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The concluding section Principles of classification of the book [18] on compact projective
planes contains an outline of how a classification of 16-dimensional planes admitting a
group A of dimension dim A > h (where h is at least 35 ) might be accomplished. In the
second part, proofs of several claims (of Proposition 87.4 in particular) have been indicated
only very sketchily; some details will be supplied in the following, compare Theorem A
below. Implications of Theorem A will be discussed elsewhere.

The automorphism group ¥ of a compact plane P will always be taken with the
compact-open topology. Only closed subgroups A of ¥ will be considered, A is then a
locally compact transformation group of the point space P.

Theorem L. If dimA > 29, or if A is connected and dim A > 27, then A is a Lie
group.

This suffices for all classification purposes. A weaker result is given in [18] (87.1). For
proofs see Salzmann [17] and Priwitzer-Salzmann [11].

From now on, assume that P is a compact 16-dimensional space, and that A is a
connected Lie group. By the structure theory of Lie groups, there are 3 possibilities: A is
semi-simple, or A contains a central torus subgroup, or A has a minimal normal vector
subgroup © = R?, compare [18] (94.26). In the first two cases, the results mentioned in
[18] (87.2 and 3) have been improved in the meantime:

Theorem S. Let A be a semi-simple group of automorphisms of the 16 -dimensional plane
P. If dim A > 28, then P is the classical Moufang plane, or A = Sping(R,7) and r <1,
or A 2 SL3H and P is a Hughes plane as described in [18], §86.
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The proof can be found in Priwitzer [9], [10].

Theorem T. Assume that A has a normal torus subgroup © = T. If dim A > 30, then
© fizes a Baer subplane, A’ = SL3H, and P is a Hughes plane.

This is proved in Salzmann [15].

Hence only the case Rt = © < A has to be considered. For convenience, the classical
Moufang plane over the octonions will be excluded from the discussion. So-called stiffness
theorems on the size of the stabilizer of a quadrangle play a decisive role:

(1) Suppose that the fized elements of the connected closed subgroup N of A form a non-
degenerate subplane £ .

(a) If dimA > 11, or if £ is a Baer subplane, then N is compact.

(b) If N is compact, or if N is a Lie group and & is connected, then N = Go, or
A= SU3C, or dimA < 7.

(¢) If N\ is a compact Lie group and dimA < 8, then A =2 SO4R or dimA < 4.

(d) If N\ is a Lie group and £ is a Baer subplane, then N\ is isomorphic to SU;C or
dimA <1.

The first results are essentially due to Bodi [1], [2]. For (c) and (d) see Salzmann [13] and
18] (83.22).

Lemma 0. If Rt 2 © 1A and if dimA > 24, then A fizes a point or a line, say a
line W .

Proof. Grundhoéfer-Salzmann [8], Proposition XI.10.19.

Theorem A. Assume that A is not semi-simple and that P is not a Hughes plane. If
dim A > 33, then, up to duality, A has a minimal normal subgroup © = Rt consisting of
azial collineations with common axis W . Either © < A, w1 is a group of homologies and
t =1, or © is contained in the group T = Ay w) of elations with aris W .

Remarks. This has been stated in [18], p. 587 under the stronger hypothesis dim A > 36.
The theorem does not assert that every given minimal normal subgroup is axial. The proof
is fairly easy for ¢ < 8 and rather involved for even t > 8. The different cases will be
treated in separate propositions. The result may well be true for even smaller dimensions
of A, but a proof would become unreasonably complicated.

A group = of collineations is called straight if each point orbit z= is contained in some
line. The following result (Stroppel [19] Lemma 3 or Priwitzer-Salzmann [11], Th. B) is a
clue to the proof of the existence of axial collineations:

Baer’s theorem. If = is a straight subgroup of A, then = is contained in a group A[,
of central collineations with common center z, or the fired elements of = form a Baer
subplane F= of P and = is compact by (1).
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Corollary 1. If TI=R and I is straight, then NN < A, 41 for some center z and axis A.

Proof. Note that I is not compact. By the dual of [18] (61.8), all elements in 1 have the
same axis. O

Corollary 2. If © =2 R, and if each one-parameter subgroup N of © is straight, then
© satisfies the assertions of Theorem A.

Proof. By [18] (61.7), the center map © \ {1} — P is continuous, and the centers of all
one-parameter subgroups of © form a compact and connected set Z. Commutativity of
© implies that either 7 is a single point, or Z is contained in the common axis W of all
elements of ©. The dual is also true. If there exist homologies in ©, then t = 1 by [18]
(61.2). O

Corollary 3. If © 2 R? is a minimal normal subgroup of A and if some one-parameter
subgroup T of © is straight, then © satisfies the assertions of Theorem A.

Proof. Let Tl < A[, 4 as in Corollary 1, and assume that A fixes the line W. Commu-
tativity of © implies that 22 = 2z or 22 C A. If A=W, then © = ©r4) by minimality
of ©. If A# W, then 22 C W and hence 22 = z. This case is dual to the first one. [

Lemma 1. Assume that the one-parameter subgroup Il of © is not straight. Then there is
an orbit b which generates a connected subplane; its closure will be denoted by £ = (b").
For p € M\ {1}, the stabilizer A, in the action of A on © is the centralizer of T, and
the connected component N of Ay , induces the identity on €. Hence () applies, and the
dimension formula [18] (96.10) gives

(%) dim A = dim b + dim ¢®* + dim A < 16 + ¢ + dim A. O

Proposition 1. If t < 8 and if some one-parameter subgroup I of © 1is not straight,
then dim A < 32.

Proof. Use Lemma 1. If A 2 Gg, then dim & = 2 by [18] (83.24), and £ consists of all fixed
elements of A. Moreover, A acts trivially on © because A fixes p and each non-trivial
representation of Go is at least 7-dimensional [18] (95.10). The connected component ©,'
of the stabilizer ©; is contained in the compact group A, hence ©,' = 1, dim®; = 0,
and dimb® = t. Since © centralizes the group A, the fixed plane £ of A is ©-invariant.
Consequently »© C &, and it follows that ¢ < 2 and dimA < 32. In all other cases
dimA <8 by (1), and dim A < 32. O

Proposition 1 and Corollary 2 imply that Theorem A is true in the case ¢ < 8 and
dim A > 32.

Lemma 2. Let RE 2 © <A and R =M < ©. Assume that dim A > 32, and that the
orbit b" is not contained in any line. Then ©, = 1 and 8 <t < 16. Moreover, the orbit
b® is not contained in any proper closed subplane of P, and Ay acts effectively on © .
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Proof. Proposition 1 shows that ¢ > 8. Let F = (b®) be the smallest closed subplane
containing b®. Note that F is connected and Ay-invariant, and that O fixes F pointwise.
From (x) it follows that 17 — ¢ < dimA. Obviously, 8 C F and ©,! <A. If dimF = 2,
then ¢t — 2 < dimA and 15 < 2dimA. Therefore, dimA > 8, and A is compact by (I).
Now Gbl = 1 and dimb® =t < 2, a contradiction. If dimF = 4, then A, induces on
F a group Ap/P of dimension at most 8 (see [18] (72.8) and note that A, < Ay and
b ¢ W). The kernel ® of this action satisfies dim® > 8. The connected component of
® is isomorphic to Go by (), but this would imply dim F = 2, see [18] (83.24). Hence
dimF > 8 and F is a Baer subplane or F = P, for short, F <« P. According to [18]
(83.6), the group ©y is compact, and then ©, = 1. Suppose, finally, that F < P. Then
t = dimF = 8, and A induces on F a group I & A,/ of dimension diml > 14
(note that dim® < 3 by (1),(d). Hence dim'® > 22, F is isomorphic to the quaternion
plane, and © acts on F as a group of translations, see [18] (84.13) or Salzmann [14]. This
contradicts the assumption that " is not contained in a line. Il

Note. For the proof of Theorem A in the case ¢ > 8 it is essential that © is chosen as a
minimal normal subgroup. Write = = Cs © for the centralizer of ©. Then ' = A/= is an
irreducible subgroup of GL;R. The structure of such groups is well known, compare [18]
(95.6). In particular, the commutator subgroup I'" is semi-simple, and I' is the product
of " and the center Z of I'. The irreducible representations of almost simple groups in
dimension at most 16 are listed in [18] (95.10). Extensive use will be made of this list,
compare also Bodi-Joswig [3]. Whenever X is an almost simple factor of I, the dimension
of a minimal X-invariant subgroup of © divides ¢ by Clifford’s Lemma [18] (95.5). If ¢ is
odd, then " is also irreducible and dimZ < 1. Hence these cases are less difficult, they
will be discussed next. A special argument is needed for large values of ¢.

Proposition 2. Ift < 15 and t is odd, and if dim A > 32, then © satisfies the assertions
of Theorem A.

Proof. As in Lemma 2, assume that the orbit " is not contained in a line. Since A,
acts effectively on ©, the Note shows that dim[’ > 16, and A is mapped injectively
into . Now let ¢ = 9. From (x) it follows that dimA > 8, and (}) implies that
AN =2 SU3C or A =2 Gy. Therefore, dimA < 39 and diml < 30. Moreover, A acts on
a 6- or 7-dimensional subspace of © and fixes a complement, see the List [18] (95.10).
By Clifford’s Lemma, A is properly contained in an almost simple factor T of ', and T
acts effectively and irreducibly on ©. Noting that 8 < dim T < 30, the List shows that
T = PSL3C, but this group does not contain A. Hence ¢t € {11,13}, and ¢ is a prime
number. Clifford’s Lemma implies that " is almost simple. Since dim [’ > 3, it follows
from the List that dim [’ > 55, an obvious contradiction. U

Lemma 3. A group A of dimension > 31 fizes at most one point a ¢ W . Assume
that t > 12and that Oy # 1. Let L be a line such that LNW = u # u®. If L does
not contain the exceptional point a, then ©r = 1 and dimL® > 12. Hence L° is not
contained in any proper closed subplane of P, and Ay acts effectively on ©.
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Proof. The first assertion follows immediately from (f) and the dimension formula. Either
(L®P) = Q is a closed subplane, or L® is contained in a pencil £, and 2® = x. Suppose
that 2 # z. Then ©, induces the identity on the connected subplane D = (z2,u®).
By the dimension formula, 12 < t = dim«® + dim®,,, and dim®, > 4. Since ©, is not
compact, (1) implies dim®,, < 7, and dimu® > 5. Consequently, D = P and ©, = 1.
This contradiction shows that z® = z is the unique point a. Hence L # au leads to
the first alternative, and ©7 acts trivially on Q. Either dim©z > 8 or dim L® > 4 and
Q <+ P. In both cases, ©r, is compact by (f), and then © = 1. Consequently, Q = P
and Ay NCs© = 1. O

The lemma leads to a useful modification of condition (x):

Proposition 3. In the situation of Lemma 3, each one-parameter subgroup Tl of © has

some orbit b which is not contained in any line. If uw and L are chosen as above, let
0eN<O,, 0#1. Then ©,<H=A;0, dimg" <dim©, <8, and

(+¢) H<A, dimA/H<16—t, and dimH < 16 + dim " + dim K < 24 + dimA,

where K denotes the connected component of Hy , = Ay N Csyll and A has the same
meaning as in Lemma 1.

Proof. Because Ay, fixes the point u and © is commutative, ©, is invariantin H= Ay 0.
By assumption, ©, < © and © is a minimal normal subgroup of A. Moreover, dim©, >
t —8 > 4. Consequently, H# A. From Ap N © =1 it follows that dimH = dim Ay + ¢,
and the dimension formula shows dim A = dim Az + dim L? < dim Ay + 16. Therefore,
dim A —dimH < 16 — ¢. Since dimb" < 16, the last inequality in (x*) is immediate from
the dimension formula. O

Proposition 4. Suppose that dim A > 31 and that u® # u € W = W2. If dimA > 8,
then N = Gg by (1), and the centralizer X = Csg/\ has dimension at most 2. Moreover,
te€{1,2,8,9}.

Proof. Use the same notation as in Proposition 3. By assumption, 1 < X and dimX > 1.
The orbit v* is contained in the 2-dimensional subplane £ of the fixed elements of A.
Obviously, X' < © NA = 1. Therefore, dimX < 2. From [18] (95.3 and 10) it follows
that the complement of X in © has a dimension divisible by 7. Hence the proposition is
true unless ¢ > 15. Then Proposition 3 applies, and the first statements of (xx) exclude
the possibility ¢ = 16. In the case t = 15, condition (**) implies that dim A < 39. Hence
A induces on © an irreducible group I of dimension at most 24. According to the note,
" is irreducible on ©, and A is properly contained in I". By Clifford’s Lemma, [’ is
almost simple. Inspection of the List [18] (95.10) shows that there is no group with these
properties. U

Propositions 3 and 4 imply:
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Corollary 4. If t > 12, then dim A < 48 —t or © satisfies the assertions of Theorem A.
Corollary 5. If t =16 and dim A > 32, then © =T is a transitive elation group.
Proposition 5. If t =15 and dim A > 32, then © is a group of elations.

Proof. Assume that u® # u for some point u on the fixed line W of A. Then dim A = 33
by Corollary 4, and Propositions 3 and 4 give dimH = 32 and A = SU3C. Moreover, (*x* )
implies dim o™ = 8 for each admissible p. Hence Ay is transitive on ©, = R®. With
[18] (96.22) or the List (95.10) it follows that the commutator subgroup T of Ay is
isomorphic to SU4C. According to the Note and to Clifford’s Lemma in particular, T is
properly contained in an almost simple factor of [ & A/Cs©. This implies dim I > 21
and dim A > 36, a contradiction. O

Lemma 4. Let p and q be prime numbers. A semi-simple irreducible subgroup G of
SLpgR has not more than two almost simple factors.

Proof. G is either almost simple or a product of two proper semi-simple factors A and
B such that B < CsA. Let U be a minimal A-invariant subspace of V = RP?. If
U=V, then B<H* by Schur’s Lemma [18] (95.4). Hence 4|pg =4 and G = SO4R. If
U <V, however, then A acts effectively on U (because the fixed elements of the kernel of
the action of A on U form a G-invariant subspace of V'). Clifford’s Lemma shows that
dimU € {p, ¢} and that A is almost simple.

Alternative proof (suggested by the referee). All semi-simple irreducible subgroups G of
SL;R have been determined by Dynkin [5/6] Th. 1.5: either G is maximal in SL;R or in
a symplectic or orthogonal group, and the claim follows from Theorems 1.3 and 1.4, or G
belongs to a long list of exceptions, but these are even almost simple. O

The following well-known theorem will be needed several times:

Complete reducibility. If a semi-simple group G acts on a real vector space V , then
each G -invariant subspace of V' has a G -invariant complement in V .

This follows directly from an analogous result about representations of semi-simple Lie
algebras, see e.g. Bourbaki [4] 1.6.2 Theorem 2, p. 52 or Freudenthal-de Vries [7] § 35 or
§ 50.

Proposition 6. If t =14 and dim A > 32, then © is a group of elations.

Proof. Assume that © does not act trivially on W. Put again = = Cs ©.

(a) Corollary 4 shows that dim A < 34. According to Lemma 2 and the Note, the stabilizer
Ay acts effectively on © and may be considered as a subgroup of ' = A/=, and the semi-
simple commutator group " satisfies 15 < diml’ < 20. No almost simple group with
dimension between 15 and 20 has an irreducible representation in dimension 7 or 14.
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Therefore, Lemma 4 implies that I’ is a product of exactly two almost simple subgroups
A and B. Let dimA < dimB. Then dimB > 8, and B acts effectively and irreducibly on
R”. By the List, dimB = 14, and B is one of the two simple groups of type Go. (Later it
will be seen that B is in fact the compact form.) As in the proof of Lemma 4, it follows
that A acts effectively on R2. Consequently, A = SLoR and dim [’ = 17, moreover, the
center Z of I' consists of real dilatations of ©, see [18] (95.6).

(b) The last statement gives diml < 18 and dim= > 15. On the other hand, dim= < 16
since dimA/= > dim Ay > dim A —16. Therefore, = is contained in the radical VA, and
a maximal semi-simple subgroup W of A is locally isomorphic to .

(c) The group A has a subgroup A of codimension 3 which induces on © the group BZ
and acts on a 7-dimensional subgroup N of ©. Note that dim Ab >14. If Ab is transitive
on N, then it is also transitive on the 6-sphere consisting of the rays in N, and Ay contains
the compact group Gy, compare [18] (96.19 and 22). If Ay is not transitive on N, then for
some p € N the connected component A of Ab,g is at least 8-dimensional, and (f) shows
that A = SU3C. This group is not contained in the non-compact group Gz(2). Therefore
B is compact, and steps (a) and (b) imply ' = A x B = SLyR x Gy &= V.

(d) Because A, — I and diml/A, < 1, it follows that Go =2 B < Ap. One can
now conclude that A, acts irreducibly on ©. In fact, the action of B and complete
reducibility force a proper Ap-invariant subgroup N of © to be 7-dimensional. Lemma 1
with o € N gives dim Ay, > 10 and then A = Gg, but this contradicts the fact o = p.
As a consequence of [18] (95.6(b)), even the action of the semi-simple group A on © is
irreducible, hence dim Ay’ =17 and Ay = V.

(e) In particular, the involution in A corresponds to an involution « in the center of Ay. By
[18] (84.9), the group B = Gy cannot act on a Baer subplane. Consequently, a is a
reflection, see [18] (55.29). Because of (1), the group A acts effectively on the 2-dimensional
plane & = Fg of the fixed elements of B. If A would fix a flag in £, then A would be
solvable by [18] (33.8). Therefore, b and W are the only fixed elements of A in £, and
o € Ap,w. Since ©, = 1, it follows from [18] (61.19b) that a®« is a 14-dimensional

subset of T = Ay, w). Note that OT < VA and that dim+/A < 17. Minimality of ©
implies © < T. U

Proposition 7. If t =10 and dim A > 32, then © is a group of elations.

Proof. From (%) and Proposition 4 one obtains 17 < dim Ay < dim ¢®* + dimA < 10 + 8.
Either A is transitive on ©, or A & SU3C and dim p®* = 9 for some p € ©. In the
first case, Ay would contain the group SUsC, and dim A, would be to large, compare [18]
(96.16—22). Similarly, A, cannot be transitive on a 9-dimensional subspace of ©. Hence
Ay acts effectively and irreducibly on ©. Since each non-trivial representation of SU3C
on O is either 6- or 8-dimensional, it follows from Clifford’s Lemma that A is not normal
in Ay. Therefore, A is properly contained in an almost simple and irreducible factor X of
Ay, and X = Ay by Schur’s Lemma [18] (95.4). The List shows that A must be locally
isomorphic to SL4R or to SLyH, but these groups do not contain SU3C. O
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The only remaining cases ¢ = 8 and ¢t = 12 are more difficult. If the given group © does
not consist of elations, it will be shown that some other normal vector group © of A
satisfies the conditions of Theorem A.

Proposition 8. If t = 8 and dimA > 32, then either © or some minimal normal
subgroup © = R” consists of elations.

Proof. (a) According to Corollary 3, we may assume that for each one-parameter subgroup
M < © there is some point b such that b" generates a subplane. Lemma 1 then shows that
the connected component A of A, N Csll has dimension at least 9, and A = Gy by (1).
Consider the action of the connected component B of A on the 7-sphere S consisting of
the rays in ©, and let 7,7’ denote the two opposite rays contained in I1. Since dim B > 17
and dimB, /A < 1, it follows that 78 is a connected set of positive dimension. For each
s € S\ {r,r'}, the orbit s" is a 6-sphere, and r® is a connected union of A-orbits.
Consequently, r® contains an open neighbourhood of 7 in S, and r® is open in S, see
also [18] (96.25). The dimension formula implies dimB/A > 7 and 21 < dim A, < 22.

(b) In particular, r2 is open in S, and this is true for each ray r € S because step (a) is

valid for an arbitrary choice of . Therefore, A acts transitively on S. Put = = Cs© as
in the Note. Then I = A/= is the effective group induced by A on ©. Remember from
Lemma 2 that A is embedded into I'. Step (a) and Lemma 1 imply 21 < diml < 30.
According to [18] (96.19), a maximal compact subgroup ® of I acts transitively on S,
and from [18] (96.20) it follows that ¢ is isomorphic to a subgroup of SOgR. Moreover,
® has a subgroup A = G,. There are only two groups ® which satisfy these conditions,
viz. ® = Spin,R and ® = SOgR, see [18] (96.21 and 22). The centralizer of ® in GLgR
is isomorphic to R* , and the remarks in the Note show that ' is the product of & =1T"
and the center Z of I'. By [18] (94.27), the group A contains a subgroup W which is a
covering group of . In fact, W is simply connected, since A cannot contain a group
SO~R, see [18] (55.34 or 40).

(c) Assume that dim " > 21. Then W 2 SpingRR, and the center of W contains 3 reflections
a, o, and ao with centers a, u, and v. By (1), the stabilizer V of the triangle {a,u,v}
satisfies dimV < 30, and V < V < A. It suffices to consider the case A = VO. Note
that A is not transitive on W (otherwise A would induce on W the group SOgR). On
W \ v the action of W is equivalent to a linear action, and for each z # u,v the orbit 2V
is a 7-sphere, compare [18] (96.36). Hence z” is open in W whenever z2 # z¥ | see also
[18] (96.25). If vA = v, then u® = u® is open in W, and 6% = {9197 | ¥ € ©} would
generate a transitive group of elations with axis av in ©. Therefore u® # u and v© # v,
and W contains some orbit z® = Z ~ S7. This leads to a contradiction as follows: Since
29 is W, -invariant, the argument of [18] (96.25) shows that either 2z® = 2 or 2 is open
in Z. Because V is transitive on Z and © is normal, all ©-orbits in Z are equivalent.
The commutative group © cannot be transitive on Z. Therefore the orbits are points,
Olz = 1, and © would act freely and transitively on az \ {a,z} ~ R® \ {0} which is
impossible.

(d) The last steps imply W = " 2 Spin,R. Since 21 < dim A, < dim[ < 22, and since
Spin,R has no subgroup of codimennsion 1, the covering group W of " can be chosen
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in Ay. Hence Ay 2 Spin,R. Now it is not difficult to determine the structure of A. Put
again = = Cs ©. Lemma 2 implies =, = 1 and dim= < 16. On the other hand, the bound
on dim [ gives dim= > 11. Consider the group T = =N Cs V¥ and note that A < W. The
orbit b7 is contained in the 2-dimensional fixed plane Fp. Consequently, dim T < 2. Let
V act on the Lie algebra [=. By complete reducibility, [© has an invariant complement
nin [=, and dimn > 2. If dimn < 7, the representation of Spin,R on n is trivial and
n=1[7T, a contradiction. Hence dim n > 7 and dim= € {15,16}. Because VN= < =, =1,
we may assume that A = W=.

(e) The central involution ¢ of W is a reflection, its axis K is different from W (or else
0% = © would consist of elations). If dim= = 15, then n = R” and V¥ induces on
n the group SO7R. Therefore n is the Lie algebra of N = = N Cs o, moreover, = is a
vector group and N is A-invariant. Proposition 1 shows that © = N is an elation group
as required.

(f) Finally, let dim= = 16. Because =, = 1, the orbit b= is open in P by [18] (96.11(a)).
Note that b = b. If £ € = and b€ € K, then é0é o € =, = 1 and o0& = £o. This
gives =g = =N Cso and dim=x = 8, moreover, = = =g X ©. Under the action of V,
the group =g splits into a one-parameter group and a 7-dimensional vector group © on
which W induces a group SO7R. Obviously, © is W=- and hence A-invariant, and © is
an elation group, again by Proposition 1 and Corollary 2. O

Proposition 9. If t = 12 and dim A > 32, then A has a normal vector subgroup o
consisting of elations. (© may be different from ©).

Proof. Assume that © is not contained in the elation group T = Apy,wq, and use the
notation introduced in Proposition 3.

(a) Propositions 3 and 4 imply that 29 < dimH < 32. Consider a minimal H-invariant
subgroup M of ©, and let 1 # p € 1 < M. Then H and Aj; act irreducibly on
M D ", and dim g" > 5 by (x*). Remember from Lemma 2 that ©, = 1. Consequently,
dimb" > 4 and (M) = B is at least 8-dimensional (B<eP). Statement (d) of (1) shows
that dim(H, N Cs M) < 3, and H induces on M a group of dimension at least 10. If K
denotes again the connected component of Hy N Cs 1, then dimK < 8 by Proposition 4.
The following will be shown in the next steps: M = ©, =~ R8 and A does not act
effectively on M.

(b) If M = R®, then (*+) and (}) imply K & SU3C. This group does not admit a non-
trivial representation in dimension < 6. Hence K < CsM contrary to what has been
stated in (a).

(c) In the case M = R® | the same argument shows that dim K < 8 (note that the action of
K on M is not irreducible, since I is K-invariant). Consequently, dimH, = 13 by (*x),
moreover, dim g"H® = 6 for each choice of g, and Hy acts transitively on M\ {1}, see [18]
(96.11(a)). Let W = Hp|m denote the effective group induced on M. Since WV is irreducible
and dim V¥ < 13, the List of representations shows V' = SU3C, and dim WV = 10. Hence
Hp has a normal subgroup ® = SU,C acting trivially on M, cf. step (a) and ()(d). The
involution w € ® fixes a Baer subplane F,, and the orbit b is contained in the pointset
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F of F, = B. Since Hy < Csw, the group W' acts non-trivially on B and, therefore, on
S =FNW =S4, but this contradits Richardson’s theorem [18] (96.34).

(d) Finally, let M = R”. Steps (b) and (c) imply that H, acts irreducibly on M, and
(+x) shows that dimHp < 15. Again, W = Hy|u is at least 10-dimensional. According to
the Note, W’ is an almost simple group of type Gs. By complete reducibility, M has a
W'-invariant complement N 22 R% in ©. If (M) = B is a Baer subplane, then W'M is a
21-dimensional automorphism group of B, and B is isomorphic to the quaternion plane
‘H, see Salzmann [12], cp. also [18] (84.21(b)) or Salzmann [14], but H does not admit
a group of type Go. Hence (M) = P and W' is a subgroup of H,. The List shows that
W’ centralizes N. Therefore, W' induces the identity on bN. Because (M) = P, there
is some point ¢ € ™ such that (BN,c) = P. Consequently, ¥/ = 1, but dimV¥’ > 7, a
contradiction proving the first statement at the end of step (a).

(e) Suppose now that Afp acts effectively on M = R®. By assumption, this action is
irreducible. The structure theorem [18] (95.6(b)) shows that the commutator subgroup
T = A[ is semi-simple and that the center Z of Ay, consists of real or complex dilatations
of M. There are two possibilities: (7) the action of T on M is irreducible, and (#) M is
a direct sum of two 4-dimensional subspaces M,, and T acts equivalently and effectively
on the spaces M, . Note that dim Az > 17 and dimT > 15. The action of the semi-
simple group T on © is completely reducible. Hence there is a T -invariant complement
N=TR* of M in ©. In case (i), the group N is even Ay -invariant: in fact, for each ¢ € Z
the subspace NCN is invariant under T and at most 8-dimensional, hence it has trivial
intersection with M. Choose a one-parameter group E in N and a point p such that
(pF) = & is a subplane. Remember that H = A;© has dimension at least 29. Consider
the connected component K of H, N CsE. The dimension formula gives dimK > 9,

and (1) shows that K 2 Gy, but then Proposition 4 would imply ¢ < 9. Case (ii) also
leads to a contradiction: T is semi-simple and effective on R*, therefore, T = SL4R and
dim T = 15, moreover, Z = C* and Z has a subgroup P = R c0n31st1ng of real dilatations.
The group H = TPO acts on M, = R%. Choose ¢ € M,, and write K for the connected
component of Hb o- Then dimK > 8, and K= SU3C by (1), but the latter group is not
contained in the maximal semi-simple subgroup T of H. This proves the last claim of
step (a).

(f) The group M = R® acts transitively on the affine line pencil £, \ {W} = L} ~ R®:
in Lemma 3 it has been shown that © = 1 for each line L € £; with at most one
exception au. By [18] (96.11), each non-trivial orbit LM is open in £ and homeomorphic
to R®. Hence M is sharply transitive on £* or on £\ {au}, but the latter space is not
contractible.

(g) According to (e) there is an element o # 1 in A;NCs M, and (f) implies that « fixes
each line in £, . Consequently, « is an axial collineation with center u and some axis A.
If o is an elation, i.e. if u € A, then A =W (since oM = «), and a® is a 4-dimensional
subset of T. Because the elements in o® have different centers, T is commutative. Any
minimal invariant subgroup of T may be chosen as the group ©.

(h) Now let a € Ay, 4] be a homology. Since u® # u, Hihl’s results on the generation
of elations by homologies can be applied. In its simplest form, Hahl’s theorem says the
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following:

(o) If T is a Lie subgroup of 4, if Tic.a) # 1 for some center ¢ ¢ A, and if E is the
group of elations in T with azis A, then dimE = dim ", see [18] (61.20) for a proof. Note
that commutativity of E is not known if ¢' is contained in a line.

(i) Suppose that © <T=A4, and put ANW =v. Then (e) shows that dim A, 41> 4.
Moreover, dimu® = 4 implies that the commutator set [a, 0] = {a™'a? | ¥ € O} C Oy
is at least 4-dimensional. Since © is commutative, all elements in ©4) have the same
center z € W, and dim©4 < 8. By [18] (61.2), a group of homologies has a compact
subgroup of codimension at most 1, but © is a vector group. Hence ©4) = O, 4] consists
of elations. Because © is a minimal normal subgroup of A, the group ©[4; is not normal,
and, therefore, A® # A. Since A® = A and © is normal, © fixes each line in the orbit
A2 . On the other hand, all fixed lines of the elation group ©(4) pass through the center
v. Consequently, A2 C £, and © = O[v,v] is an invariant elation group.

(j) Only the possibility A® # A remains. The strategy in this case is to apply the dual
(e) of () to the group Q generated by « and the connected component of A, . Assume
first that A? = A. Because dim(©, U®,4) < 12, there is an element ¥ € © such that
v’ = 2z # u and A% # A. Remember that © < A and that dimu® = 4. Therefore,
22 C u® and dimQ, > 21. Let a € A\ W, a ¢ A?. Then the connected component
A of Q, , satisfies dimA > 13, moreover, A < Q% < Ao, and A fixes a non-degenerate
quadrangle. Now (1) implies A & G,. By assumption, [ = A/Cs© is an irreducible
subgroup of GL13R, and diml < 24 by Corollary 4. Since A < I’ it follows from [18]
(95.6) that I'" is almost simple and irreducible on ©. Hence " 2 Spin,R, but, according
to the List, this group does not have an irreducible representation in dimension 12.

(k) Consequently, A? # A, and then dimAp,,) > dim A% > 0 by (). If some one-
parameter group in A, ,) has an affine axis, then, because of (f), all groups Ay, z; with
L € £, \ {W} have the same positive dimension, and the dual of [18] (61.12) implies
Apw & R®. Since u® # wu, it follows that T is transitive. If each one-parameter
subgroup of Ap,,) has axis W however, then dimA[, y;; > 0 for each center z € ul.

Hence dim T > 4, and T contains a normal subgroup © as claimed.

Theorem A is now an immediate consequence of the propositions.
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