Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 41 (2000), No. 2, 557-568.

On the Classification of 16-dimensional Planes

Helmut Salzmann

Mathematisches Institut der Universität Tübingen Auf der Morgenstelle 10, D-72076 Tübingen e-mail: helmut.salzmann@uni-tuebingen.de

The concluding section Principles of classification of the book [18] on compact projective planes contains an outline of how a classification of 16-dimensional planes admitting a group Δ of dimension dim $\Delta \geq h$ (where h is at least 35) might be accomplished. In the second part, proofs of several claims (of Proposition 87.4 in particular) have been indicated only very sketchily; some details will be supplied in the following, compare Theorem A below. Implications of Theorem A will be discussed elsewhere.

The automorphism group Σ of a compact plane \mathcal{P} will always be taken with the compact-open topology. Only closed subgroups Δ of Σ will be considered, Δ is then a locally compact transformation group of the point space P.

Theorem L. If dim $\Delta \geq 29$, or if Δ is connected and dim $\Delta \geq 27$, then Δ is a Lie group.

This suffices for all classification purposes. A weaker result is given in [18] (87.1). For proofs see Salzmann [17] and Priwitzer-Salzmann [11].

From now on, assume that P is a compact 16-dimensional space, and that Δ is a connected Lie group. By the structure theory of Lie groups, there are 3 possibilities: Δ is semi-simple, or Δ contains a central torus subgroup, or Δ has a minimal normal vector subgroup $\Theta \cong \mathbb{R}^t$, compare [18] (94.26). In the first two cases, the results mentioned in [18] (87.2 and 3) have been improved in the meantime:

Theorem S. Let Δ be a semi-simple group of automorphisms of the 16-dimensional plane \mathcal{P} . If dim $\Delta > 28$, then \mathcal{P} is the classical Moufang plane, or $\Delta \cong \mathrm{Spin}_9(\mathbb{R},r)$ and $r \leq 1$, or $\Delta \cong \mathrm{SL}_3\mathbb{H}$ and \mathcal{P} is a Hughes plane as described in [18], §86.

The proof can be found in Priwitzer [9], [10].

Theorem T. Assume that Δ has a normal torus subgroup $\Theta \cong \mathbb{T}$. If dim $\Delta > 30$, then Θ fixes a Baer subplane, $\Delta' \cong \mathrm{SL}_3\mathbb{H}$, and \mathcal{P} is a Hughes plane.

This is proved in Salzmann [15].

Hence only the case $\mathbb{R}^t \cong \Theta \triangleleft \Delta$ has to be considered. For convenience, the classical Moufang plane over the octonions will be excluded from the discussion. So-called *stiffness* theorems on the size of the stabilizer of a quadrangle play a decisive rôle:

- (‡) Suppose that the fixed elements of the connected closed subgroup Λ of Δ form a non-degenerate subplane $\mathcal E$.
 - (a) If dim $\Lambda > 11$, or if \mathcal{E} is a Baer subplane, then Λ is compact.
 - (b) If Λ is compact, or if Λ is a Lie group and $\mathcal E$ is connected, then $\Lambda \cong \mathrm{G}_2$, or $\Lambda \cong \mathrm{SU}_3\mathbb C$, or $\dim \Lambda \leq 7$.
 - (c) If Λ is a compact Lie group and dim $\Lambda < 8$, then $\Lambda \cong SO_4\mathbb{R}$ or dim $\Lambda \leq 4$.
 - (d) If Λ is a Lie group and $\mathcal E$ is a Baer subplane, then Λ is isomorphic to $\mathrm{SU}_2\mathbb C$ or $\dim \Lambda \leq 1$.

The first results are essentially due to Bödi [1], [2]. For (c) and (d) see Salzmann [13] and [18] (83.22).

Lemma 0. If $\mathbb{R}^t \cong \Theta \triangleleft \Delta$ and if dim $\Delta \geq 24$, then Δ fixes a point or a line, say a line W.

Proof. Grundhöfer-Salzmann [8], Proposition XI.10.19.

Theorem A. Assume that Δ is not semi-simple and that \mathcal{P} is not a Hughes plane. If $\dim \Delta \geq 33$, then, up to duality, Δ has a minimal normal subgroup $\Theta \cong \mathbb{R}^t$ consisting of axial collineations with common axis W. Either $\Theta \leq \Delta_{[a,W]}$ is a group of homologies and t=1, or Θ is contained in the group $T=\Delta_{[W,W]}$ of elations with axis W.

Remarks. This has been stated in [18], p. 587 under the stronger hypothesis dim $\Delta \geq 36$. The theorem does not assert that every given minimal normal subgroup is axial. The proof is fairly easy for t < 8 and rather involved for even $t \geq 8$. The different cases will be treated in separate propositions. The result may well be true for even smaller dimensions of Δ , but a proof would become unreasonably complicated.

A group Ξ of collineations is called *straight* if each point orbit x^{Ξ} is contained in some line. The following result (Stroppel [19] Lemma 3 or Priwitzer-Salzmann [11], Th. B) is a clue to the proof of the existence of axial collineations:

Baer's theorem. If Ξ is a straight subgroup of Δ , then Ξ is contained in a group $\Delta_{[z]}$ of central collineations with common center z, or the fixed elements of Ξ form a Baer subplane \mathcal{F}_{Ξ} of \mathcal{P} and Ξ is compact by (\ddagger) .

Corollary 1. If $\Pi \cong \mathbb{R}$ and Π is straight, then $\Pi \leq \Delta_{[z,A]}$ for some center z and axis A.

Proof. Note that Π is not compact. By the dual of [18] (61.8), all elements in Π have the same axis.

Corollary 2. If $\Theta \cong \mathbb{R}^t$, and if each one-parameter subgroup Π of Θ is straight, then Θ satisfies the assertions of Theorem A.

Proof. By [18] (61.7), the center map $\Theta \setminus \{1\} \to P$ is continuous, and the centers of all one-parameter subgroups of Θ form a compact and connected set Z. Commutativity of Θ implies that either Z is a single point, or Z is contained in the common axis W of all elements of Θ . The dual is also true. If there exist homologies in Θ , then t = 1 by [18] (61.2).

Corollary 3. If $\Theta \cong \mathbb{R}^t$ is a minimal normal subgroup of Δ and if some one-parameter subgroup Π of Θ is straight, then Θ satisfies the assertions of Theorem A.

Proof. Let $\Pi \leq \Delta_{[z,A]}$ as in Corollary 1, and assume that Δ fixes the line W. Commutativity of Θ implies that $z^{\Delta} = z$ or $z^{\Delta} \subseteq A$. If A = W, then $\Theta = \Theta_{[A]}$ by minimality of Θ . If $A \neq W$, then $z^{\Delta} \subseteq W$ and hence $z^{\Delta} = z$. This case is dual to the first one. \square

Lemma 1. Assume that the one-parameter subgroup Π of Θ is not straight. Then there is an orbit b^{Π} which generates a connected subplane; its closure will be denoted by $\mathcal{E} = \langle b^{\Pi} \rangle$. For $\varrho \in \Pi \setminus \{1\!\}$, the stabilizer Δ_{ϱ} in the action of Δ on Θ is the centralizer of Π , and the connected component Λ of $\Delta_{b,\varrho}$ induces the identity on \mathcal{E} . Hence (\ddagger) applies, and the dimension formula [18] (96.10) gives

(*)
$$\dim \Delta = \dim b^{\Delta} + \dim \varrho^{\Delta_b} + \dim \Lambda \le 16 + t + \dim \Lambda. \qquad \Box$$

Proposition 1. If t < 8 and if some one-parameter subgroup Π of Θ is not straight, then dim $\Delta \leq 32$.

Proof. Use Lemma 1. If $\Lambda \cong G_2$, then $\dim \mathcal{E} = 2$ by [18] (83.24), and \mathcal{E} consists of all fixed elements of Λ . Moreover, Λ acts trivially on Θ because Λ fixes ϱ and each non-trivial representation of G_2 is at least 7-dimensional [18] (95.10). The connected component Θ_b^1 of the stabilizer Θ_b is contained in the compact group Λ , hence $\Theta_b^1 = 1$, $\dim \Theta_b = 0$, and $\dim b^{\Theta} = t$. Since Θ centralizes the group Λ , the fixed plane \mathcal{E} of Λ is Θ -invariant. Consequently $b^{\Theta} \subseteq \mathcal{E}$, and it follows that $t \leq 2$ and $\dim \Delta \leq 32$. In all other cases $\dim \Lambda \leq 8$ by (\ddagger) , and $\dim \Delta < 32$.

Proposition 1 and Corollary 2 imply that Theorem A is true in the case t < 8 and $\dim \Delta > 32$.

Lemma 2. Let $\mathbb{R}^t \cong \Theta \triangleleft \Delta$ and $\mathbb{R} \cong \Pi \leq \Theta$. Assume that dim $\Delta > 32$, and that the orbit b^{Π} is not contained in any line. Then $\Theta_b = \mathbb{1}$ and $8 \leq t \leq 16$. Moreover, the orbit b^{Θ} is not contained in any proper closed subplane of \mathcal{P} , and Δ_b acts effectively on Θ .

Proof. Proposition 1 shows that $t \geq 8$. Let $\mathcal{F} = \langle b^{\Theta} \rangle$ be the smallest closed subplane containing b^{Θ} . Note that \mathcal{F} is connected and Δ_b -invariant, and that Θ_b fixes \mathcal{F} pointwise. From (*) it follows that $17 - t \leq \dim \Lambda$. Obviously, $b^{\Theta} \subseteq \mathcal{F}$ and $\Theta_b^{-1} \leq \Lambda$. If $\dim \mathcal{F} = 2$, then $t - 2 \leq \dim \Lambda$ and $15 \leq 2 \dim \Lambda$. Therefore, $\dim \Lambda \geq 8$, and Λ is compact by (‡). Now $\Theta_b^{-1} = 1$ and $\dim b^{\Theta} = t \leq 2$, a contradiction. If $\dim \mathcal{F} = 4$, then Δ_b induces on \mathcal{F} a group Δ_b/Φ of dimension at most 8 (see [18] (72.8) and note that $\Delta_b \leq \Delta_W$ and $b \notin W$). The kernel Φ of this action satisfies $\dim \Phi > 8$. The connected component of Φ is isomorphic to G_2 by (‡), but this would imply $\dim \mathcal{F} = 2$, see [18] (83.24). Hence $\dim \mathcal{F} \geq 8$ and \mathcal{F} is a Baer subplane or $\mathcal{F} = \mathcal{P}$, for short, $\mathcal{F} \leq \bullet \mathcal{P}$. According to [18] (83.6), the group Θ_b is compact, and then $\Theta_b = 1$. Suppose, finally, that $\mathcal{F} < \mathcal{P}$. Then $t = \dim \mathcal{F} = 8$, and Δ_b induces on \mathcal{F} a group $\Gamma \cong \Delta_b/\Phi$ of dimension $\dim \Gamma \geq 14$ (note that $\dim \Phi \leq 3$ by (‡),(d). Hence $\dim \Gamma \Theta \geq 22$, \mathcal{F} is isomorphic to the quaternion plane, and Θ acts on \mathcal{F} as a group of translations, see [18] (84.13) or Salzmann [14]. This contradicts the assumption that b^{Π} is not contained in a line.

Note. For the proof of Theorem A in the case $t \geq 8$ it is essential that Θ is chosen as a minimal normal subgroup. Write $\Xi = \operatorname{Cs} \Theta$ for the centralizer of Θ . Then $\Gamma = \Delta/\Xi$ is an irreducible subgroup of $\operatorname{GL}_t\mathbb{R}$. The structure of such groups is well known, compare [18] (95.6). In particular, the commutator subgroup Γ' is semi-simple, and Γ is the product of Γ' and the center Z of Γ . The irreducible representations of almost simple groups in dimension at most 16 are listed in [18] (95.10). Extensive use will be made of this list, compare also Bödi-Joswig [3]. Whenever X is an almost simple factor of Γ , the dimension of a minimal X-invariant subgroup of Θ divides t by Clifford's Lemma [18] (95.5). If t is odd, then Γ' is also irreducible and dim $Z \leq 1$. Hence these cases are less difficult, they will be discussed next. A special argument is needed for large values of t.

Proposition 2. If t < 15 and t is odd, and if dim $\Delta > 32$, then Θ satisfies the assertions of Theorem A.

Proof. As in Lemma 2, assume that the orbit b^{\sqcap} is not contained in a line. Since Δ_b acts effectively on Θ , the Note shows that $\dim \Gamma' \geq 16$, and Λ is mapped injectively into Γ . Now let t = 9. From (*) it follows that $\dim \Lambda \geq 8$, and (‡) implies that $\Lambda \cong \mathrm{SU}_3\mathbb{C}$ or $\Lambda \cong \mathrm{G}_2$. Therefore, $\dim \Delta \leq 39$ and $\dim \Gamma \leq 30$. Moreover, Λ acts on a 6- or 7-dimensional subspace of Θ and fixes a complement, see the List [18] (95.10). By Clifford's Lemma, Λ is properly contained in an almost simple factor Υ of Γ , and Υ acts effectively and irreducibly on Θ . Noting that $8 < \dim \Upsilon \leq 30$, the List shows that $\Upsilon \cong \mathrm{PSL}_3\mathbb{C}$, but this group does not contain Λ . Hence $t \in \{11,13\}$, and t is a prime number. Clifford's Lemma implies that Γ' is almost simple. Since $\dim \Gamma' > 3$, it follows from the List that $\dim \Gamma' \geq 55$, an obvious contradiction. \square

Lemma 3. A group Δ of dimension ≥ 31 fixes at most one point $a \notin W$. Assume that $t \geq 12$ and that $\Theta|_W \neq 1$. Let L be a line such that $L \cap W = u \neq u^{\Theta}$. If L does not contain the exceptional point a, then $\Theta_L = 1$ and $\dim L^{\Theta} \geq 12$. Hence L^{Θ} is not contained in any proper closed subplane of \mathcal{P} , and Δ_L acts effectively on Θ .

Proof. The first assertion follows immediately from (\ddagger) and the dimension formula. Either $\langle L^{\Theta} \rangle = \mathcal{Q}$ is a closed subplane, or L^{Θ} is contained in a pencil \mathcal{L}_x , and $x^{\Theta} = x$. Suppose that $x^{\Delta} \neq x$. Then Θ_u induces the identity on the connected subplane $\mathcal{D} = \langle x^{\Delta}, u^{\Theta} \rangle$. By the dimension formula, $12 \leq t = \dim u^{\Theta} + \dim \Theta_u$, and $\dim \Theta_u \geq 4$. Since Θ_u is not compact, (\ddagger) implies $\dim \Theta_u \leq 7$, and $\dim u^{\Theta} \geq 5$. Consequently, $\mathcal{D} = \mathcal{P}$ and $\Theta_u = 1$. This contradiction shows that $x^{\Delta} = x$ is the unique point a. Hence $L \neq au$ leads to the first alternative, and Θ_L acts trivially on \mathcal{Q} . Either $\dim \Theta_L \geq 8$ or $\dim L^{\Theta} > 4$ and $\mathcal{Q} \leq \bullet \mathcal{P}$. In both cases, Θ_L is compact by (\ddagger) , and then $\Theta_L = 1$. Consequently, $\mathcal{Q} = \mathcal{P}$ and $\Delta_L \cap \operatorname{Cs} \Theta = 1$.

The lemma leads to a useful modification of condition (*):

Proposition 3. In the situation of Lemma 3, each one-parameter subgroup Π of Θ has some orbit b^{Π} which is not contained in any line. If u and L are chosen as above, let $\varrho \in \Pi \leq \Theta_u$, $\varrho \neq 1$. Then $\Theta_u \triangleleft H = \Delta_L \Theta$, $\dim \varrho^H \leq \dim \Theta_u \leq 8$, and

(**)
$$H < \Delta$$
, $\dim \Delta/H \le 16 - t$, and $\dim H \le 16 + \dim \varrho^{H_b} + \dim K \le 24 + \dim \Lambda$,

where K denotes the connected component of $H_{b,\varrho} = \Delta_b \cap \operatorname{Cs}_H \Pi$ and Λ has the same meaning as in Lemma 1.

Proof. Because Δ_L fixes the point u and Θ is commutative, Θ_u is invariant in $\mathsf{H} = \Delta_L \Theta$. By assumption, $\Theta_u < \Theta$ and Θ is a minimal normal subgroup of Δ . Moreover, $\dim \Theta_u \geq t - 8 \geq 4$. Consequently, $\mathsf{H} \neq \Delta$. From $\Delta_L \cap \Theta = 1$ it follows that $\dim \mathsf{H} = \dim \Delta_L + t$, and the dimension formula shows $\dim \Delta = \dim \Delta_L + \dim L^{\Delta} \leq \dim \Delta_L + 16$. Therefore, $\dim \Delta - \dim \mathsf{H} \leq 16 - t$. Since $\dim b^{\mathsf{H}} \leq 16$, the last inequality in (**) is immediate from the dimension formula.

Proposition 4. Suppose that dim $\Delta \geq 31$ and that $u^{\Theta} \neq u \in W = W^{\Delta}$. If dim $\Lambda > 8$, then $\Lambda \cong G_2$ by (\ddagger) , and the centralizer $X = Cs_{\Theta}\Lambda$ has dimension at most 2. Moreover, $t \in \{1, 2, 8, 9\}$.

Proof. Use the same notation as in Proposition 3. By assumption, $\Pi \leq X$ and $\dim X \geq 1$. The orbit b^X is contained in the 2-dimensional subplane \mathcal{E} of the fixed elements of Λ . Obviously, $X_b^{-1} \leq \Theta \cap \Lambda = 1$. Therefore, $\dim X \leq 2$. From [18] (95.3 and 10) it follows that the complement of X in Θ has a dimension divisible by 7. Hence the proposition is true unless $t \geq 15$. Then Proposition 3 applies, and the first statements of (**) exclude the possibility t = 16. In the case t = 15, condition (**) implies that $\dim \Delta \leq 39$. Hence Δ induces on Θ an irreducible group Γ of dimension at most 24. According to the note, Γ' is irreducible on Θ , and Λ is properly contained in Γ' . By Clifford's Lemma, Γ' is almost simple. Inspection of the List [18] (95.10) shows that there is no group with these properties.

Propositions 3 and 4 imply:

Corollary 4. If $t \ge 12$, then dim $\Delta \le 48 - t$ or Θ satisfies the assertions of Theorem A.

Corollary 5. If t = 16 and dim $\Delta > 32$, then $\Theta = T$ is a transitive elation group.

Proposition 5. If t = 15 and dim $\Delta > 32$, then Θ is a group of elations.

Proof. Assume that $u^{\Theta} \neq u$ for some point u on the fixed line W of Δ . Then $\dim \Delta = 33$ by Corollary 4, and Propositions 3 and 4 give $\dim \mathsf{H} = 32$ and $\Lambda \cong \mathrm{SU}_3\mathbb{C}$. Moreover, (**) implies $\dim \varrho^{\mathsf{H}} = 8$ for each admissible ϱ . Hence Δ_L is transitive on $\Theta_u \cong \mathbb{R}^8$. With [18] (96.22) or the List (95.10) it follows that the commutator subgroup Υ of Δ_L is isomorphic to $\mathrm{SU}_4\mathbb{C}$. According to the Note and to Clifford's Lemma in particular, Υ is properly contained in an almost simple factor of $\Gamma \cong \Delta/\mathrm{Cs}\,\Theta$. This implies $\dim \Gamma \geq 21$ and $\dim \Delta \geq 36$, a contradiction.

Lemma 4. Let p and q be prime numbers. A semi-simple irreducible subgroup G of $\mathrm{SL}_{pq}\mathbb{R}$ has not more than two almost simple factors.

Proof. G is either almost simple or a product of two proper semi-simple factors A and B such that $B \leq \operatorname{Cs} A$. Let U be a minimal A-invariant subspace of $V = \mathbb{R}^{pq}$. If U = V, then $B \leq \mathbb{H}^{\times}$ by Schur's Lemma [18] (95.4). Hence $4 \mid pq = 4$ and $G \cong \operatorname{SO}_4\mathbb{R}$. If U < V, however, then A acts effectively on U (because the fixed elements of the kernel of the action of A on U form a G-invariant subspace of V). Clifford's Lemma shows that $\dim U \in \{p,q\}$ and that A is almost simple.

Alternative proof (suggested by the referee). All semi-simple irreducible subgroups G of $\mathrm{SL}_t\mathbb{R}$ have been determined by Dynkin [5/6] Th. 1.5: either G is maximal in $\mathrm{SL}_t\mathbb{R}$ or in a symplectic or orthogonal group, and the claim follows from Theorems 1.3 and 1.4, or G belongs to a long list of exceptions, but these are even almost simple.

The following well-known theorem will be needed several times:

Complete reducibility. If a semi-simple group G acts on a real vector space V, then each G-invariant subspace of V has a G-invariant complement in V.

This follows directly from an analogous result about representations of semi-simple Lie algebras, see e.g. Bourbaki [4] I.6.2 Theorem 2, p. 52 or Freudenthal-de Vries [7] § 35 or § 50.

Proposition 6. If t = 14 and dim $\Delta > 32$, then Θ is a group of elations.

Proof. Assume that Θ does not act trivially on W. Put again $\Xi = \operatorname{Cs} \Theta$.

(a) Corollary 4 shows that dim $\Delta \leq 34$. According to Lemma 2 and the Note, the stabilizer Δ_b acts effectively on Θ and may be considered as a subgroup of $\Gamma = \Delta/\Xi$, and the semi-simple commutator group Γ' satisfies $15 \leq \dim \Gamma' \leq 20$. No almost simple group with dimension between 15 and 20 has an irreducible representation in dimension 7 or 14.

Therefore, Lemma 4 implies that Γ' is a product of exactly two almost simple subgroups A and B. Let dim A \leq dim B. Then dim B \geq 8, and B acts effectively and irreducibly on \mathbb{R}^7 . By the List, dim B = 14, and B is one of the two simple groups of type G_2 . (Later it will be seen that B is in fact the compact form.) As in the proof of Lemma 4, it follows that A acts effectively on \mathbb{R}^2 . Consequently, $A \cong \operatorname{SL}_2\mathbb{R}$ and dim $\Gamma' = 17$, moreover, the center Z of Γ consists of real dilatations of Θ , see [18] (95.6).

- (b) The last statement gives dim $\Gamma \leq 18$ and dim $\Xi \geq 15$. On the other hand, dim $\Xi \leq 16$ since dim $\Delta/\Xi \geq \dim \Delta_b \geq \dim \Delta 16$. Therefore, Ξ is contained in the radical $\sqrt{\Delta}$, and a maximal semi-simple subgroup Ψ of Δ is locally isomorphic to Γ' .
- (c) The group Δ has a subgroup $\widehat{\Delta}$ of codimension 3 which induces on Θ the group BZ and acts on a 7-dimensional subgroup N of Θ . Note that $\dim \widehat{\Delta}_b \geq 14$. If $\widehat{\Delta}_b$ is transitive on N, then it is also transitive on the 6-sphere consisting of the rays in N, and $\widehat{\Delta}_b$ contains the compact group G_2 , compare [18] (96.19 and 22). If $\widehat{\Delta}_b$ is not transitive on N, then for some $\varrho \in \mathbb{N}$ the connected component $\widehat{\Lambda}$ of $\widehat{\Delta}_{b,\varrho}$ is at least 8-dimensional, and (‡) shows that $\widehat{\Lambda} \cong SU_3\mathbb{C}$. This group is not contained in the non-compact group $G_2(2)$. Therefore B is compact, and steps (a) and (b) imply $\Gamma' = A \times B \cong SL_2\mathbb{R} \times G_2 \cong \Psi$.
- (d) Because $\Delta_b \hookrightarrow \Gamma$ and $\dim \Gamma/\Delta_b \leq 1$, it follows that $G_2 \cong B \hookrightarrow \Delta_b$. One can now conclude that Δ_b acts irreducibly on Θ . In fact, the action of B and complete reducibility force a proper Δ_b -invariant subgroup N of Θ to be 7-dimensional. Lemma 1 with $\varrho \in N$ gives $\dim \Delta_{b,\varrho} \geq 10$ and then $\Lambda \cong G_2$, but this contradicts the fact $\varrho^{\Lambda} = \varrho$. As a consequence of [18] (95.6(b)), even the action of the semi-simple group Δ_b on Θ is irreducible, hence $\dim \Delta_b = 17$ and $\Delta_b \cong \Psi$.
- (e) In particular, the involution in A corresponds to an involution α in the center of Δ_b . By [18] (84.9), the group B \cong G₂ cannot act on a Baer subplane. Consequently, α is a reflection, see [18] (55.29). Because of (‡), the group A acts effectively on the 2-dimensional plane $\mathcal{E} = \mathcal{F}_B$ of the fixed elements of B. If A would fix a flag in \mathcal{E} , then A would be solvable by [18] (33.8). Therefore, b and W are the only fixed elements of A in \mathcal{E} , and $\alpha \in \Delta_{[b,W]}$. Since $\Theta_b = \mathbb{I}$, it follows from [18] (61.19b) that $\alpha^{\Theta}\alpha$ is a 14-dimensional subset of $T = \Delta_{[W,W]}$. Note that $\Theta T \leq \sqrt{\Delta}$ and that $\dim \sqrt{\Delta} \leq 17$. Minimality of Θ implies $\Theta \leq T$.

Proposition 7. If t = 10 and dim $\Delta > 32$, then Θ is a group of elations.

Proof. From (*) and Proposition 4 one obtains $17 \leq \dim \Delta_b \leq \dim \varrho^{\Delta_b} + \dim \Lambda \leq 10 + 8$. Either Δ_b is transitive on Θ , or $\Lambda \cong \mathrm{SU}_3\mathbb{C}$ and $\dim \varrho^{\Delta_b} = 9$ for some $\varrho \in \Theta$. In the first case, Δ_b would contain the group $\mathrm{SU}_5\mathbb{C}$, and $\dim \Delta_b$ would be to large, compare [18] (96.16–22). Similarly, Δ_b cannot be transitive on a 9-dimensional subspace of Θ . Hence Δ_b acts effectively and irreducibly on Θ . Since each non-trivial representation of $\mathrm{SU}_3\mathbb{C}$ on Θ is either 6- or 8-dimensional, it follows from Clifford's Lemma that Λ is not normal in Δ_b . Therefore, Λ is properly contained in an almost simple and irreducible factor X of Δ_b , and $\mathsf{X} = \Delta_b$ by Schur's Lemma [18] (95.4). The List shows that Δ_b must be locally isomorphic to $\mathrm{SL}_4\mathbb{R}$ or to $\mathrm{SL}_2\mathbb{H}$, but these groups do not contain $\mathrm{SU}_3\mathbb{C}$. \square

The only remaining cases t=8 and t=12 are more difficult. If the given group Θ does not consist of elations, it will be shown that some other normal vector group $\widetilde{\Theta}$ of Δ satisfies the conditions of Theorem A.

Proposition 8. If t = 8 and $\dim \Delta > 32$, then either Θ or some minimal normal subgroup $\widetilde{\Theta} \cong \mathbb{R}^7$ consists of elations.

- Proof. (a) According to Corollary 3, we may assume that for each one-parameter subgroup $\Pi < \Theta$ there is some point b such that b^{Π} generates a subplane. Lemma 1 then shows that the connected component Λ of $\Delta_b \cap \operatorname{Cs} \Pi$ has dimension at least 9, and $\Lambda \cong \operatorname{G}_2$ by (\ddagger) . Consider the action of the connected component B of Δ_b on the 7-sphere S consisting of the rays in Θ , and let r, r' denote the two opposite rays contained in Π . Since dim $B \geq 17$ and dim $B_r/\Lambda \leq 1$, it follows that r^B is a connected set of positive dimension. For each $s \in S \setminus \{r, r'\}$, the orbit s^{Λ} is a 6-sphere, and r^B is a connected union of Λ -orbits. Consequently, r^B contains an open neighbourhood of r in S, and r^B is open in S, see also [18] (96.25). The dimension formula implies dim $B/\Lambda \geq 7$ and $21 \leq \dim \Delta_b \leq 22$.
- (b) In particular, r^{Δ} is open in S, and this is true for each ray $r \in S$ because step (a) is valid for an arbitrary choice of r. Therefore, Δ acts transitively on S. Put $\Xi = \operatorname{Cs} \Theta$ as in the Note. Then $\Gamma = \Delta/\Xi$ is the effective group induced by Δ on Θ . Remember from Lemma 2 that Δ_b is embedded into Γ . Step (a) and Lemma 1 imply $21 \leq \dim \Gamma \leq 30$. According to [18] (96.19), a maximal compact subgroup Φ of Γ acts transitively on S, and from [18] (96.20) it follows that Φ is isomorphic to a subgroup of $\operatorname{SO}_8\mathbb{R}$. Moreover, Φ has a subgroup $\Lambda \cong G_2$. There are only two groups Φ which satisfy these conditions, viz. $\Phi \cong \operatorname{Spin}_7\mathbb{R}$ and $\Phi \cong \operatorname{SO}_8\mathbb{R}$, see [18] (96.21 and 22). The centralizer of Φ in $\operatorname{GL}_8\mathbb{R}$ is isomorphic to \mathbb{R}^\times , and the remarks in the Note show that Γ is the product of $\Phi = \Gamma'$ and the center Γ of Γ . By [18] (94.27), the group Γ contains a subgroup Γ which is a covering group of Γ' . In fact, Γ is simply connected, since Γ cannot contain a group Γ see [18] (55.34 or 40).
- (c) Assume that $\dim \Gamma' > 21$. Then $\Psi \cong \operatorname{Spin}_8 \mathbb{R}$, and the center of Ψ contains 3 reflections α , σ , and $\alpha\sigma$ with centers a, u, and v. By (\ddagger) , the stabilizer ∇ of the triangle $\{a,u,v\}$ satisfies $\dim \nabla \leq 30$, and $\Psi \leq \nabla < \Delta$. It suffices to consider the case $\Delta = \Psi\Theta$. Note that Δ is not transitive on W (otherwise Δ would induce on W the group $\operatorname{SO}_9 \mathbb{R}$). On $W \setminus v$ the action of Ψ is equivalent to a linear action, and for each $z \neq u, v$ the orbit z^{Ψ} is a 7-sphere, compare [18] (96.36). Hence z^{Δ} is open in W whenever $z^{\Delta} \neq z^{\Psi}$, see also [18] (96.25). If $v^{\Delta} = v$, then $u^{\Delta} = u^{\Theta}$ is open in W, and $\sigma^{\Theta}\sigma = \{\vartheta^{-1}\vartheta^{\sigma} \mid \vartheta \in \Theta\}$ would generate a transitive group of elations with axis av in Θ . Therefore $u^{\Theta} \neq u$ and $v^{\Theta} \neq v$, and W contains some orbit $z^{\Delta} = Z \approx \mathbb{S}_7$. This leads to a contradiction as follows: Since z^{Θ} is Ψ_z -invariant, the argument of [18] (96.25) shows that either $z^{\Theta} = z$ or z^{Θ} is open in Z. Because Ψ is transitive on Z and Θ is normal, all Θ -orbits in Z are equivalent. The commutative group Θ cannot be transitive on Z. Therefore the orbits are points, $\Theta|_Z = 1$, and Θ would act freely and transitively on $az \setminus \{a,z\} \approx \mathbb{R}^8 \setminus \{0\}$ which is impossible.
- (d) The last steps imply $\Psi \cong \Gamma' \cong \operatorname{Spin}_7 \mathbb{R}$. Since $21 \leq \dim \Delta_b \leq \dim \Gamma \leq 22$, and since $\operatorname{Spin}_7 \mathbb{R}$ has no subgroup of codimension 1, the covering group Ψ of Γ' can be chosen

- in Δ_b . Hence $\Delta_b' \cong \operatorname{Spin}_7\mathbb{R}$. Now it is not difficult to determine the structure of Δ . Put again $\Xi = \operatorname{Cs} \Theta$. Lemma 2 implies $\Xi_b = \mathbb{1}$ and $\dim \Xi \leq 16$. On the other hand, the bound on $\dim \Gamma$ gives $\dim \Xi \geq 11$. Consider the group $\Upsilon = \Xi \cap \operatorname{Cs} \Psi$ and note that $\Lambda \leq \Psi$. The orbit b^{Υ} is contained in the 2-dimensional fixed plane \mathcal{F}_{Λ} . Consequently, $\dim \Upsilon \leq 2$. Let Ψ act on the Lie algebra $\mathbb{I}\Xi$. By complete reducibility, $\mathbb{I}\Theta$ has an invariant complement \mathfrak{n} in $\mathbb{I}\Xi$, and $\dim \mathfrak{n} > 2$. If $\dim \mathfrak{n} < 7$, the representation of $\operatorname{Spin}_7\mathbb{R}$ on \mathfrak{n} is trivial and $\mathfrak{n} = \mathbb{I}\Upsilon$, a contradiction. Hence $\dim \mathfrak{n} \geq 7$ and $\dim \Xi \in \{15, 16\}$. Because $\Psi \cap \Xi \leq \Xi_b = \mathbb{I}$, we may assume that $\Delta = \Psi \Xi$.
- (e) The central involution σ of Ψ is a reflection, its axis K is different from W (or else $\sigma^{\Theta}\sigma=\Theta$ would consist of elations). If $\dim\Xi=15$, then $\mathfrak{n}\cong\mathbb{R}^7$ and Ψ induces on \mathfrak{n} the group $\mathrm{SO}_7\mathbb{R}$. Therefore \mathfrak{n} is the Lie algebra of $\mathbb{N}=\Xi\cap\mathrm{Cs}\,\sigma$, moreover, Ξ is a vector group and \mathbb{N} is Δ -invariant. Proposition 1 shows that $\widetilde{\Theta}=\mathbb{N}$ is an elation group as required.
- (f) Finally, let $\dim \Xi = 16$. Because $\Xi_b = 1$, the orbit b^{Ξ} is open in P by [18] (96.11(a)). Note that $b^{\sigma} = b$. If $\xi \in \Xi$ and $b^{\xi} \in K$, then $\xi \sigma \xi^{-1} \sigma \in \Xi_b = 1$ and $\sigma \xi = \xi \sigma$. This gives $\Xi_K = \Xi \cap \operatorname{Cs} \sigma$ and $\dim \Xi_K = 8$, moreover, $\Xi = \Xi_K \times \Theta$. Under the action of Ψ , the group Ξ_K splits into a one-parameter group and a 7-dimensional vector group $\widetilde{\Theta}$ on which Ψ induces a group $\operatorname{SO}_7\mathbb{R}$. Obviously, $\widetilde{\Theta}$ is $\Psi\Xi$ and hence Δ -invariant, and $\widetilde{\Theta}$ is an elation group, again by Proposition 1 and Corollary 2.

Proposition 9. If t = 12 and $\dim \Delta > 32$, then Δ has a normal vector subgroup Θ consisting of elations. $(\widetilde{\Theta} \text{ may be different from } \Theta)$.

Proof. Assume that Θ is not contained in the elation group $\mathsf{T} = \Delta_{[W,W]}$, and use the notation introduced in Proposition 3.

- (a) Propositions 3 and 4 imply that $29 \leq \dim \mathsf{H} \leq 32$. Consider a minimal H-invariant subgroup M of Θ_u and let $\mathbb{1} \neq \varrho \in \Pi \leq \mathsf{M}$. Then H and Δ_L act irreducibly on $\mathsf{M} \supset \varrho^\mathsf{H}$, and $\dim \varrho^\mathsf{H} \geq 5$ by (**). Remember from Lemma 2 that $\Theta_b = \mathbb{1}$. Consequently, $\dim b^\mathsf{M} > 4$ and $\langle b^\mathsf{M} \rangle = \mathcal{B}$ is at least 8-dimensional ($\mathcal{B} \leq \bullet \mathcal{P}$). Statement (d) of (‡) shows that $\dim(\mathsf{H}_b \cap \mathsf{Cs} \mathsf{M}) \leq 3$, and H induces on M a group of dimension at least 10. If K denotes again the connected component of $\mathsf{H}_b \cap \mathsf{Cs} \Pi$, then $\dim \mathsf{K} \leq 8$ by Proposition 4. The following will be shown in the next steps: $\mathsf{M} = \Theta_u \cong \mathbb{R}^8$ and Δ_L does not act effectively on M .
- (b) If $M \cong \mathbb{R}^5$, then (**) and (‡) imply $K \cong SU_3\mathbb{C}$. This group does not admit a non-trivial representation in dimension < 6. Hence $K \leq Cs M$ contrary to what has been stated in (a).
- (c) In the case $M \cong \mathbb{R}^6$, the same argument shows that $\dim K < 8$ (note that the action of K on M is not irreducible, since Π is K-invariant). Consequently, $\dim H_b = 13$ by (**), moreover, $\dim \varrho^{\mathsf{H}_b} = 6$ for each choice of ϱ , and H_b acts transitively on $\mathsf{M} \setminus \{1\}$, see [18] (96.11(a)). Let $\Psi = \mathsf{H}_b|_{\mathsf{M}}$ denote the effective group induced on M. Since Ψ is irreducible and $\dim \Psi \leq 13$, the List of representations shows $\Psi' \cong \mathrm{SU}_3\mathbb{C}$, and $\dim \Psi = 10$. Hence H_b has a normal subgroup $\Phi \cong \mathrm{SU}_2\mathbb{C}$ acting trivially on M , cf. step (a) and $(\ddagger)(d)$. The involution $\omega \in \Phi$ fixes a Baer subplane \mathcal{F}_ω and the orbit b^{M} is contained in the pointset

- F of $\mathcal{F}_{\omega} = \mathcal{B}$. Since $\mathsf{H}_b \leq \operatorname{Cs} \omega$, the group Ψ' acts non-trivially on \mathcal{B} and, therefore, on $S = F \cap W \approx \mathbb{S}_4$, but this contradits Richardson's theorem [18] (96.34).
- (d) Finally, let $M \cong \mathbb{R}^7$. Steps (b) and (c) imply that H_b acts irreducibly on M, and (**) shows that $\dim H_b \leq 15$. Again, $\Psi = H_b|_M$ is at least 10-dimensional. According to the Note, Ψ' is an almost simple group of type G_2 . By complete reducibility, M has a Ψ' -invariant complement $N \cong \mathbb{R}^5$ in Θ . If $\langle b^M \rangle = \mathcal{B}$ is a Baer subplane, then $\Psi'M$ is a 21-dimensional automorphism group of \mathcal{B} , and \mathcal{B} is isomorphic to the quaternion plane \mathcal{H} , see Salzmann [12], cp. also [18] (84.21(b)) or Salzmann [14], but \mathcal{H} does not admit a group of type G_2 . Hence $\langle b^M \rangle = \mathcal{P}$ and Ψ' is a subgroup of H_b . The List shows that Ψ' centralizes N. Therefore, Ψ' induces the identity on b^N . Because $\langle b^M \rangle = \mathcal{P}$, there is some point $c \in b^M$ such that $\langle b^N, c \rangle = \mathcal{P}$. Consequently, $\Psi'_c = 1$, but $\dim \Psi'_c \geq 7$, a contradiction proving the first statement at the end of step (a).
- (e) Suppose now that Δ_L acts effectively on $M \cong \mathbb{R}^8$. By assumption, this action is irreducible. The structure theorem [18] (95.6(b)) shows that the commutator subgroup $\Upsilon = \Delta_L'$ is semi-simple and that the center Z of Δ_L consists of real or complex dilatations of M. There are two possibilities: (i) the action of Υ on M is irreducible, and (ii) M is a direct sum of two 4-dimensional subspaces M_{ν} and Υ acts equivalently and effectively on the spaces M_{ν} . Note that dim $\Delta_L \geq 17$ and dim $\Upsilon \geq 15$. The action of the semisimple group Υ on Θ is completely reducible. Hence there is a Υ -invariant complement $\mathbb{N} \cong \mathbb{R}^4$ of M in Θ . In case (i), the group N is even Δ_L -invariant: in fact, for each $\zeta \in \mathbb{Z}$ the subspace $N^{\zeta}N$ is invariant under Υ and at most 8-dimensional, hence it has trivial intersection with M. Choose a one-parameter group E in N and a point p such that $\langle p^{\mathsf{E}} \rangle = \mathcal{E}$ is a subplane. Remember that $\mathsf{H} = \Delta_L \Theta$ has dimension at least 29. Consider the connected component $\widetilde{\mathsf{K}}$ of $\mathsf{H}_p \cap \mathsf{Cs} \, \mathsf{E}$. The dimension formula gives $\dim \widetilde{\mathsf{K}} \geq 9$, and (\ddagger) shows that $K \cong G_2$, but then Proposition 4 would imply $t \leq 9$. Case (ii) also leads to a contradiction: Υ is semi-simple and effective on \mathbb{R}^4 , therefore, $\Upsilon \cong \mathrm{SL}_4\mathbb{R}$ and $\dim \Upsilon = 15$, moreover, $Z \cong \mathbb{C}^{\times}$ and Z has a subgroup $P \cong \mathbb{R}$ consisting of real dilatations. The group $\widehat{H} = \Upsilon P \Theta$ acts on $M_{\nu} \cong \mathbb{R}^4$. Choose $\varrho \in M_{\nu}$ and write \widehat{K} for the connected component of $\widehat{\mathsf{H}}_{b,\varrho}$. Then $\dim \widehat{\mathsf{K}} \geq 8$, and $\widehat{\mathsf{K}} \cong \mathrm{SU}_3\mathbb{C}$ by (\ddagger) , but the latter group is not contained in the maximal semi-simple subgroup Υ of \widehat{H} . This proves the last claim of step (a).
- (f) The group $M \cong \mathbb{R}^8$ acts transitively on the affine line pencil $\mathcal{L}_u \setminus \{W\} = \mathcal{L}_u^* \approx \mathbb{R}^8$: in Lemma 3 it has been shown that $\Theta_L = \mathbb{1}$ for each line $L \in \mathcal{L}_u^*$ with at most one exception au. By [18] (96.11), each non-trivial orbit L^M is open in \mathcal{L}_u^* and homeomorphic to \mathbb{R}^8 . Hence M is sharply transitive on \mathcal{L}_u^* or on $\mathcal{L}_u^* \setminus \{au\}$, but the latter space is not contractible.
- (g) According to (e) there is an element $\alpha \neq 1$ in $\Delta_L \cap \operatorname{Cs} M$, and (f) implies that α fixes each line in \mathcal{L}_u . Consequently, α is an axial collineation with center u and some axis A. If α is an elation, i.e. if $u \in A$, then A = W (since $\alpha^M = \alpha$), and α^Θ is a 4-dimensional subset of T. Because the elements in α^Θ have different centers, T is commutative. Any minimal invariant subgroup of T may be chosen as the group Θ .
- (h) Now let $\alpha \in \Delta_{[u,A]}$ be a homology. Since $u^{\Delta} \neq u$, Hähl's results on the generation of elations by homologies can be applied. In its simplest form, Hähl's theorem says the

following:

- (•) If Γ is a Lie subgroup of Σ_A , if $\Gamma_{[c,A]} \neq \mathbb{1}$ for some center $c \notin A$, and if E is the group of elations in Γ with axis A, then dim $E = \dim c^{\Gamma}$, see [18] (61.20) for a proof. Note that commutativity of E is not known if c^{Γ} is contained in a line.
- (i) Suppose that $\Theta \leq \Gamma = \Delta_A$, and put $A \cap W = v$. Then (\bullet) shows that $\dim \Delta_{[v,A]} \geq 4$. Moreover, $\dim u^{\Theta} = 4$ implies that the commutator set $[\alpha, \Theta] = \{\alpha^{-1}\alpha^{\vartheta} \mid \vartheta \in \Theta\} \subseteq \Theta_{[A]}$ is at least 4-dimensional. Since Θ is commutative, all elements in $\Theta_{[A]}$ have the same center $z \in W$, and $\dim \Theta_{[A]} \leq 8$. By [18] (61.2), a group of homologies has a compact subgroup of codimension at most 1, but Θ is a vector group. Hence $\Theta_{[A]} = \Theta_{[v,A]}$ consists of elations. Because Θ is a minimal normal subgroup of Δ , the group $\Theta_{[A]}$ is not normal, and, therefore, $A^{\Delta} \neq A$. Since $A^{\Theta} = A$ and Θ is normal, Θ fixes each line in the orbit A^{Δ} . On the other hand, all fixed lines of the elation group $\Theta_{[A]}$ pass through the center v. Consequently, $A^{\Delta} \subseteq \mathfrak{L}_v$ and $\Theta = \Theta_{[v,v]}$ is an invariant elation group.
- (j) Only the possibility $A^{\Theta} \neq A$ remains. The strategy in this case is to apply the dual $(\widetilde{\bullet})$ of (\bullet) to the group Ω generated by α and the connected component of Δ_u . Assume first that $A^{\Omega} = A$. Because $\dim(\Theta_u \cup \Theta_A) < 12$, there is an element $\vartheta \in \Theta$ such that $u^{\vartheta} = z \neq u$ and $A^{\vartheta} \neq A$. Remember that $\Theta \triangleleft \Delta$ and that $\dim u^{\Theta} = 4$. Therefore, $z^{\Omega} \subseteq u^{\Theta}$ and $\dim \Omega_z \geq 21$. Let $a \in A \setminus W$, $a \notin A^{\vartheta}$. Then the connected component Λ of $\Omega_{a,z}$ satisfies $\dim \Lambda \geq 13$, moreover, $\Lambda \leq \Omega^{\vartheta} \leq \Delta_{A^{\vartheta}}$, and Λ fixes a non-degenerate quadrangle. Now (\ddagger) implies $\Lambda \cong G_2$. By assumption, $\Gamma = \Delta/\operatorname{Cs} \Theta$ is an irreducible subgroup of $\operatorname{GL}_{12}\mathbb{R}$, and $\dim \Gamma \leq 24$ by Corollary 4. Since $\Lambda \hookrightarrow \Gamma'$, it follows from [18] (95.6) that Γ' is almost simple and irreducible on Θ . Hence $\Gamma' \cong \operatorname{Spin}_7\mathbb{R}$, but, according to the List, this group does not have an irreducible representation in dimension 12.
- (k) Consequently, $A^{\Omega} \neq A$, and then $\dim \Delta_{[u,u]} \geq \dim A^{\Omega} > 0$ by $(\widetilde{\bullet})$. If some one-parameter group in $\Delta_{[u,u]}$ has an affine axis, then, because of (f), all groups $\Delta_{[u,L]}$ with $L \in \mathfrak{L}_u \setminus \{W\}$ have the same positive dimension, and the dual of [18] (61.12) implies $\Delta_{[u,W]} \cong \mathbb{R}^8$. Since $u^{\Delta} \neq u$, it follows that T is transitive. If each one-parameter subgroup of $\Delta_{[u,u]}$ has axis W however, then $\dim \Delta_{[z,W]} > 0$ for each center $z \in u^{\Delta}$. Hence $\dim T > 4$, and T contains a normal subgroup $\widetilde{\Theta}$ as claimed.

Theorem A is now an immediate consequence of the propositions.

References

- [1] Bödi, R.: On the dimensions of automorphism groups of eight-dimensional ternary fields II. Geom. Dedicata **53** (1994), 201–216.
- [2] Bödi, R.: On the dimensions of automorphism groups of eight-dimensional ternary fields I. J. Geom. **52** (1995), 30–40.
- [3] Bödi, R.; Joswig, M.: Tables for an effective enumeration of real representations of quasi-simple Lie groups. Seminar Sophus Lie 3 (1993), 239–253.
- [4] Bourbaki, N.: Lie groups and Lie algebras, Chap. 1–3. Springer, Berlin etc. 1989.
- [5] Dynkin, E. B.: Труды Москов. Мат. Общ. 1 (1952), 39–166.

- [6] Dynkin, E. B.: Maximal subgroups of the classical groups. AMS Transl. (2) 6 (1957), 245–378.
- [7] Freudenthal, H.; de Vries, H.: Linear Lie groups. Academic Press. New York 1969.
- [8] Grundhöfer, Th.; Salzmann, H.: Locally compact double loops and ternary fields. In: Quasigroups and Loops: Theory and Applications, O. Chein; H. O. Pflugfelder; J. D. H. Smith (eds.), Heldermann, Berlin 1990, 313–355.
- [9] Priwitzer, B.: Large semisimple groups on 16-dimensional compact projective planes are almost simple. Arch. Math. 68 (1997), 430-440.
- [10] Priwitzer, B.: Large almost simple groups acting on 16-dimensional compact projective planes. Monatsh. Math. 127 (1999), 67–82.
- [11] Priwitzer,B.; Salzmann, H.: Large automorphism groups of 16-dimensional planes are Lie groups. J. Lie Theory 8 (1998), 83–93.
- [12] Salzmann, H.: Compact 8-dimensional projective planes with large collineation groups. Geom. Dedicata 8 (1979), 139–161.
- [13] Salzmann, H.: Automorphismengruppen 8-dimensionaler Ternärkörper. Math. Z. **166** (1979), 265–275.
- [14] Salzmann, H.: Compact 8-dimensional projective planes. Forum Math. 2 (1990), 15-34.
- [15] Salzmann, H.: Characterization of 16-dimensional Hughes planes. Arch. Math. 71 (1998), 249–256.
- [16] Salzmann, H.: Compact 16-dimensional projective planes. Results Math. **35** (1998), 192–196.
- [17] Salzmann, H.: Large automorphism groups of 16-dimensional planes are Lie groups, II. J. Lie Theory 9 (1999), 481–486.
- [18] Salzmann, H.; Betten, D.; Grundhöfer, T.; Hähl, H.; Löwen, R.; Stroppel, M: Compact Projective Planes. W. de Gruyter, Berlin-New York 1996.
- [19] Stroppel, M.: Quasi-perspectivities in stable planes. Monatsh. Math. 115 (1993), 183–189.

Received November 15, 1999