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Abstract. The parametric density of a finite circle packing X, + D is defined
as ratio of areas n - A(D)/A (conv(X,, + pD)). We show that densest finite lattice
packings are attained in a critical lattice. Further, we give an upper bound for
the density with parameters p < 3.232... which is attained by Groemerpackings.
Moreover, we show that the given bound holds for arbitrary finite circle packings
and parameters less than 1 as a consequence of known results by H. Groemer [5]
and G. Wegner [11].

1. Introduction

We call a non-overlapping arrangement of a finite number of congruent discs a finite circle
packing. As an example, we may think of the cross-section of a multi-core (e.g. optical
fibers) cable, enclosed by some type of insulation (cf. Figure 1). Problem: How can one pack
a fixed number of cores to minimize the area of such a cross-section; or: what is the maximal
parametric density of such a circle packing?

The answer depends on the parameter defined thickness of the used insulation. With
infinitely small insulation the cross-section is the convex hull of the packing, which has been
investigated in many papers (cf. [3]). The best known results were given by Groemer [5]
(Theorem 3.1) and Wegner [11] (Theorem 3.2). Their bounds hold with equality only for
Groemerpackings (see Theorem 3.1). In these packings the disc-centers belong to a ‘critical
lattice’.

We show that for any parameter the highest parametric density of a lattice packing is
attained if and only if the lattice is critical (Theorem 3.3). It turns out that ‘extremal
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Groemerpackings’ (see Theorem 3.2) which minimize the convex hull are best possible lattice

packings for all parameters in [?, % + \/g} (Theorem 3.4). This shows that cable-cross-

sections become minimal when the thickness of the insulation is less than (% + ﬁ)-times
the disc-radii.

2. Notation and simplification

Let E? denote the Euclidian plane with norm |||, in-
ner product (-,-) and unit disc D. A finite set X, =
{z1,...,2,} C E? defines a finite circle packing X, + D
when ||z —2'|] > 2 holds for all pairs of distinct points
z,' € X. The (parametric) density of the packing (cf.
[1]) with respect to a parameter p > 0 is given by

n-mw
A (conv(X, + pD))

6 (D, Xn,p) = (1)

Figure 1.

Here, A denotes the area function, and conv(-) denotes the convex hull. In order to maximize
the density of n discs, we have to minimize the denominator. With Steiner’s Formula (cf.
[6]) we get

A (conv(X, + pD)) = A (conv(X,)) + p- C (conv(X,)) + p* - 7,

where C' evaluates the circumference of the center-polygon P = conv(X,). Figure 1 shows
a geometrical interpretation of the three summands in Steiner’s Formula. Since we want to
find densest packings for a fixed parameter p, we have to minimize the linear function

Fp(p) = A(P)+ p-C(P) over P(n)={P | P = conv(X,), X, + D packing} .

Hence, any lower bound for Fp(p) yields an upper bound for the parametric density of the
densest packing with n translates of D.

A lattice A is called a packing lattice when A + D is a packing. A is called critical if
and only if every disc in A + D touches six others. We call P = conv(X,,) a A-polygon if X,
is a subset of A, and a critical lattice polygon, if A is critical. The number of lattice points
covered by P is denoted by Gx(P). A segment [AB] C bd(P) is called an edge of P when it
satisfies [AB|N X, = {A, B}. Its length is given by |AB|. The number of edges is denoted by
E\(P), where edges are counted twice for degenerated polygons (‘sausages’). Fundamental
for the work with lattice polygons is Pick’s Identity (cf. [4])

_ A(P) | EA(P)
~ det(A) 2 +1

where det(A) denotes the determinant (area of a fundamental cell) of A (cf. [6]).

We only investigate lattice polygons in order to find densest lattice packings. This is
sufficient, since a densest lattice packing, has to be saturated (P N A = X,,). Otherwise we
could construct a new and denser packing by replacing a vertex of P in X,, with another
lattice point.

GA(P)
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3. Results

First we are going to use the introduced notation to state the known results by H. Groemer
and G. Wegner. We then put those results into a wider context.

Theorem 3.1. (Groemer) Forn € N, p= ? and P € P(n) holds

Fp(p) > (n—1)2V3.

FEquality holds if and only if P is a Groemerpolygon. That is a (possibly degenerated) critical
lattice polygon with all edges having length 2. The corresponding saturated circle packing is
called a Groemerpacking.

An elegant proof was given by Graham, Witsenhausen and Zassenhaus [2], who generalized a
result by Oler [7]. This proof also takes arbitrary centrally symmetric discs into consideration.
The other classical result on finite circle packings is given by

Theorem 3.2. (Wegner) Forn € N, p=1 and P € P(n) holds
Fr(p) 2 (n = 1)2V3 + (29 = V3) po(m).

with po(n) = [\/1271— 3] — 3.1 Equality holds if and only if P is a so-called extremal
Groemerpolygon. That is a Groemerpolygon satisfying Ex(P) = po (Ga(P)) with respect to a
critical lattice A.

The number pg(n) gives a lower bound for the number of edges of a Groemerpolygon (cf.
[11]).2 The Theorem holds with equality if and only if the bound is attained, and therefore,
an extremal Groemerpolygon exists. The exceptions (n = 121 is the smallest) were studied by
Wegner [10] in a second paper. Their exact determination and the determination of packings
with minimal convex hull for those n stays still open.

Now, extremal Groemerpolygons are the only polygons with equality in both Theorems.
Since Fp(p) is linear we instantly get

Fp(p) > (n—1)2V3 + (20— V3) po(n),

forn € N, p € (@, 1} and P € P(n). Equality holds if and only if P is an extremal

Groemerpolygon. With the same argument we get Fp(p) > (n — 1)4p for p € [0, ?) with

equality for sausages, the intermediate case p = ? being covered by Theorem 3.1, with
equality for any Groemerpolygon.

In order to see how densest circle packings may look like for parameters bigger than 1,
we investigate the problem restricted on lattice packings. First we show for all parameters

7.1 is known as ceiling function ([z] being the least integer k¥ with k > z).
2 An inductive proof for Wegner’s remark is easy verified using the geometrical definition for py (Theorem
4.3) and the lemma in Section 6.
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Theorem 3.3. Fp(p) becomes minimal for a lattice polygon P and p > 0 if and only if P is
a critical lattice polygon.

Besides Theorems 3.2 and 3.1, many arguments show that Theorem 3.3 holds for arbitrary
circle packings and parameters less than g + /3 =3.232....3 For lattice packings we have

Theorem 3.4. Theorem 3.2 holds for p € (@, % + \/3) and all lattice polygons P € P(n).

Moreover, the theorem is true for p = % + /3, if we modify the case of equality to critical

lattice polygons with edges having length 2 or 2v/3 and with the (uniquely defined) smallest
circumscribed Groemerpolygon having po(n) edges.

Six is the smallest number of circles where the second case of equal-
ity holds. The corresponding packing, its center-polygon and the
smallest circumscribed Groemerpolygon is shown in Figure 2. Un-
fortunately, it is impossible to give a general lower bound for Fp(p)
with p > %—i-\/f_} Nevertheless, we are able to determine the asymp-
totic shape (n — oo) of the best possible polygons. This will be
done in a wider context in another paper [8]. Figure 2.

4. Proofs

Proof of Theorem 3.3. The assertion is true for p < ? (Theorem 3.1) and GA(P) < 2.
Therefore, we may assume that P has a non-empty interior. This follows from Theorem 3.1
because non-sausage Groemerpolygons define better packings for p > ?, since their volume
is positive.

The remaining proof is constructive: a non-critical lattice A will be transformed by
regular linear mappings into a critical lattice. The A-polygon P becomes a critical lattice
polygon Py with the same number of edges and the same number of covered lattice points.
The area changes because of Pick’s Identity in dependency of the lattice determinant, which
is minimal for the critical lattice (cf. [6]). Hence A(FPp) < A(P). We show that the lattice
transformation can be chosen that C'(Py) < C(P) becomes valid. This proves the Theorem.

To begin with, we choose a reduced basis (cf. [9]) a1, as for the lattice A. A necessary
and sufficient condition for being reduced is 0 < 2{a1, as) < ||a1||* < ||az?, if we assume that
||a1]| is smaller than [[as||. Now the circumference C(P) can be written as the sum > |AB)|
over all edges [AB] of P. With fitting numbers m,n € Z we have

IAB| = llmas + nasl| = \/llaa | m? + 2(ar, azymn + [laa]? n2.

2a1
llas]]

ﬁ(al, az). The new basis is reduced because
1

Now, we first map a; into @} = and ay into a with ||ab|| = 2 and (a},a}) =

0 < 2(a}, a5) = (a1, a2) < 4= [lay||* = [las]”.

8
2
[l

3This would imply a proof for a presumption of Wegner (cf. [10]), which covers the exceptions of Theorem
3.2.
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Therefore, the distance from the origin to a lattice point na} + mal, n,m € Z\ {0}, is at
least as long as the one to @} and af. Hence, the new lattice is a packing lattice for D. An
edge [AB] of P is transformed into an edge [A’B’] with

|A'B'| = /4m?2 + 2(d}, ab)ymn + 4n?

IN

2
—— /a1 ][> m2 + 2(a1, az)mn + ||as||> n? < |AB].
[laal|

Equality holds if and only if ||a;|| = ||az|| = 2. This shows that the new polygon has a smaller
circumference if a, is longer than 2.

The next transformation fixes o) and maps a!, into aj with ||a}|| = 2. %

The inner product (a},a}) has a fixed value 2z, with zy € [0, 1].

An edge [A'B'] has the length |A'B’| = 2v/m? + zomn + n?. Then

the inner product (a},ay) may be 2z with x € [-1,1]. Conse-

quently, the packing lattice A, with basis a!, a) is critical only for a
z e {-1,1}.

Figure 3.

The length of the corresponding edges [A,B;| add up to the circumference c(z) of a A,-
polygon. The function ¢(z) is two times differentiable and the length of an edge [A,B,] has
a second derivation

d? m2n?

x 2 (n? 4+ zmn + m?)>2
Hence, %C(.ﬁ) < 0. Therefore, ¢(z) attains its minimum either for £ = —1 or z = 1, which
proves the theorem. O

Proof of Theorem 3.4. The theorem is true for p < 1 as a consequence of Theorem 3.2. In

order to prove the rest of the assertion it is sufficient to prove it for p = % +3 = 47‘5\/5

because Fp(p) is a linear function. Because of Theorem 3.3 we may further assume that P
is a critical lattice polygon with respect to A.

The smallest circumscribed Groemerpolygon Pg of P is uniquely defined, since every
Groemerpolygon is an intersection of six fixed half-spaces (all bordered by edges of length
2) and vice versa. Pg has at least po(n) edges because py is monotonically increasing, and
because py gives a lower bound for the number of edges of a Groemerpolygon (cf. [11]).

Now, let e,(l) denote the number of edges with length [ of P. With Pick’s identity we
get

Fe(p) = (n=1)2V3 - VB-E\(P) +p-C(P)
= (n=12V3+ 37 (19~ VB) ep(l),

where the sum is taken over all possible [ in A. For I > 2v/3 we get with fitting natural
numbers m; > ny

3 1
| = 2\/ml2 + myn; + ’I’le = 2\/Z(ml +’fll)2 + Z(ml - ’I’Ll)2 > \/g(ml +’fbl)
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= (2\/5—2> (mu +ny) + (2—\/§> (my + ny)
> (2— (4—2\/?_,))(ml+nl)+(4—2\/§).

V3

Equality holds if and only if m; = n; = 1. Hence, Fp(p) for p = =275 evaluates to

Fp(p) = (n—1)2V3+ (2:p—V3)er()+ Y (1-p—V3) ep()
1>2/3
> (n—1)2v3+ (2-p—\/§) er(2)+ Y (Z-p— \/3) (mu + ) ep(l)
1>2v/3

= (n-— 1)2\/?_)+ (2 -p— \/§> Z(ml +my) ep(l).

l

This proves the theorem because of Fy(Pg) = Y. (my + ny) ep(l) > po(n). O
I
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