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Abstract. This paper contains a proof of the following result which is an extension
of the main result in [5], to the general case of real flag manifolds (also called R-
spaces or orbits of s-representations).

THEOREM. Let M be a real flag manifold and let j : M — p its canonical embed-
ding. Let X [M] C RP™ ', (n = dim M) be the variety of directions of pointwise
planar normal sections at a point of M and let X.[M] C CP" ! be the natural
complezification of X [M]. Let x denote the Euler-Poincare characteristic then

i) xX[M])= x(RrRP")
(i) x(Xc[M])= x(CP"!)= n.

0 n even
1 n odd

MSC 2000: 53C30, 53C42.

1. Introduction

In [5] we introduced the variety X [M] of directions of pointwise planar normal sections and
its natural complexification X, [M], of a natural embedding of a real flag manifold (also
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called R-spaces or orbits of s-representations). That paper continued the pioneering work
of B. Y. Chen [3] and other authors ([4], [6] etc.) on normal sections of submanifolds of
Euclidean spaces. X [M] is a real algebraic variety in the real projective space RP™~! and
X.[M] is a complex variety in CP"~! where n is the dimension of M. To some extent, they
measure the differences between the given manifold M and a symmetric real flag manifold.
The varieties X [M] C RP"! and X.[M] C CP"! are quite different from their ambient
projective spaces however, surprisingly, the main result in [5, p.224, (1.2)] is the following

Theorem 1. Let M™ = G/K be a complex flag manifold and let j : M — g be one of the
natural embeddings of M in the Lie algebra g of G. Let X [M] C RP™! be the variety of
directions of pointwise planar normal sections at a point p € M and X.[M] C CP"! the
natural complexification of X [M]. If x denotes the Euler characteristic then

(1) X(X[M]) = x(BRP") =0
(ii) X (X[ M]) = x(CP"1') =n =dimM.

The methods of [5] were not sufficiently strong to get this result for the general case of real
flag manifolds (R-spaces). The objective of the present paper is to give a proof of this result
in the general case.

Our result is the following

Theorem 2. Let M™ be a general real flag manifold (also called R-space or orbit of an s-
representation) and let j : M — p be its natural imbedding. Let X [M] C RP™ ! the variety
of directions of pointwise planar normal sections at a point p € M and X, [M] C CP" ! the
natural complexification of X [M]. If x denotes the Euler characteristic then

B XX = ety ={ 9 dm A e
(ii) X (X.[M]) = x(CP"1) =n= dimM.

As we indicated above this result contains the previous one since every complex flag manifold
is an even dimensional real flag manifold.

The paper is naturally divided into two parts considering the real and complex cases
which require different arguments.

The next section contains the required notation and basic results. Section 3 contains the
required arguments for the real case and Section 4 the proof of the first part of the main
theorem. Sections 5 and 6 are devoted to the complex case.

2. Basic facts

In the present section we introduce some of the basic notation to be used throughout the
paper. All unexplained notation will have the same meaning as in [5].

Let M be a Riemannian manifold. Let j : M — R" be an isometric immersion and p a
point in M. We may identify a neigborhood of p with its image by j and consider, in the
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tangent space T}, (M), a unitary vector X. If T, (M)L denotes the normal space to M at p,
we may define an affine subspace of RY by

S(p,X)=p+ Span {X,Tp (M)L}

If U is a small enough neigborhood of p in M, then the intersection U N S (p, X) can
be considered the image of a C™ regular curve =y (s), parametrized by arc-length, such that
v(0) =p, 7/ (0) = X. This curve is called a normal section of M at p in the direction of X.
In a strict sense, we ought to speak of the “germ” of a normal section at p determined by
the unit vector X. A change in the neigborhood U will change the curve; however, this new
curve will coincide with 7 in the proximity of zero. Since our computations with the curve
are done at the point p, we may take any one of these curves. We may also assume that j is
an embedding.

Following B. Y. Chen, we say that the normal section v of M at p in the direction of
X is pointwise planar at p if its first three derivatives v (0),~"” (0) and " (0) are linearly
dependent, i.e. if v/ (0) A¥" (0) A" (0) = 0.

In [5] we studied the pointwise planar normal sections of an orbit of an s-representation
(i.e. of the natural embedding of an R-space or real flag manifold). In order to mention one
of the results obtained there, we need to recall some strictly necessary notation.

Let j : M — RY be the natural embedding of an R-space and let V denote the Rie-
mannian connection associated to the metric induced from the Euclidean metric (.,.). Let
V¢ denote the canonical connection associated to the “usual” reductive decomposition of the
Lie algebra of the compact Lie group defining M. Let D = V — V¢ denote the difference
tensor and a be the second fundamental form of the embedding j. The indicated result is
the following.

Theorem 3. [5, (2.5)] If j : M — R" 1s the natural embedding of an R-space and p is a
point in M, then the normal section v with vy (0) = p and ' (0) = X is pointwise planar at p
if and only if the unit tangent vector X at p satisfies the equation

a(X,D (X, X)) =0.

Given a point p in the R-space M we may consider, in the sphere of radius 1 in 7, (M), the
subset R
Xp M| ={X eT,(M):[|X||=1, o(X,D(X,X))=0}. (1)

Since X € )?p [M] clearly implies —X € )?p [M], we may take the image X, [M] of this set in
the real projective space RP™"~!. Since M is an orbit of a group of isometries of the ambient
space RY, it is clear that X, [M] does not depend on the point p and we may denote it by
X [M]. Tt is not hard to prove [5, p.227, (2.9)] that X [M] is a real algebraic variety of RP"!
defined by homogeneous polynomials of degree 3. Then X, [M], the natural complexification
of X [M], is a complex algebraic variety of CP"~!.

The necessary ingredients to construct the arbitrary R-space M and its canonical em-
bedding are the following. Let g be a real semisimple Lie algebra without compact factors, ¢
a compactly imbedded subalgebra of g and g=¢ @ p the Cartan decomposition of g relative
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to €. Let B denote the Killing form of g; then p can be considered a Euclidean space with
the inner product defined by the restriction of B to p. Let G = Int(g) be the group of inner
automorphisms of g. The Lie algebra ad(g) of G may be identified with g. This has the effect
of identifying the adjoint action of G on its Lie algebra ad(g) with the natural action of G
on g. Let K be the analytic subgroup of G corresponding to € ; K is compact and acts on
p as a group of isometries. The R-space M is, by definition, the orbit of a nonzero vector
E € pie, M = K.E. This defines also the natural embedding j : M — p of the R-space
M into the Euclidean space (p, B). We take on M the Riemannian metric induced by this
embedding. Furthermore we will assume that the natural embedding is full, i.e. j (M) is not
contained in any affine hyperplane of p.

Let us denote by Kg the isotropy subgroup of the point £ and then, as a homogeneous
space M = K/Kpg. In general the group Kp is not connected and we denote by [Kg|, its
connected component of the identity. Let €5 be the Lie subalgebra corresponding to [Kg],
in €. Let m be the orthogonal complement of ¢z with respect to the restriction of B to € (it
is negative definite on £). Then t=£;®m is a reductive decomposition, i.e. Ad(Kg)m C m.
Furthermore we have

T(M) = [m, E] = [¢, E]

and also ad(E) is one to one on m and onto Tg(M).

One has the following fundamental existence theorem.

Theorem 4. [9, p. 43] Let K/Kg be a reductive homogeneous space with a fized decomposi-
tion of the Lie algebra ¢ = tx@m, Ad (Kg)m C m . There erists a one-to-one correspondence
between the set of all invariant affine connections V¢ on K/Kp and the set of all bilinear
functions w : m X m — m which satisfy

Ad(h)w(X,Y)=w(Ad(h) X,Ad (h)Y)
for each X, Y € m and h € Kg. The correspondence is given by
w(X,Y)=(V%Y"),.

Let 7 : K — K/Kg denote the natural projection and assume that we have an invariant
affine connection V¢ on K/Kgp. We want that the connection V¢ may have the following
properties.

(A1) Let exp(tX) be the one parameter subgroup of K generated by X €m. Then 7(exp(tX))
= (exp(tX)) E is a regular curve such that its family of tangent vectors is parallel along
the curve itself.

(A2) Let us consider the curve 7 (exp(tX)) = (exp(tX)) F in K/Kpg. Let Y € m ; then the
parallel displacement of the vector Y, tangent at £, along this curve coincides with the
translation of Y by the one parameter subgroup exp(t.X).

It is clear that if the affine connection V¢ has the property (A2) then it also satisfies (Al).

Proposition 5. [11, p. 49] The invariant affine connection defined by the function w satisfies
(A2) if and only if w (X,Y) = 0 for each X, Y € m. Then on a reductive homogeneous space
there exists one and only one affine connection which satisfies (A2). It is defined by the
connection function which is identically zero on m X m.
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This invariant affine connection is called the canonical affine connection of the second kind
on K/Kpg with respect to a fixed decomposition of the Lie algebra ¢ = ¢zdm.

3. Lemmas for the real case

Let T' C [Kg|, be a maximal torus which we shall keep fixed. The torus T acts on p and
on M by isometries and we may consider in both spaces the respective sets of fixed points,
namely F' = F (T,p) and F (T, M). Of course, F is a subspace which contains the vector
E € p and F (T, M) may have several components (all of them compact, totally geodesic
submanifolds of M). Let Mg = [F (T, M)]; denote the connected component containing the
point E. It is clear that Mg = [M N F|.

At the point F we have the tangent space Tg (M) and the subspace V = Tg (Mg) C
Tg (M). It is clear that

V=A{reTg(M): Ad(g)r=2 VgeT}CF
and we can determine a subspace u C m such that
V=[uE]|.

The subspace F' is, of course, determined by our choice of the torus 7' C [Kg]|,. However
the subspace F' is a proper subspace of p for any torus 7', as the next lemma shows.

Lemma 6. For every mazimal torus T C [Kg],, F = F(T,p) G p.

Proof. Let us see first that there exists at least one maximal torus in [Kg|, with the required
property.

If for every maximal torus T' C [Kg], the subspace F' coincides with p then the subgroup
[Kg), acts trivially on p. This implies that the group [Kg|, which is normal in K is also
normal in K.

Now according to [7, p.252, 1.1,(iii)] we may write every element in G as (exp X) g for
some X € p, g € K and then

(exp X) g[Kpl, g (exp (—X)) = (exp X) [Kg], (exp (-X)).
Now for each h € [Kg]|, we have

(exp X) h(exp (=X)) = (expX)h(exp(=X))h~'h=
— (exp X) (exp Ad (h) (~ X)) h =
= (expX) (exp (=X))h = h,

and this proves that the subalgebra 5 = Lie ([Kg]|,) is a compact ideal in the semisimple
Lie algebra g which is supposed to contain no compact factors. This contradiction proves
that there is at least one maximal torus 7" such that F'= F (T,p) S p.

Now any other maximal torus in [Kj]|, is of the form gTg¢ ! for some g € [Kg],. Let

F,=F (gTg™',p), then F, D Ad(g) F because, if Y € Ad(g) F then Y = Ad(g) X for some
X € F and then for h € T

Ad (ghg™") Y = Ad(9) X =Y.
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If Z € F, then Ad(h)Ad(97')Z = Ad(¢g™')Z and so Ad(¢9~')Z € F which shows that
Z € Ad(g) F and proves that F, C Ad(g) F.

Then F, = Ad (¢g) F and this shows that if F is a proper subspace of p then so is F, and
the lemma follows. ad

Corollary 7. For any mazimal torus T C [Kg|,, [F (T, M)]; G M.

Proof. By the previous lemma, for any maximal torus 7' C [Kg|,, F' is a proper subspace of p.
If for this torus we have [F (T, M)], = M then M C F and this contradicts our assumption
that the embedding is full. O

Since V¢ is the canonical affine connection of the second kind in M the V¢-geodesics through
E in M are of the form Ad (exp (tY)) E for Y € m.

Lemma 8. For X € u, the \/¢-geodesic in M Ad (exp (tX)) E is contained in Mg for every
te R.

Proof. Let g be any element of 7. We have

Ad(g) Ad (exp (X)) E = Ad(g)Ad(exp (X)) Ad(¢7") E =
= Ad(exp (tAd(g9) X)) E = Ad (exp (tX)) E.
(

This means that Ad (exp (tX)) E € F and hence Ad (exp (X)) E € [M N F],, = Mg. O

Let us denote by Ck (T') the centralizer of the torus T C [Kg], in the group K.
Lemma 9. The group Ck (T) acts transitively on Mg.

Proof. If X € u, then the monoparametric subgroup {exp (¢X) : ¢t € R} is contained in the
group Cg (T) because all its elements commute with 7. It is well known that the group
Ck (T) is connected and therefore the orbit Ad (Ck (T)) E is connected and it is contained
in Mg. Furthermore this orbit is clearly closed in Mg by compactness.

But it is also open in My because

Ty (Ad(Ck (T)) E) 2 W, E] =V = Tg (M)

and therefore
Ty (Ad(Ck (T)) E) = Tg (M) -

This proves the lemma. a
Let ¢ C £ be the Lie subalgebra corresponding to the subgroup Ck (7). Then u C ¢. Let now
cg ={X €c:[X,E]=0}

we have the following

Lemma 10. ¢ = cg D u and this decomposition is reductive.



C.U. Sanchez et al.: Planar Normal Sections on the Natural Embedding ... 019

Proof. 1t is clear from the previous lemma that ¢ = ¢x + u and since ad (E) is injective on
u,this is a direct sum.

According to the definition [9, p. 41] we need to check that Ad(g)u C u, Vg € Ck (T)
such that Ad(g)E = E.

Since
u={Xem: Adh)X =X, VheT}.
Ad(gu={Ad(g)X e m: Ad(h)X = X, YVh e T}
but, for X € u,
Ad(g)X = Ad(g)Ad(h)X = Ad(h)Ad(9)X YheT
and then
Ad(g)uCu

and the lemma is proved. O

Let us recall that a submanifold Mg of a manifold M with an affine connection V¢ is said
to be autoparallel [11, II1, p. 32] if V¢-parallel translation in M along a curve in My always
takes vectors tangent to Mg into vectors tangent to Mg.

It is possible to “induce” an affine connection into the autoparallel submanifold called
the induced connection.

Lemma 11. Mg is VC-autoparallel in M and the induced connection coincides with the
canonical connection in Mg associated to the reductive decomposition ¢ = ¢ D u .

Proof. According to [11, p. 32, 14] M is autoparallel if and only if for each pair of fields X
and Y tangent to Mg, V&Y is also tangent to Mg.
Let a be a point in Mg. Given two fields X and Y tangent to Mg we need to prove that
V&Y, € T, (Mg).
We know that the connection V¢ is invariant by the action of the group K on M i.e. for
each g € K
dAd (9) V5Y = ViagexdAd(9)Y.

But dAd(g) = Ad(g) and therefore the invariance means
Ad (9) V&Y = Vi Ad(9)Y.
Then, for every g € T, we have
Ad(g) VLY = VLY

which shows, in particular, that
V&Y|, € F.

Since this belongs also to T, (M) we have

VY|, € FNT, (M) =T, (Mg).



520 C.U. Sanchez et al.: Planar Normal Sections on the Natural Embedding ...

We want to prove now that the induced connection coincides with the canonical connec-
tion of the reductive decomposition ¢ = ¢ @ u . Let us denote by V¢! this last connection.

It is clear now that the induced connection V¢ satisfies the axiom (A2) because the V-
geodesics in M generated by vectors in V' remain in Mg (see Lemma 8) and the V¢-parallel
translation along these geodesics is the same as in M.

Then by Proposition 5 we have

vel = ve.

This completes the proof of the lemma. O

Let us set the notation L = Ck (T) and [ = Lie (Ck (T)). Let @ C F be the subspace
generated by Mg. This subspace is clearly invariant by the group L and V C Q.

Proposition 12. We have in Q) a representation p of the group L (with induced representa-
tion p. : L = gl(Q)) and Mg is an orbit of this representation. This defines a full isometric
embedding of Mg in Q.

The second fundamental form of this embedding is parallel with respect to the canonical
connection V¢ on Mg.

Proof. Clearly the representation p : L — GL(Q) is just the restriction to L of the adjoint
representation of K on p, i.e. p(9)U = Ad(g)U Vg€ L, U € Q.

By the definition of @, the orbit M = Ad(L)FE clearly defines a full isometric embedding
of Mg into Q.

In order to compute the canonical covariant derivative of the second fundamental form
a of Mg in @@ we resort to [8, p. 359, Lemma 12| which we reproduce, with our present
notation, for the benefit of the reader.

Lemma 13. For z, y, z arbitrary tangent vectors in T (M) the following formulas hold:
(i) ap (y,2) =L [p(Y)p(2)E]
(ii) Dp(y,2) =T [p«(Y)p.(2) E]

(iif) (Vza) (y,2) =L [p.(X)ag (y,2)]
where X, Y, Z € u are such that x = p.(X)E, y = p.(Y)E and z = p.(Z2)E (z, y, z are
in Te(M), T and L indicate tangent and normal component respectively).

Now we compute the canonical covariant derivative of the second fundamental form a of Mg
in
(Vga) (y7 Z) =1 [p*(X)aE (ya Z)] v X7 Ya Z €.

To compute p.(X)ag (y, z) , we use the structure of our R-space M. Since

189) (ya Z) =1 [p*(Y)p*(Z)E]

where y = p,(Y)E and z = p,(Z)E, if € is any normal vector to My at the point E, we have

B (& p«(Y)pu(2)E) = B(=pu(Y)E, po(2) E)
= B(—p(Y)§ 2).
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Then
Agy = —p(Y)E
and we obtain
p«(X)ag (y,2) = —Aup(y,2)T-
This clearly shows that

(Vea) (y,2) =0 Vz,y, 2z € T (Mg)
and completes the proof of the proposition. O

Lemma 14. The dimensions of the manifolds M and Mg are either both even or both odd
and dim Mg < dim M.

Proof. Let us assume that the dimension of M is even and let S be the unit sphere in
Tip(M). Then dim S is odd and this implies that its Euler-Poincare characteristic vanishes
X (S) = 0. Let Sg be the unit sphere in T (Mg). The sphere S supports the action of the
torus T C [Kg|, C Kg (by the isotropy representation) and since Sg = F' (T, S) we have
X (Sg) = 0. This obviously indicates that dim Sg is odd and in turn implies that dim Mg is
even as we wanted to prove. The proof in the other case is similar. The inequality follows
from orollary 7. O

Lemma 15. X [Mg]| = F (T, X [M]).

Proof. We work at the point E. We know that Mg is a totally geodesic submanifold of M
with respect to the Riemannian connection and s/¢%autoparallel. This implies that we have
the following identities where the upper index M or My indicates that the object corresponds
to the manifold M or to Mg.

If z, y, z€ Tg (Mg) and y* is any tangent vector field in Mg such that y* (E) = y we
have

() VcMEy* _ch *’

(i) VMey* = VMy*,

(iii) DM= (y,z) = DM (y,2),
) oM (y,2) = aM (y, 2).

These last two follow from (i) and (ii), and then we get
(v) oM# (z, DM (y,2)) = oM (2, DY (y, 2))-
Let now z € X [Mg] (for definition see (1) or [5, p.227]) then Ad (9)z =z Vg € T and
oM (z, DM7 (z,2)) = 0.

(iv

By (v) we have now
oM (z, DM (z,)) = 0.

which shows that z € F(T, X [M]).

If, on the other hand we have = € F(T, X [M]) then Ad (g)z =z Vg € T which implies
z € V and since o (z, D™ (z,z)) = 0 we have by (v) a™# (z, DM# (z,z)) = 0 and then
zeX [Mg]. This yields the equality of the lemma. O
Corollary 16. x (X [Mg]) = x (X [M]).
Proof. This follows from the previous lemma and [5, p.234, (3.11)]. O
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4. First part of the proof of the main theorem

We can give now a proof of (i) of Theorem 2.

Let M be our real flag manifold and j : M — p its natural embedding. By Corollary
7 we may construct a proper submanifold M; C M (M, = Mg = [F (T, M)]z) which, by
Lemma 11, is V¢autoparallel in M and its “induced” connection coincides with the canonical
connection associated to the reductive decomposition ¢ = ¢ H u .

Furthermore there is a subspace q C p such that j (M;) C q and this is an embedding
with parallel second fundamental form with respect to the canonical connection that we have
in M; (q = Q from Proposition 12). By the main result in [10] this is equivalent to the fact
that M, is a real flag manifold and j |M; is its canonical embedding (this is full by the way
in which we constructed the subspace q). Clearly this process has lowered the dimension of
M into that of M;. By Lemma 14 the dimension of M; is even or odd in accordance with
the dimension of M.

We may start now all over again with M; instead of M and construct a new real flag
manifold M5 and continuing in this manner we may obtain a sequence of proper submanifolds

M2M 2M,2 ... 2 My,

all of which are real flag manifolds and having even or odd dimension according to that of
M itself.

This process must stop and we need to find out where. To that end let us analyze what
are the possibilities when we want to construct M,,; from M;. Let us first remark that since
J | M is in fact the full canonical embedding of the real flag manifold M, Corollary 7 implies
that if T is a maximal torus in the connected component of the identity of the isotropy group
of F in M, then

[F (T, M)y G M,

Clearly we have now two possibilities, namely

1) [F(T,, M)l = {E}
2) [F (T, M)l 2 {E}

and in any case, we define M,y = [F (T, M;)| .
In the first case (which happens only when the dimension of M is even) we have M, =
{E}, X [Msi1] = ¢ and x (X [Ms41]) = 0. From Corollary 16 it follows that

x (X [M]) =0.

Let us consider now the situation (2).

If the dimension of M is even our process of construction Mgy, ..., M, may continue
until we reach a ¢ such that dim M, = 0 and then we are back to case (1) above.

If on the other hand dim M is odd, since dim M, — dim M,,; = 2r > 0, we could not
end with dim M,,; = 0 so our last possibility is dim M,,; = 1 for some ¢t. We have then a
one-dimensional real flag manifold M, and j|M,,; is its full canonical embedding. It is
known that for this embedding the second fundamental form is onto ([10]) and therefore the



C.U. Sanchez et al.: Planar Normal Sections on the Natural Embedding ... 023

normal space of the embedding must be one-dimensional too. This means that the subspace
q C p such that j (M) C q, has dimension two and so M, is just a curve contained in a
plane. Then there is only one normal section which is obviously planar and in turn X [M]
consists of a single point. Therefore x (X [M;4:]) = 1 and this yields x (X [M]) = 1. This
completes the proof of (i) of Theorem 2.

5. Lemmas for the complex case

Let V+ be the orthogonal complement of V = Tg (Mg) in Ty (M). It is clear that V* is
T'-invariant.

Lemma 17. F (T,CP (Tg (M)%)) = CP (T (Mg)) U F (T,CP (V1)).

Proof. For v € T (M), [v] means the equivalence class of v in the projective space
CP (Tg (M)). We have [v] € F(T,CP (Tg (M))) if and only if Cv is a subspace in T (M)*
invariant by the action of 7.
Since
Tg (M) =Ty (M) @ V"'

and Tg (Mg)® = F(T,Tg (M)°), any T-invariant complex 1-dimensional subspace is con-
tained either in Ty (Mg)® or in V€. O

In Section 2 we gave the definition of a real flag manifold as orbit of £ € p by the adjoint
action of K, the analytic subgroup of G corresponding to €. Let g. be the complexification of
g and o the conjugation of g. with respect to g. Since g = €@ p is a Cartan decomposition,
there exists a compact real form g, of g. such that

Ggu C g'LH
E = gnag.,
p = gnNigy,
Gu = E@Zp

Let GG, be the simply connected semisimple Lie group associated to g.. Let G; and G, be
the analytic subgroups of G. corresponding to the subalgebras g and g, respectively. By [7, p.
152, 4 (ii)] they are both closed in G, and by [7, p.256, 2.2 (iii)] G, is also simply connected.
Let K, be the analytic subgroup of G. corresponding to . The group K is compact and
clearly K1 ¢ Gy N G,. Now Adg, : Gy — G is a surjective analytic homomorphism and
K = Adg, (K;).

On the other hand, if we take on ¢p the Euclidean metric induced by —B,,, the orbit M=
Adg, (K1) iE C ip is isometric to our space M. In fact, by [7, p. 180] if X, Y € p then

—B, (iX,iY) = =B, (iX,iY) = B, (X,Y) = B(X,Y).

Let M, be the orbit of iFE by Adg, (G,); it is obviously a complex flag manifold. Now
consider on M, the Riemannian metric induced by the inner product on g, defined by —B,.
It is clear that M is isometrically embedded in M,.
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Proposition 18. M s totally geodesic in M..

Proof. Recall that o denotes the conjugation of g. with respect to g. Since ¢ is an auto-
morphism of g, and G, is simply connected, o induces an automorphism © of GG, defined
by

O (exp (sX)) = exp (s X).

Then
Ad (O (exp (sX))) = exp (ad (s X)) = coexp (ad(sX)) oo

that is
Ad(© (g)) =00 Ad(g) oo, Vg € G,.

Since iE € ip, 0 (1F) = —iE and so
Ad(©(9))iE = o [Ad(g) (0 (iE))] = —0 (Ad (9) iE)

and since M, = {Ad(g)iE : g € G}, the automorphism © induces a well defined map
e: M, — M. by
e(Ad(g9)iE) = Ad(©(g9))iE.

Clearly
e(p)=-0o(p) VpeM,

and hence ¢ is an isometry of M, with the induced metric from —B, on g,.
Since M C ip it is clear that M is contained in [F (g, M.)|,; , the connected component
of F (e, M) containing ¢E. It also clear that €,;x = € and

EE (F (6, Mc)) =F (‘SME, EE (Mc)) :

Now -
Tip (Mc) = [gu, iE] = [£,iE] @ [ip, iE] = Tin(M) © ro

—

where T;5(M) C ip and 1o C &

Then we have e

F (€*iE,TiE (Mc)) =T (M)

because any vector in T;g (M,.) with non-zero component in to is not fixed by €,;g.

This proves that M is open in [F (g, M,)], but since it is compact, it is also closed and
so we have M = [F (e, M,)); -

It is a well known fact that the fixed point set of an isometry in a Riemannian manifold
is totally geodesic. This proves the assertion. a

Following previous notation, we use upper indexes M or M. to indicate that the object under
consideration corresponds to M or to M..

Corollary 19. i) o™ = o™ (M, i) DM = DM |}] .
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Proof. (i) follows from the fact that M is totally geodesic in M. (ii) is a consequence of
Proposition 5. g

The above corollary yields that

—

oM (z, DY (z,2)) = o™ (z, D™ (z,2)) Yz € T,u(M). 2)
The complexifications of o and D are

af (11 +iy1, To + 1Y) = a(21,72) — a (Y1, ye) + o (y1, 22) + (21, %2)]
D¢ (zy + iy, xa +1y2) = D (x1,22) — D (y1,y2) +¢[D (y1,22) + D (21, y2)] -

By definition XC[]T/[\ | (resp. X [M,]) is the algebraic subvariety of C’P(TiE(]T/I\ )¢) (resp.
CP (T;g (M,))) defined by the equation
(@) (z (DY) (z,2)) = 0
(resp. (™) (2, (D) (z,2)) = 0)

—~

for z =z + iy € T;g(M)° (resp. z =z + iy € Tp (M,)°).
Now a straight forward computation shows that

Lemma 20. (a™)¢(z, (DM)¢ (2, 2)) = (aMe)e(z, (DMe)¢ (2, 2)) for every z = x + iy €

—~

Tie(M)¢ C Tig (M,)".
Then we have

Lemma 21. X,[M] = CP(T;p(M)°) N X, [M,].

Let us set Mz = [F(T, ]\//T)]Z;; and V = TzE(]\ZE) The reader can immediately verify that
the proof of Lemma 17 translates mutatis mutandis into a proof of the following

Lemma 22. F(T,CP(T;z(M))) = CP(Tip(Mig)*) U F(T,CP(V*)).
We have now
Proposition 23. F(T, X [M]) = X [M;z] U [F(T,CP(V+%)) N X, [M,]].

Proof. By Lemma 21 e e
Xc[M] = CP(Tip(M)") N X, [M]

—

and since V¢ C T;p(M)¢ we have
CP(Vi) c CP(Tis(M)Y).

Then R .
CP(V*)NX.[M,)] C X [M]
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and furthermore R .
F(T,CP(V*9)) N X.[M,] C F(T, X [M)). (3)

Besides, it is clear that equality (v) from the proof of Lemma 15 holds for the manifolds
M;r and M therefore . .

and then (3) and (4) prove one of the required inclusions.
Instead of proving the other one, we rather see that

F(T, X [M)) C X.[M;s] U F(T,CP(V*9)).

Since by definition . e
X[M] c CP(Tip(M)%)

it is clear that
F(T,X[M]) C F(T,CP(Tip(M)%)) =
= CP(Tiu(Mig)*) U F(T,CP(V+)

by Lemma 22.
Then it suffices to show that

F(T, X [M]) N CP(Tip(Mig)®) C X [Mig]
and in fact it is enough to see that
X [M] N CP(Tip(Mig)) C X.[M;g]

and this is clear.
Let us consider now the sets A, B and C defined as follows

A = XJMp]U[F(T,CP(V*)) N X, [M,]
B = F(T,X,[M))
C = XMy UF(T,CP{V*o).
Then we have the inclusions
AcCcBcC
and intersecting with X, [M,] we observe that
ANX,[M] = A
BNX.[M] = B
CNX.[M] = A
Then
A=B

and the proof of the proposition is complete. O
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Since Xc[]\//E-E] and F(T, C’P(‘/}LC)) are clearly disjoint, it follows that
X(F(T, Xc[M))) = x(X[Mig]) + x(F(T,CP(V*)) N X [Mc]).
Now we have the following crucial fact
Proposition 24. x(F(T,CP(V)) N X, [M.]) = x(F(T,CP(V*e))).

Proof. For the manifold M, = G,/ (G,),5 we may consider the center S of the isotropy group
(Gu);5- The group S plays an essential role in the proof of the main result in [5]. It acts
naturally on T;g (M,) and then on CP (T;g (M.)) (see [5, p.231-234]) . There, T;p (M.) is
denoted by 90t and we shall adopt here the same simpler notation.

Since V+¢ C 9M¢, we have

F(T,CP(V*) c CP (9M°).

Our torus T is maximal in Ky C K but, as we have observed, K = Adg, (K;) and
K; € G1NGy. There is a torus T} C K; such that Adg, (1) = T (in fact we may take
Ty = [Adg! (T)]. which is clearly compact, connected and abelian).

Now T} acts on M exactly as 1" and then
F(Ty,CP(V*9) = F(T,CP(V*9).

Furthermore F (T, CP(V*¢)) is invariant by the action of S on C'P (90t¢) because S com-
mutes with 77. Then it makes sense to consider the submanifold F(S, F(T,CP(V1¢))).
We have now the following obvious identity

F(S, F(T,CP(V')) = F(S, F(T,CP(V')) N F (S,CP (9m°)). (5)
Now, part (ii) of Proposition (3.10) in [5, p.234] says, in our notation,
F (S,CP (M%) = F (S, X, [M.])
and hence we may replace it in (5) obtaining

F(S,F(T,CP(V*%)) = F(S,F(T,CP(V*9))NF (S, X.[M,)]) =
= F(S,[F(T,CP(V*%) N X, [M])).

This proves

X(E(S, F(T,CP(V*)) = x(F(S, [F(T,CP(V*)) N X [M]])).
Now we apply Theorem (3.11) in [5, p.234] and obtain our proposition. O
Now, from Propositions 23 and 24 we obtain (again by [5, p.234, (3.11)])

Corollary 25. x(X.[M]) = x(X[M;z]) + x(F(T,CP(V9))).
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Let us consider now the diagram

VY

where f(X) =1iX is clearly an isometric isomorphism from p to ip and therefore it induces
isometries on the other levels because we are always taking the induced metric on the sub-
manifolds. Furthermore, since f, takes planar normal sections into planar normal sections,
from our previous corollary, we get

Corollary 26. x (X.[M]) = x (X.[Mg]) + x (F (T,CP (V*9))).

6. Second part of the proof of the main theorem

We are, finally, in position to prove part (ii) of Theorem 2. By Corollary 26 we have
X (X [M]) = x (X, [Mg]) + x (F (T,CP (V™)) -
If, by inductive hypothesis, we know that
X (Xc[Mg]) = x (CP (Tg (ME)“)) (6)

then
X (X [M]) = x (CP (T (Mg)%)) + x (F (T,CP (V*9))) .

By Lemma 17 we have now
X (X [M]) = x (F (T, CP (Tg (M)?)))
and then again by [5, p. 234, (3.11)]
X (X [M]) = x (CP (Tp (M))).

The proof is then reduced to get identity (6) and to that end we have to proceed as
in Section 4 setting My = Mg = [F (T, M)], and constructing our sequence of proper
submanifolds

M2 M 2 M2 ...2 M,

all of which are real flag manifolds and having even or odd dimension according to that of
M itself.

This process must stop and, as we noticed in Section 4, if our last manifold is M, then
we have the following possibilities

1) My= {E} (dimM even)
2) dimM; =1 (dimM odd).

If we have M), = {E} then X [My] = ¢ and also X.[My] = ¢ which clearly implies
X (X¢[Mg]) = 0. Furthermore in this case T (M) = {0} and then CP (Tx (My)°) = ¢.
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This yields x (CP (Tg (My))) = 0 and so the identity (6) holds trivially in the last step of
our “reversed ” induction process.

On the other hand, if we have the second possibility for M) then, as was indicated
in Section 4, we have that X [Mj] consists of a single point. Since dim M = 1 we have
Tg (M) ~ R and of course (Tg (My))¢ =~ C. Then CP (Tg (My)) consists of a single point
and clearly so does X [Mj].

Then we have

X (X [Mi]) =1 =x(CP (Tr (Mp)°))

and the identity (6) also holds trivially in the last step of our “reversed” induction process if
the dimension of M is odd.
This completes the proof of Theorem 2. O
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