tia | m5(§) N Hs # 0} (6)

is a flocklet of Hs;. We put

T7, = {&§ € Toa | #(ms(§) N Hs) > 1} (7)
for the set of those planes of 77, which yield proper conics.

Remark 5. Let {P} C Hj be an improper conic. In the case K = R there are infinitely
many planes o with m5(«) N Hs = { P}, since there are infinitely many planes incident with P
and contained in 75(P) and intersecting the tangent cone 75(P)N H; only in P (compare also
the description of a tangent cone of Hj in the proof of Lemma 2). In other words, if 77,, and
Tra, are Thas-Walker plane sets of Latin type with respect to Hs, then Dy(T1q,) = Do(TLa,)
implies 77, = T7,,, but not 77, =17, .

For the discussion of Thas-Walker line sets in [ETW] we had to assume Char K # 2 througout
Section 4. Here we need this additional assumption only in the following

Lemma 3. Assume CharK # 2. Denote by Pr[Hs| the set of all Latin planes on the Klein
quadric Hs, by the way, 75(Pr[Hs]) = Pr|Hs]. A set A of planes of 5 is a Thas-Walker
plane set of Latin type with respect to Hs if, and only if, the following three conditions hold
trued:

4This concept has to be defined still.
°In order to have full conformity with the corresponding Lemma 5 from [ETW] we start the numbering
of the conditions with 2.
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(TWLa2) #(A,) < 2 with Ac:={a € A| anms(a)#0}.
(TWLa3) Ifa. € A., then #(ms(ce) N Hj) = 1.
(TWLad) For each plane £ € Pr[Hs] there exists exactly one plane o € A with ENa # 0.

Proof. If the intersection of the plane o € A and the plane 75(«) is empty, then 75(c) N Hs
is either a proper conic or empty, and conversely®. We define Dy(A) according to (6). Now
(TWLa2) and (TWLa3) imply that all elements of Dy(A) are proper or improper conics and
that Do(A) satisfies (FT2), and vice versa. Finally, (TWLa4)<(FT1). O
If k C Hj is a proper conic, then (A7 (k))* = A~! (75 (span k)). If o is a plane of IT5 such that
a N Hj is an improper conic, say {A}, then, as the reader proves easily, m5(a) N Hs = {A}
and hence (A\7!({4}))° = A7 (=5 («)). Thus we have the subsequent modification of the
second extension of the Thas-Walker construction:

Lemma 4. If Ty, is a Thas-Walker plane set of Latin type with respect to the Klein quadric
Hs, then

Tra :=UA () | € € Tra) (8)
1s a spread of II admitting the requlization
Ora = {N7'(¢) | £ € TL,} (9)

wherein T}, is defined by (6); ©r, is of intersection number 0.

We say that ®(77,) := U(7 | 7 € T},) is the 3-surface determined by T;, and that each plane
T € T}, is a T} ,-generatriz of ®(T},). The following lemma is evident.

Lemma 5. Suppose that the conditions (and notations) of Lemma 4 hold. If each proper
conic k with k C ®(T},) N Hs is contained in a T} ,-generatriz of ®(T7},), then

(1) each proper requlus contained in the spread Trq belongs to Oy ;

(2) Tra admits exactly one regulization, namely Or,.

Put”
v’ = dim( \/ ¢) and P := dim( \/ £). (10)
ey, €T,
(A) Ifv' =P =5, then T, is an asymplectic ® spread and Dy(TL,) is an unbundled flocklet.
In order to give a survey of all imaginable cases of v' = v? we exhibit the subsequent table.

The first row of the table represents an abbreviation of statement (A). The first column of
the table gives the assumption, middle and left column are the conclusions.

=P 710. D2 (TLa)
asymplectic | unbundled

unisymplectic | star
regular linear

W = O

Table 1. Deductions from v’ = v?

6This assertion is wrong for Char K = 2.

"Compare also the definition of a 4-spatial or solid or planar Thas-Walker line set in [9, Definition 1J;
furthermore, see [9, Remark 10].

8A spread S of II is called symplectic, if S is part of a linear complex of lines; otherwise we say that S is
an asymplectic spread. By a unisymplectic spread we mean a non-regular symplectic spread.
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Definition 4. If a flocklet B of the Klein quadric Hy is neither a flockoid of a Lie quadric
L, C Hs nor a flock of an elliptic quadric Q. C Hs, then we say that B is a genuine flocklet®.

Put
d :=dim( (] ¢ and & :=dim( (] &) (11)

£eTy, EETY,

(B) Ifd = dP = —1, then Dy(TL,) is a genuine flocklet and ©r, is an asymplecticly com-
plemented regulization.

The following table gives a survey.

d=d ®La D2 (TLa)

—1 asymplecticly complemented | genuine flocklet
0 unisymplecticly complemented | genuine flockoid
1 elliptic elliptic flock

Table 2. Deductions from d' = dP

4. Spreads with regulizations of intersection number 0: types

Given a spread S of II with regulization > we can distinguish 9 combinations:

Combination 1: S regular and X elliptic: Examples are well-known.

Combination 2: S regular and ¥ unisymplecticly complemented: See [9, Section 5, Type 7.
Combination 3: S regular and 3 asymplecticly complemented: See the subsequent Remark 6.
Combination 4: S unisymplectic and ¥ elliptic: See [7, Theorem 3.3.1].

Combination 5: S unisymplectic and ¥ unisymplecticly complemented: See [9, Section 5,
Type 3, Type 4, Type 5, and Type 6]. The case from [9, Section 5, Type 4] is investigated
in [9, Section 6] shortly.

Combination 6: S unisymplectic and ¥ asymplecticly complemented: See [6, Remark 4.1.2
and (4.1.7)].

Combination 7: S asymplectic and ¥ elliptic: See |7, Theorem 3.2.1].

Combination 8: S asymplectic and ¥ unisymplecticly complemented: See [9, Section 5,
Type 1 and Type 2| which are investigated in [10] thoroughly.

Combination 9: S asymplectic and ¥ asymplecticly complemented: For sake of completeness,
we construct an example in the subsequent Remark 7.

Remark 6. We use the concepts and notations of [6, Section 4]. Let £ be a regular spread
of PG(3,R). We decompose the elliptic quadric A\(€) by two (proper) disjoint conics ¢1, ¢ of
A(€) into two elliptic caps Uy, Us, and an elliptic zone V. Put span ¢; Nspan ¢; =: v. Choose
lines g; (j = 1,2) with g; C span ¢, g; N ¢; = 0, and g; # v such that g, and g, are skew.
Then 3

® =\ H(C(Uy, g1) UC(V,v) UC(Uy, go)) (12)

is an asymplecticly complemented regulization of £.

9Compare also the definition of a genuine flockoid of a Lie quadric given in [9, Definition 1].
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Remark 7. Based on [5, Satz 5] in [6, 4.3] two spreads Sy and S; are defined; with the
notations from [5, Satz 5] we have:

So=&E URIJUEURE UES (13)

wherein R ; and R} ; are proper reguli described in [5, 3.2]; A(Sp) is composed of the elliptic
caps A(Ef URT,) = Wi, A(R5, U EJ) =: W; and the elliptic zone A(R}, UES URS,) =: Z
with disjoint limiting conics. Consider the three solids

St = span A(W)) = {PRE€Ps|po+ps=p—eps+ps+eps =0}
Sz = spanA(Z) = {pREPs|po+ps=pi+ps=0} (14)

S3 = span A(Wa) = {pR € Ps | p1+ps = po + 4e"py + p3 — 'ps = 0}
1
(ge"eR\ {0}, le|] <1, [€"| < 1 K

as dim(S] V S%V S3) = 5, so the spread S, is asymplectic. Choose lines h; (j = 1,2) with
hj C span A(Rj,), hj N A(R}; ;) = 0, and h; # z such that h; and h, are skew. Then

U := A"H(C(Wy, h) U C(Z, 2) U C(Wa, hy)) (15)
is an asymplecticly complemented regulization of Sy.

The examples given for the Combinations 7, 8, and 9 show

Corollary 2. There exist genuine linear flocklets, genuine star flocklets, and genuine unbun-
dled flocklets.

The spread Sy of Remark 7 is like “patchwork”, therefore we ask for an explicit example of
an algebraic asymplectic spread!® with asymplecticly complemented regulization. Applying
the second extension of the Thas-Walker construction we give in [11] such an example.

I would like to express my thanks to H. Havlicek (Vienna) for valuable suggestions in the
preparation of this article.
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