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1. Introduction

Polynomials are one of the earliest entities studied in mathematics. As an algebraic entity,
they have been studied for more than a century, and then mainly within the framework of a
ring with respect to the usual operations of addition and multiplication of polynomials. But
with any polynomial ring is associated a polynomial near-ring with respect to the operation of
composition. These polynomial near-rings have also been studied, albeit much less extensively
and only during the last few decades. But not much attention has been given to their
natural algebraic home, that of a ring together with the additional operation of composition.
Sporadically this has been done under the more general guise of a composition ring (or
composition near-ring). But this approach is mostly too general to capture their significant
properties for an abstract investigation. For example, if R is any ring, then the set M (R)
of all mappings from R to R, together with pointwise addition, pointwise multiplication and
composition is a composition ring. Moreover, such a composition ring is the prototype of all
composition rings, since any composition ring can be embedded in an M (R) for a suitable R.

The study of the composition rings R|z], Ro[z] and Ry[[z]] has inevitably led to the
relationship between the properties of the composition ring and those of the underlying base
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ring R. In the case where constants are allowed (e.g. R[z]), the base ring is easily identified
as all those elements ¢ for which co0 = ¢. The same procedure captures R in the composition
ring M(R). But for Ro[z| and Ry|[[z]] things are more problematic. For these two cases,
a different approach is required and one is led to consider D(c) o 0 where D(c) denotes the
formal derivation of ¢ (which takes one outside the considered composition ring). But for the
composition ring My(R) (zero preserving functions from R to R) there may be no realistic
derivation in sight to enable us to capture R.

It is these two problems that will be addressed here. We will define the base of an arbitrary
composition ring. It will be seen that the base for each of the composition rings R[z], Ry|z],
Ry|[[z]], My(R) and M(R) is a ring isomorphic to R. As can be expected, the relationship
between the composition ring and its base will not be the same for all composition rings,
but at least the homological structure will be the same: The base B of a composition ring
C' is a subring of C (with respect to the composition) for which there is (at least) a group
homomorphism g : (C,+) — (B, +).

To realize the existence of the mapping # and to obtain more structure on the composi-
tion rings, we will define and investigate mainly two types of composition rings. These are
the composition p-rings (p standing for polynomial, power series or related structures) and
composition t-rings (¢ standing for transformation). This will enable us, amongst others, to
determine the maximal ideals of a composition p-ring in terms of those of the underlying
base ring (irrespective of whether constants are allowed or not).

We should point out that Kautschitsch and Mlitz [2] have given a general method to
describe the maximal ideals of Ry[z], R[z] and Ry[[z]]. This was done within the framework
of composition subrings of R[[z]]. The results presented here will be more general and really
only serve as a guideline on how to study polynomials and power series under this more
general setting.

In the sequel, we use C to denote the composition ring (C,+, -, 0), i.e. C; := (C,+,+) isa
ring, Cy := (C, +, 0) is a near-ring and aboc =aoc- boc for all a,b,c € C. Unless indicated
otherwise by brackets, juxtaposition (which represents multiplication) has a higher priority
than composition (in the order of executing the operations) and composition has a higher
priority than multiplication when the latter is denoted by “-”. For example, aboc = aoc-boc
means (ab) oc= (aoc)-(boc).

The foundation of C, denoted by F, is the constant part of the near-ring Cs, i.e. F
= Found(C) = {c € C | co0 = c¢}. F is a subcomposition ring of C, but usually when we
refer to the foundation, we mean the ring F' = (F,+,-). Cy denotes the 0-symmetric part of
of the near-ring Cy, i.e. Cp = {c € C | co0 = 0}. It can be verified that Cj is an ideal of the
ring C; and a left ideal of the near-ring Cs.

The near-ring C5 may have an identity which we will denote by z € Cs. Often it is
required that z be a commuting composition identity, i.e. cox = ¢ = xoc and xc = cz for all
¢ € C. The ring C; may have an identity i (i.e. ci = ¢ =icfor all c € C'), denoted by i € C;.
In case i € F, it will be called a constant multiplicative identity. The ring (Cy, +, -) may also
have an identity, denoted by e € Cy (which may differ from ¢) and is called a 0-symmetric
multiplicative identity.

For c € C and k € N, ¢* denotes c* = ccc---c (k factors) and ¢¥) = cococo---oc (k
times). For a subset A C O, A* = {ajas---ax | a; € A} and A®) = {a,0a50---0ay, | a; € A}.
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When the ring R is used in the context of R[z], Ro[z] or Ry[[z]], it will be assumed to be
commutative and to have an identity 1 € R. As usual, R[z| is the composition ring of all
polynomials over R, Ry[z] is the O-symmetric part of R[z| and Ry/|[z]] is the composition ring
of all formal power series over R ( i.e. infinite sums of the form ) >° a,z™) with constant
term ag from N where N is a fixed nil ideal of R.

2. The base of a composition ring

Let C be a composition ring. The base of C, denoted by B, is defined by B = Base(C) =
{v € C | v is left distributive over (C,+) and voab = (voa)b for all a,b € C}. Let
FB = {>nw | n; € Fand v; € B} and CoB = {> uv; | u; € Cy and v; € B} be the
subgroups of (C,+) generated by F'B and CyB respectively.

2.1. Proposition. (1) (B, +,0) is a subring of the near-ring (Cy, +,0)

(2) FBC B and FBoB+BoFBC FB

3) FB < (B, +,0)

) If nc =cn for all n € F and ¢ € C, then BF C B.

) If C has a constant multiplicative identity i, then FB = B.

)

)

Any composition left identity of C is contained in B.

(
(
E
(1) (0:C)¢g,:={deC|doc=0 forall ce C} C B.

4
)
6
7

Proof. (1) B C Cj since every element of B is left distributive over (C,+). Let vy,vo € B
and a,b € C. Then:

(v —wvg)o(a+b) =v10a+v,0b—v90a—1vy0b
= (vy —wvg)oa+ (vy —vg)0b
(v — vg) 0 ab = v, 0ab— vy 0 ab
= (v;0a)b— (vy0a)b= ((v; —vy) 0ca)b
(viowy)o(a+b) =vi0(va0a+wvy0b) = (vy0v)0a+ (v 0uvy) 0b and

(vy o vg) oab = vy 0 (vy 0ab) = vy o ((vg 0 a)b) = (v; 0 vg 0a)b.

Thus B is a subnear-ring of (Cy, +, 0). Clearly B is a ring.

(2) Let v,u € B, n € F. Then nvo(a+b) =n-(vo(a+b)) =n-voa+n-vob=nvoa+nvob
and nvoab=mn-voab=n-(voa)b = (nvoa)b. Thus FB C B. Also, nvou=n-vou € FB
and uonv = (uon)v € FB.

(3) Follows from (2) above.
(4) By the assumption, BF = F'B.
(5), (6) and (7) are clear. O

(voc)r =wvc forallve B,ceC.
Fr=FB=FB=BF <(B,+,0). If B is a simple ring, then Fr =B or Fx =0.



492 S. Veldsman: Polynomial and Transformation Composition Rings

) For all k > 1, vox*™ = vzF for all v € B and B**' = Ba*.
) If J < B, then JF + FJ C J.

)vonz =nzov forall n € F,v € B.

8) Cox = {ux | u € Cy} is a subcomposition ring of C.

Proof. (1) doc-c=doc-zoc=droc=xdoc=c-doc. lf d=n € F, then nc = cn.
(2) follows from Proposition 2.1.

(3) (woe)r=vocr=voxc= (vox)c=wvec

(4) Fx C FB and for n € F and v € B, n = (von)r € Fz (by (3) above). Thus

Fix C FB = BF C Fz. Then Fx = FB = FB < B follows from Proposition 2.1.

(5) For v € B, vox? = (voz)xr = vz. If voakt! = vak then v o 2F2 = (v o zFtl)x =

vrkr = va**. Clearly Bz C B? and if v,w € B, then vw = (v ow)z € Bx. Thus B? = Bxz.
If B¥ = Bz*~!, then B**! = BB* = B(Bz*™!) = B?2*~! = (Bz)z*~' = Bz*.

(6) Forje Jand ne F, jn=(jon)zr=jonzr € JoFx C JoB C Jand nj = jné€ J.
(7) vonz = (von)r =vn =nv=nxouv.

(8) For uz,vz € Coz, ur — vz = (u—v)z € Coz; ux - vr = (uzv)r € Cox and ux o vx =
uowvr -vx = (uowvx-v)r € Cox. O

2.3. Proposition. Let © € Cy be a commuting composition identity and let 1 € C; be a
multiplicative identity. Then:

(1) B={veC|voab= (voa)b forall a,be C}.

(2) (0:2)e, NF =0 (i.e. nx =0,n € F, implies n=0).

(3) If (0:z)¢, =0 (i.e., cx =0,c € C, implies c=0), then B={ve C | (voa)r =va for
all a € C}

(4) If i is a constant multiplicative identity, then (B, +,0) = (Fx,+,0) = (F,+,).

Proof. (1) Suppose v € C' is such that v o ab = (v o a)b for all a,b € C. We show v is left
distributive. For, a,b € C,vo(a+b) =vo (i(la+b)) =(voi)(a+b) = (voi)a+ (voi)b=
voia+voitb=voa+wvob; hence v € B.

(2) f nx=0,n€ F, then n=ni=nxoi=0.

(3) Suppose voab = (voa)b for all a,b € C. Forany c € C,(voc)xr =vocr =vozc=
(v ox)e = wve. Conversely, suppose (v o ¢)r = ve for all ¢ € C. For any a,b € C, (voab)x =
v(ab) = (va)b = (voa)x)b = (voa)br. Thus voab— (voa)b € (0 : x)s, = 0; hence
voab= (voa)b. Then (3) follows from (1).

(4) By Proposition 2.2(4) we know Fz C B. Conversely, for v € B,v = vi = (voi)z € Fx
since by assumption i € F. Thus B = Fx. Define ¢ : (F,+,:) — (Fxz,+,0) by ¥(n) := nz.
Then it is straightforward to verify that 4 is a surjective (ring) homomorphism. If nz = mz,
then n = m follows from (2) above. Thus # is an isomorphism. O

We note that (1) above holds without the assumption of a composition identity.
2.4. Proposition. Let x € Cy be a commuting composition identity. Suppose there is an

s € Cy such that © = sx. Then B C Cyzx.

Proof. Let v € B. Then v =vox =voszx = (vos)x € Cyr. O
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2.5. Proposition. Let C and D be composition rings with 8 : C — D a surjective
composition ring homomorphism and let S a subcomposition ring of C. Then

(1) 6(Base(C)) C Base(D),

(2) Base(C)N S C Base(S).

Proof. Straightforward. O

2.6. Examples. Below we will give several examples of composition rings and describe the
base of each. In most cases we will give additional properties that will be referred to in the
sequel.

(1) For each of R[z], Ry[z] and Ry[[z]], = is a commuting composition identity. In R[z], i =1
€ R is a constant multiplicative identity and thus Base(R|z]) = Fz = (Rz,+,0) = (R, +, ")
(Proposition 2.3(4)). Also, for each of Ry[z] and Ry|[[z]], the base is (Rz,+,0) = (R, +,-).
We will verify this, for example, for Ry[[z]]. Let r € R and a,b € Ryl[[z]]. Clearly rz
is left distributive over + and rz o ab = r(ab) = (ra)b = (rx o a)b. Conversely, suppose
v =0T + v97° + v37® + - - - € Base(Ry|[[z]]),v; € R. Then voz? = (vozx)r = vz, ie.

U1$2+7}2.T4+1)3£E6+"':’U1$2+’U2$3+1}31‘4+"'.

The left hand side has only even powers of x; hence the coefficients of all the odd powers
of z on the right hand side are 0, i.e. v, = 0 for all £ > 1. Thus the term containing z**
on the left hand side is 0, which means that the corresponding term on the right hand side
is zero which yields v4_1 = 0 (for all £ > 1). Since v4_; = 0, the term containing z2(**~1)
on the left hand side is 0, which makes vy4;_1)-1 = vgr—3 = 0. Continuing in this way, we
get v, = 0 where m = 2%k — (2! — 1) for all n,k > 1. But any m > 2 is of the form
2"k — (27! — 1) for some n and k. Indeed, if m is even, take n = 1. Then m = 2k for
a suitable k. If m is odd and greater than 1, say m = 2m' +1 (m’ > 1), choose n € N
maximal such that 2”2 | m’ (if m’ is odd, then n = 2). Hence m’ = 2" ?p for some odd p,
say p =2k — 1,k € N. Then m' = 2" ?(2k — 1) from which m = 2m' +1 = 2"k — (2"! — 1)
follows. Thus 0 = vy =v3 =wv4--- and so v = viz, v; € R.

(2) For any ring R, we will use the following notation for certain maps in the composition

ring M(R) (or My(R) if applicable). Let a € R. Then @, and @ denotes the following self
maps of R:

a(t) =at forallt € R
(t) =a for all t € R and

_Joa if t#0
(t)_{o if t=0.

>

jo )

Let R be a commutative ring with identity 1 € R. Both My(R) and M (R) have commutative
composition identity 2 = 1, M(R) has constant multiplicative identity 1 and My(R) has
a 0-symmetric multiplicative identity 1. By Proposition 2.3(4), B = Base(M(R)) = Fx =
Rr ={a| a € R} = {c| cis an R - endomorphism of (R,+)}, for the latter we regard
(R,+) as a right R -module. But also Base(My(R)) = {a | a € R} = B. Indeed, for any
a € R it is easy to see that @ € Base(My(R)). Conversely, let v € Base(My(R)). Then
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a:= (1) € R and from (v o 1)z = v o 1z we get v = @. For both cases (M(R) and My(R)),
we have (B, +,0) = (R, +,-) and since z = 1z, we have B C My(R)x (cf. Proposition 2.4).

More generally, let R and S be rings with o : S — R a fixed function. Let C = M(R, S, «)
be the sandwich composition ring determined by R,S and «. This means C' consists of
all the functions from R to S, the addition and multiplication are componentwise and the
composition, here denoted by x*, is defined by: f *x g = f o« o g. Then it can be shown that
B = Base(C)={fe€C| foae€ Ends(S,+)}

(3) For rings R without identity, the base of My(R), or M(R), need not be isomorphic to
R. Let R = 27 and let C = My(R). In this case, Base(My(R)) ={a|a € Z} 2 Z 2 R:
Clearly any a@,a € Z, is in B = Base(C). Let v € B and suppose v(2) = 2a, a € Z. From
(vo2)x = (vo2)lg=wvo(2lg) =vo (1z2) = (volg)2, we get v(2)t = v(¢)2 for all t € R.
Then 2a(t) = 2at = v(2)t = v(t)2; hence @ = v. The isomorphism (B, +,0) = (Z,+,) is
clear. Note that here we have BN Cox = {a | a € 2Z}. Indeed, if @ = uz € BN Cyx
(a € Z,u € Cy), then 2a = u(2) - 2. Thus a = u(2) € 2Z. The converse inclusion is clear.

(4) Let R be a commutative ring with S # R a subring of R with identity 15 € S. Let
C={feM(R)| f(R) CS}. Then C is a subcomposition ring of M(R). Note that C does
not have a composition identity. However, it has many left identities: Let sy € S and let
x(t):{ tif tes
so if te R\S
Then z is a left identity. Here we have Found(C) = S and B = Base(C) = {ay | a € S
and g € C'} where a, : R — R is defined by a,(t) = { gé; i i E 2\5
Indeed, every a, is in C and also in B. Let v € B and let a := v(1;). We show
v = a, € B. By definition of C, a € S. Define b,c: R — R by b(t) = 1, for all t € R and
C(t):{ t if tesS
1, if ¢t € R\S.
Then b, ¢ € C and from vobc = (vob)e, we get v(t) = (vobe)(t) = ((vob)e)(t) = at = a,(t)
for any t € S. Thus v = a,.

(5) Let C = R[z] where R[z] denotes all the polynomial functions. Then C is a subcom-
position ring of M(R) and B = Base(C) = {rz | » € R}. Note that here we may have
BN Cyx # 0. For example, if R = Zy, then 0 # 2z = 222 € BN Cyx.

(6) Let C' = (R, +,-,0) where (R,+,-) is a ring and (R, +, o) is any near-ring.

(a) If (R, +,-) is a zero ring (i.e. R?> = 0) then Base(C) = {c € C | ¢ is left distributive }. If
(R, +,0) is constant, then Base(C) = 0.

(b) If (R,+,0) is a zero ring, then Base(C) = (C, +, o).

(7) Let R be a commutative ring with identity 1 € R. Let (R[z,y],+,-) be the ring of all
polynomials in the two commuting indeterminates x and y. As is well-known, we can define
a near-ring multiplication o on (R[z,y],+) by: f(z,y) o g(z,y) := f(9(z,y),9(z,y)). Then
C = (R[z,y],+,-,0) is a composition ring with constant multiplicative identity 1. But C has
no composition identity. Both x and y are composition left identities; in fact so are c+z—cox
for all ¢ € C. These all are in B = Base(C) and also 0 # (0 : C')¢, C B. It can be shown
that B={ve C|v=3", > o Cijx* Iy for some k > 1 and ¢;; € R for all 4,5 where
S ocy=0foralli=23 .k}
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(8) With (R[z,y], +,) as in (7) above, define o by f(x,y)og(z,y) = f(g9(x,),9(y,y)). Then
C = (R[z,y],+,-,0) is a composition ring with right identities  and y and Found(C) = R.
In this case, it can be shown that B = Base(C) = 0. Indeed, this follows by considering
(vol)x=vozx=wvand (vol)y=voy=wforv € B.

(9) Let (R[x,y],+, ) be asin (7) above. On the direct sum of two copies of this ring with itself,
define o by: (f(z,4), 9(, 1)) o (h(z, ), K(z,)) = (F (bl 1), k{2, 0)), 9 k(). Kz, ).

Then C := (R[z,y] X R[z,y],+,-,0) is a composition ring with constant multiplicative
identity (1,1) and commuting composition identity (x,y). Here Found(C) = R x R and
Base(C) = (R X R)(z,y) = Rz x Ry.

2.7. Remark. Let C be a composition ring with F' = Found(C') and B = Base(C). Let
S = F + B. Then (S, +, 0) is a subnear-ring of (C,+, o) and it can easily be verified that S
is an abstract affine near-ring.

3. Composition p-rings

A composition ring C' is called a composition p-ring if it has a commuting composition
identity z and (Cop, +) = (B, +) & (Coz, +).

As is well-known, (C,+) = (Cy, +) ® (F,+); hence (C,+) = (F,+) & (B, +) & (Coz, +).
Thus every ¢ € C' has a unique representation as ¢ = n +v + ux withn € F, v € B and
u € Cy. This give rise to a surjective group homomorphism g : (C,+) — (B, +) defined by
B(c) = v with kerf = F + Cyz. For ¢ = n. + v, + vz and d = ng + vg + ugz € C, cd =
Neng+ (Veng+nevg) +w where w = nug + Vg + VU + UekNg + UeZVg +uczugx € Cox since
Cy<1Cy, B? = Bx C Cyx and z is a commuting composition identity. From FB = BF C Fx
we get [(cd) = veng + nevg € Fx. Note that if ¢, d € Cy, then 3(cd) = 0. Furthermore,

cod ="+ V.0MNg+ V.0 U+ V0 UL + UL Od

where n. +v.ong € F, v.ovy € B and v, 0 ugr = (ve 0 ug)x € Cox. Let a = u. o d. Then
uxod=u.od-d=ad. Hence

Blcod)
B(cod) = B(c) o B(d)

If d € Cy, then a € Cy and B(co d) = f(c) o B(d). We record these properties of 3 in the
next number. But before we do so, note that (B, +, o) can be made into a composition ring
(B, +, *,0) where v x w = 0 for all v,w € B.

B(c) o B(d) + B(ad), i.e.
B(ad) € Fx from the above.

3.1. Proposition. Let C' be a composition p-ring. Then 3 : (C,+) — (B, +), as defined
above, is a surjective group homomorphism with ker3 = F 4+ Cyx which satisfies:

(1) B(v) = v for all v € B.

(2) B(cd) = B(c)ng + n.p(d) € Fx for all ¢,d € C.

(3) B(cod) = B(c) o B(d) + B(ad) for all ¢,d € C where a = u, o d.

If By denotes the restriction of [ to Cy, then By : (C,+,-,0) — (B, +, *,0) is a surjective
composition ring homomorphism with kerBy, = Cyzx. U
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From this result we know that Cox is an ideal of (Cy, +, -, ©). But one can say more:
3.2. Proposition. Let C be a composition p-ring. Then for all k € N

(1) C(I)H_l = C()xk,
(2) Coxk < (CO: +: ) O)'

Proof. (1) (by induction on k). For k = 1, Cox C CZ. If wy, wy € Cy, say w; = v;+u;z € B+
Cox,i = 1,2, then wiws = v1Vs + ViU + U1 2V + U1 TUx € Cyx since v1vy € B2 = Bx C Cyz
(cf. Proposition 2.2.(5)). Thus CZ = Coz. If C& = Coz*', then C¥' = Cy - CF =
C()C()%kil = C()l'.’l)kil = C()xk.

(2) Let v,w,u € Cp. Then va* —uz® = (v —u)a* € CozF, (va*)u = (vu)z* € Coxk, v(uz®) =
(vu)z* € Cox* and vrkou =vou-uF € CyCk = CEM' = Cya*. Finally we have to show that
vo (w+urk) —vow € Cyz*. Suppose v = v; +u1x € B + Cox. Then u; € Cy = B + Cox
implies v = v; + vox + u9z? with vy € B and uy € Cy. Continuing in this way, we get

v =01 + Vo 4+ V32> + - - 4+ v+ ugzk, v; € B, uy, € .

Substitute this expression for v in v o (w + uz*) — v o w and after simplification, we will
get a sum with terms of the form

vy 0 (w+ ur®) — v ow
V12" o (w + ur®) — vi12t ow, 1=1,2,--- ,k—1, and

upr® o (w + ur®) — upr® o w.

We consider these, each in turn:

vy 0 (w+uzh) —viow =v ow+ v our® —vow

= (v ou)z* € Cyat;
vi12 o (w + urk) — vt ow

= vip1 0 (w +uz®) - (w+ur®) — vy 0w - W
= (Vg1 0 W + Vg1 0 ur®) (W' + diz*) — vip1 0w - w' for some d; € C
= Vi1 0 W - diz® + (Vi1 o urF)w' + (viyy 0 uz®)d;z"

= (vip1 0w - d;)z® + (vig1 o w)zFw' 4 (v 0 uz®)dix® € Coa*

and finally,
upr® o (w + ur®) — upz® o w

= uy o (w + uzk)* - (w + urk) — up ow - w* € CF = Coz®. a

There is much more to say about and to do with composition p-rings. To make them even
more like polynomial and power series composition rings, one could add the requirement
(0 : z)¢, = 0. We have refrained from doing so, since this requirement was not generally
required in what we want to present here. Futhermore, if ¢ € C' we may define the degree of
¢ by using the decomposition ¢ = n+ vy + v1x + - - - + v +upz®, n € F, v; € B,uy, € Cy. For
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example, if vg = v = -+ = vy =u, =0, deg(c) =0, if vy #0and v; = --- = v, = up =0,
deg(c) = 1 and if ux, # 0 for all k£, then deg(c) = oo, etc. One may also investigate the
composition rings Cp/ Cox* k > 2. But these issues are not our main concern here and we
will not pursue them any further. We much rather want to proceed with some examples of
composition p-rings.

3.3. Examples. (1) Any one of the composition rings R[z], Ry[z] and Ry[[z]] is a compo-
sition p-ring. For the associated composition rings of polynomial functions R[z] and Ry[x]
things are not so clear. For example, if R is an infinite field, then R[z] 2 R[z] is a composi-
tion p-ring, but if R is a finite field, then R[x] = M (R) which is not a composition p-ring (if
C = M(R), then 0 # Base(C) C Cyz; cf Example 2.6(2)). In fact, we have:

C = R|z], R a commutative ring with 1 € R, is not a composition p-ring if and only if
there exists an f = fix + fox? + --- + fra® in R[z] with f; # 0 and f(t) = 0 for all
t € R. Indeed, if such an f exists, then (—fi)t = fot?> +--- + fitk for all t € R and so
0# (=fi)z = fox®+- - -+ frz® € BNCyz. Conversely, if BNCoz # 0, then there are fi, fo,. .. ,
fr € Rwith f; # 0and fiz = fox?+---+ frz® € BNCoz. Then f := (—fi)z+ fox?+--- fra®
is the desired element of R|x].

As examples of such elements, one may consider 2z + 222 in Z,[z] or 3z + 322 in Zs.

(2) Let I < R, R a commutative ring with 1 € R. Then C := {c € R[z] | co0 € [} is a
subcomposition ring of R[z]. It contains x and it is a composition p-ring.

(3) Let R be a commutative ring with 1 € R and char R # 2. Suppose further that R has
an ideal I which satisfies I? # 0,1> = 0 and for a,b € R, if ai = bi® for all ¢ € I, then b € I
(below we will give an example of such a ring).

Let C = {f € M(I) | f is of the form f = fy + fix + fox® where fy € I and fi, f» € R}.
Here, as usual z = 1; (identity function on I) and f(t) = fo + fit + fot?> € I for all ¢t € I.
It can be verified that C is a subcomposition ring of M(I) and z = 0+ 1z + 022 € C is the
commuting composition identity. We show B = Rx. The inclusion Rx C B is clear, so let
v = v17+vex? € B. Forany a,b € C, vo(a+b) = voa+wvob implies 2vsab = 0. Thus veab = 0.
Let s € I and let a(t) = b(t) =i for all t € I. Then a,b € C and vei® = vaa(t)b(t) = 0 = 0:.
By our assumption on R, we get v; € I. This means v,x? = 0 (since (vox?) (i) = v9i® € I* = 0)
and so v = viz € Rz. Thus B = Rz. Note also, since I® = 0, Cyz = Rz%. Next we show
BN Cyxr =0. Let ax = bx? € BN Cyz, a,b € R. For any i € I, ai = bi? from which b € I
follows. Thus bz? = 0 and so BN Cyz = 0. We conclude that (Cyp, +) = (B, +) & (Coz, +)
and so C' is a composition p-ring.

We note that (0 : x)¢, # 0. For example, choose 0 # b € I?. Then bx = 0 but b # 0.

Finally we show the existence of a ring R with the above claimed properties. Let Z be the
0 a b
ring of integers and let I be the commutative ring of all 3 x 3 matrices of the form | 0 0 a
0 00
where a,b € Z.
Then I? # 0 but I* = 0 and char I # 2. Let R be the Dorroh extension of I (i.e.
the standard unital extension). This means (R,+) = (I,+) @ (Z,+) and (a,n)(b,m) =
(ab + nb+ ma,nm) and I = (I,0) < R. R is a commutative ring with identity (0,1) and
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char R = 0. Finally, let (a,n), (b,m) € R such that (a,n)(i,0) = (b,m)(s,0)? for all i € I.
From this we get ai + ni = bi? = mi? for all 4 € I (where a,b € I, n,m € Z). Suppose

0 a o 0o 8 p 0 4 4
a=]0 0 al|l, b=]0 0 p and 1= 0 0 j where o, o/, 3,0',7,5' € Z.
0 0 0 0 0 O 00 O

From ai + ni = bi2 + mi? we get oj + nj’ = mj? and nj = 0 for all j,j' € Z. For j = 1 we
get n = 0 and so aj = mj? for all j € Z. From this we get m = o = 0 and we conclude with
(b,m) = (b,0) € I.

(4) Let C = (R, +,-,0) where (R,+,-) is a zero ring and (R, +,0) is a ring with identity z.
Then F = Found(C) =0, B = Base(C) = C and Cox = Cz = 0. Hence C is (trivially) a

composition p-ring.

(5) Let (R[z,y],+,-) be the ring as in Example 2.6 (7). On R[z,y] X R[z,y] define o
by: (F(z. ), 9(3 1)) o (hlw, 1), k(z,9)) = (F(h(z,9),v), (2, k(z,1))). Then C = (Rlz, ] x
Rz, y],+,-,0) is a composition ring with commuting composition identity (z,y) and con-
stant multiplicative identity (1,1). Here F' = Found(C) = {(f(z,y),9(z,y)) € C | f(z,y)
is a polynomial in y and g¢(z,y) is a polynomial in z, i.e. f(z,y) = f(r,y) and g(z,y) =
g(z,r) for all r € R}. By Proposition 2.3(4) we get B = Base(C) = {(f(z,y)z, g9(x,y)y) |
(f(z,y),9(z,y)) € F}. We note that Cy = {(f(z,y),9(z,y)) | every term of f(z,y) contains
at least one x, and every term of g(z,y) contains at least one y}. Then it can be verified that
(Co,+) = (B,+) @& (Co(x,y),+), hence C is a composition p-ring.

We should point out that the composition ring on R[z,y| X R[z,y], as defined in Example
2.6(9), is not a composition p-ring. Even though it may have some other useful applica-
tions (in connection to abstract affine near-rings), the above shows that the composition on
R[z,y] x R[z,y] as defined in the present example, is more ‘polynomial like’.

It should be clear that this example can be generalized to any finite number of commut-
ing indeterminates x1, T3, T3, ...,y On n copies of the ring R[x1, %9, T3, ..., T,], define the
composition by:

(flana"' ,fn)0(91,92,..- agn) =

(f1(g1, 22,23, ... s xn), fo(T1,92, T3, ey @)y ooy frlT1, oy X3, eey Gn))
where f; = fi(z1, 29,23, ..., 2,) and g; = g;(z1, 2, T3, ..., T,) are from R[z1, X9, T3, ..., Tp)].

3.4. Remark. In our definition of a composition p-ring, we have opted for clarity of
presentation following our motivating examples as closely as possible. If more generality is
required, one need not require the existence of the commuting composition identity. In such
a case, one could replace all occurences of Fz and Cyz with FB and CyB respectively. A
composition ring C' can then be called a composition p-ring if BF = FB and (Cy,+) =
(B,+) ® (CyB,+). In this case, the definition of 3 stays the same, but then one can show
that B(cd) € FB and with slightly more effort that 3(co d) — 8(c) o 8(d) € FB. In case C
does have a commuting composition identity z, then we know from Proposition 2.2(4) that
BF = FB = Fz. But also CoB = Cyx: Let u € Cy and v € B. Since Cy = B + C,B,
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u=w+ Y uw; for some u; € Cy and w,v; € B. Using the fact that B> = Bx C Cyz, we will
get uv € Cozx. Thus Cox C CyB C Cyx and so CyB = Cyx.

3.5. Example. Let R be the ring of even integers, i.e. R = (2Z,+,-). Then C :=
(R[z],+, -, 0) is a composition ring which does not have a multiplicative identity nor a com-
position identity. Here F = Found(C) = R and B = Fz = Rz with BF = FB=FB C Fx
(for example, 20 € Fz, but 2z ¢ FB). Futhermore, BN CyoB = BN CyB = 0 and
(Co,+) = (B, +) ® (CoB, +).

4. Semi-constants

We start with

4.1. Proposition. Let C be a composition ring with x € C a commuting composition
identity. Let s € C' be such that

(1) cosoca-a=cos-a forall c,a€C.
(2) cos-s=cos forall ceC.
(3) (0:8)c, NB=0 (i.e. vs=0, veE B, impliesv =20 ).

Then (C,+) = (B,+) ® (Ds,+) where Dy ={c€ C | (cos)z =0} < C}.

Proof. For any c € C, ¢ = (co s)x + (¢ — (co s)x). We show (co s)z € B. For any a,b € C
we have:

(cos)zo(a+b)=coso(a+b)-(a+0b)
=cos-(a+b) by (1)
= (cos)a+ (cos)b
=cosoa-a+cosob-b by (1)

=(cos)zoa+ (cos)xob

and
(cos)xroab=cosocab-ab=cos-ab=((cos)a)b=(cosoa-a)b= ((cos)roa)b.

Next we show ¢ — (co s)x € Dy :

((c=(cos)z)os)z
=(cos)x—(cosos-s)x
=(cos)r—(cos-s)z by (1)
=(cos)x— (cos)z by (2)
=0.

If v € BN Dy, then 0 = (vo s)xr = wvs. Hence v € (0: s)g, N B =0 by (3) and we conclude
that (C,+) = (B,+) & (Ds, +).

Finally we show D;<C}. Let ¢, ¢ € Dy and ¢ € C. Then ((¢;—c¢p)os)z = (c108)z—(c208)T =
0, (cicos)zr=cros-cos-z=((c;os)xr)cos=0and (cc;os)z=cos-(cgos)z=0. O
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4.2. Corollary. Let x € C be a commuting composition identity and let s € C' be such that:
(1) cosoa-a=cos-a forallc,aeC and

(2) = =sx.

Then (0: s)e, NB=0andcos-s=cos forall c € C; hence (C,+) = (B,+) ® (D5, +)
and Dy, < C;.

Proof. We only have to verify that conditions (2) and (3) of Proposition 4.1 are fulfilled. For
any c€ C, cos=zo(cos)=szxo(cos)=socos-cos

=zoso(cos)-cos=x0s-cos by (1)
=s-cos

=cos-s by Proposition 2.2(1)

If v € B, then vs = (vos)r = vosx =wvox = v; hence vs =0 if and only if v = 0. Thus
(0:8)e,NB=0. O

4.3. Definition. Let C be a composition ring. Then s € C s called a semi-constant if:

(1) sos=s,

(2) (cos)boa=cos-boa forallce C and a,b € Cy.

A minimal semi-constant s is a semi-constant which satisfies: cosot-a = cos-a for
all c € C,a € Cy and non-zero semi-constants t.

Any constant s (i.e. s € F) is a minimal semi-constant. We now describe all the minimal
semi-constants of My(R) and M (R). In case C has a commuting composition identity = and
s € C is a semi-constant, then cosoa-a=cos-aforallc € C and a € Cy ( just let b = x).

4.4. Proposition. Let R be a commutative ring which satisfies Ry = 0 implies y =0 (e.g.,
if 1€ R). Let C = My(R). Then s € My(R) is a semi-constant if and only if s = 7 for
some r € R (for the definition of 7, see Example 2.6(2)).

Proof. If S is of the form s = 7 for some r € R, then it is straightforward to verify that S
is a semi-constant. Conversely, suppose s € C'is a semi-constant. If s = 0 we are done, so
suppose $(ty) = 1o # 0 for some 0 # to; € R. Choose y € R with yty # 0. We firstly show
that t € R, t # 0 implies s(t) # 0. To the contrary, if s(¢) = 0 for some ¢ # 0, let

to lf r=t
{ 0 if r#t.
Then a € C = Cj and from (gos)boa=gos-boa, w1thb—1R, we get 0 # yto = g(ro)to =
U(s(to)) - to = g(s(a(t))a(t)) = y(s(t)) - () (0) to = 0; a contradiction. Thus ¢ # 0
implies s(t) # 0.
Suppose for t; € R, t; # 0, t; # to, we have s(t1) = r1 # ro. Then r; # 0. Define functions d
and b by

a(r)

o Yy if t:T() - t() if t:t1
d(t)_{o it oA, o b(t)_{ 0 if t#b
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Then d € C,b e C = Cj and from (do s)lgpob=dos-1g0b we get 0 # yty = d(ro)b(t1) =
d(s(to)) - b(t1) = d(s(b(t1)))b(t1) = d(s(t1)b(t1) = d(r1)b(t1) = 0; a contradiction. Hence
r1 = ro and we conclude that s = 7. O

4.5. Corollary. Let R be a commutative ring which satisfies Ry = 0 implies y = 0. Let
C = My(R). Then the following are equivalent:

(1) s € C is a semi-constant.

(2) s =7 for some r € R.

(3) s is a minimal semi-constant. O

There is a similar characterization of the semi-constants in M (R) but, since the mappings
are not necessarily 0-symmetric, the proof is slightly different.

4.6. Proposition. Let R be a commutative ring which satisfies Ry = 0 implies y = 0. Let
C = M(R). Then the following are equivalent:

(1) s € C is a semi-constant.
(2) There exists an r € R such that s =7 (i.e. s is constant) or s =T.
(3) s is a minimal semi-constant.

Proof. We will only provide the verification of (1) = (2); the other implications being
straightforward. Suppose s € C' is a semi-constant. If s is not a constant, we are done, so
suppose s is a constant. Then there are t; # ¢, in R such that s(t1) = r; # o = s(t2). At
least one of ¢; or ¢y is non-zero, say to # 0. We will show that ¢t; = 0. Suppose this is not
the case, i.e. t; # 0. We also know that at least one of r; or 7o must be non-zero. We will
consider both these cases.

Suppose 1 # 0 and choose y € R with yt; # 0. Define a and ¢ in C' by:

ot i t=t Sy it t=n
“(t)_{ 0 if t#£s, 0 C(t)_{o if £

Then a € Cy and from (co s)lgoa =cos-1goa we get 0 # yt1 = c(r1)t1 = c(s(t1))t1 =
c(s(a(te)))a(ts) = c(s(ta))a(ta) = c(re)a(ts) = 0; a contradiction.
If 5 # 0, choose z € R such that zt, # 0 and let

b(t)_{ 0 if t#1, 0 d(t)_{o if ¢ .

Then d € C,b € Cy and from dosob-b=dos-bwe will get the contradiction zt, = 0.

Thus we must have t; = 0. But this means that s is of the form s(t) = { :2 ﬂ ttzéoo

1 — V.
Since so s = s, for any 0 # t € R, we then have 7y = s(t) = s(s(t)) = s(rg). This means
T # 0 and r = 3(0) = 8(8(0)) = 8(7‘1). Thus r; = 0 and so s = 75. m

4.7. Example. In C = Z4z|, s = z + z* is a non-zero semi-constant (which is not a
constant). m

Let 0 # s € C be a minimal semi-constant, C' any composition ring. Let
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b — s if F=0
| son for 0#mne€F.

We note that in general, if F' # 0, then k is not uniquely defined. One would be tempted to
argue if x € Oy is a commuting composition identity and if ¢ € C is a multiplicative identity,
then son = ssince son=zoson-i=x0s-i=si=s (using the fact that s is a minimal
semi-constant and n # 0 is a semi-constant). But this is not a valid argument since i € Cy
need not hold (as is required in the definition of a minimal semi-constant). If i € Cp, then
C = Cy and F = 0 in which case s on is of no concern. In any case, k itself is a minimal
semi-constant.

Let v € B. Define a mapping 3 : (C,+,-) — (B,+,0) by 8(c) = (cok)v for all ¢ € C.
This mapping depends only on s and v (and not on the n chosen) since s is a minimal semi-
constant and v € B C (. It is easy to see that 3 is a group homomorphism, but first priority
should be to confirm that it is well-defined, i.e. (co k)v € B for all ¢ € C. We distinguish
two cases.

If F =0, then for alla,b € C = Cy: (cok)vo(a+b) = (cos)vo(a+b) = cos-vo(a+b) =
cos-(voa+wvob) =cos-voa+cos-vob=(cos)voa-+ (cos)vob. Futhermore,
(cok)voab = (cos)voab = cosoab-voab=cos-voab=cos-(voa)b= (cosoa-voa)b=
((cos)voa)b= ((cok)voa)b. Thus if F =0, then (cok)v € Bforall c € C. If F # 0, then
(cok)v € Fr C B. Thus §(c) € B for all ¢ € C. We record this (and more), for the special
case v =z, in

4.8. Proposition. Let C be a composition ring with commuting composition identity x
and non-zero semi-constant s. Let k = s if F =0 and k = son for 0 #n € F. Then
Bs: (C,+,-) = (B, +,0) defined by Bs(c) = (co k)x = (co s)x is a ring homomorphism. If
F #0, then 5,(C) C Fz. The homomorphism [ is surjective if and only if there is a d € C
with do s-x =x. If (B is surjective and F # 0, then (Cok)x = p4(C) =B = Fx.

Proof. We start by showing that (3, is a ring homomorphism. For ¢,d € C, and since £ is a
semi-constant with (d o k)z € Cj, we get

Bs(cd) = (cdok)r =cok-dok-x=coko(dok)x (dok)x
= (cok)z o ((dok)z) = Bs(c) o Bs(d).

If 3, is surjective, then x € B = 3,(C) implies there isa d € C with x = (dok)zr =dos- z.
Conversely, if such a d € C exists, then for any v € B, vod € C and fs(vod) = (vodok)r =
(vodos)r=(vo(dos))x=vo(dos)r=wvox=wv. Finally, if 3, is surjective and F # 0,
then Fx C B = (35(C) = (Cok)x C Fu. O

For two non-zero minimal semi-constants s; and s, in C, with associated ring homomorphisms
(1 and [35 respectively (i.e. §;(c) = (cos;)x ), we always have 51 (C) = (2(C), but £ need not
coincide with f,. Indeed, for any ¢ € C, fi(c) = (cos1)r = (cosy08)x € (Cosg)r = [o(C)
and [2(C) C (31(C) follows similarly. The next example will show that in general §; # [,
and in Proposition 5.1(9) we will show under which circumstances they do coincide.
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4.9. Example. Let R = Z, and let C = My(R). Then s; = 1 and s, = 2 are two non-
zero minimal semi-constants in C. Let f; and f; be the associated ring homomorphism
respectively. Then f1(z) = (z 0 s1)z = syz =1 while fo(z) = (zosg)z =spx=2#1. O

Worthwhile to point out is that if 3, is surjective for any one non-zero minimal semi-constant
s, then By is surjective for all non-zero minimal semi-constants s’. Indeed, since [, is sur-
jective, there is a d € C with do s-x = = ( by Proposition 4.8). Since s’ is a non-zero
semi-constant and s is minimal (dos)os' -z =dosos -x = dos-x = x; hence fy is
surjective.

5. Composition t-rings

A composition ring C'is called a composition t-ring if C has a commuting composition identity
x and a non-zero minimal semi-constant s with x = sx.

If we use this s to define k as in the previous section, there are many useful properties that
we list in:

5.1. Proposition. Let C' be a composition t-ring and let

k = s i F=0 where 0 # s is a minimal semi-constant in C' with © = sx.
son for 0#ne

Let Bs: C — B be the mapping defined by Bs(c) = (co s)x. Then:

(1) k is a non-zero minimal semi-constant and kx = x = zk.
(2) cokoa-a=cok-a forall a,c€C.
(3) a=ka forall a € C and vk =v for all v € B.
(4) If F #0, then k € F is an identity for the ring (F,+,-) and B = Fx.
(5) kok=k, kos=k=sok and kk = k.
(6) (0:2)q, NF =0
(7)) cok=k-cok=cok-k

(8) If §' is any other non-zero minimal semi-constant in C' and k' is defined analogously to
k, then k = k" and (cok)xr = (co k")x for all c € C (i.e. Bs = By)

(9) Bs is surjective.

Proof. (1) Ifk=son=0(0#ne¢€ F),thenn =zon=sron=son-n=0;a
contradiction. That & is a semi-constant is clear, since either k = sor k € F. If k = s, then
kx =x =zk. If k = son, then kx = (roson)z = (ros)x = sx = x since s is a minimal
semi-constant.

(2) We distinguish two cases:

If F=0,thencokoa-a=cosoa-a=cos-a=cok-aforallce C,ae C =C,. If
F #0, then cokoa-a=cok-aforallcaeC (since k € F).

(3) Forany a € C,a=zoa=kxoa=koa-a=xz0koa-a=x0k-a=ka (by (2) above)
and v =vox =voxk=(vox)k = vk.

(4) If F # 0, then k € F and the result follows from (3) above and Proposition 2.2(1). For
anyv € B v=voxr=vokr = (vok)x € Fr.

(5) Straightforward.
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(6) If F =0 we are done. If F' # 0 and m € F with mz = 0, then m = mk = mx ok = 0.
(7) By (3) above and Proposition 2.2(1).

)
) B
(8) Let k' =" if F =0 and let k' = s’ on for 0 # n € F. Then £’ has all the properties that
k does. From (4) above we get k' = k.

)

(9) B surjective follows from Proposition 4.8 since © = kz = (z o k). O

From Propositions 5.1, 4.8 and 4.1 we get most of :

5.2. Proposition. Let C be a composition t-ring. Then there exists a non-zero minimal
semi-constant k such that (C,+) = (B,+) ® (D, +) where D ={c€ C | (cok)z =0} < C
and B : (C,+,-) = (B,+,0) defined by B(c) = (cok)x for all ¢ € C is a surjective ring
homomorphism with ker3 = D and (3(v) = v for all v € B. The mapping ( is independent
of which minimal semi-constant k # 0 is chosen. If F # 0, then B = Fz. O

We note that if C' is a composition ring with F' = 0, then it cannot be both a composition
p-ring as well as a composition ¢-ring. The reason being that any 0-symmetric composition
t-ring has 0 # x € B C Cyz (cf. Proposition 2.4). But if F' # 0, a composition ring can
be of both types. For example, let C = R[z]. Then C is a composition p-ring as well as a
composition ¢-ring (s = 1 € F is a non-zero minimal (semi-) constant with = sz). We note
further that the two associated mappings, say (3, and (3, respectively, are not the same. For
c=cot+ax+cr®+---+cab € C, By(c) = iz and Bi(c) = (co+ ¢1 + -« -+ cx)z. Of course,
both have image B = Fx = Rz, but kerf3, = {c€ C | c; =0} and ker §;, = {c € C' | col = 0}
are not comparable: For any 0 # r € R, —r + rz € ker(, but —r 4+ rx ¢ kerf, and for
a,b € R with a+b#0, a+ bz* € ker3, but a + bz® ¢ ker 3;.

5.3. Examples. (1) Let R be a commutative ring with 1 € R and let C' be a subcomposition
ring of M(R) such that x = 1z € C. If Found(C) # 0, then C is a composition t-ring if
and only if 1 € C. Indeed, if 1 € C, then 1 is a non-zero minimal (semi-) constant in C
with £ = 1z. Conversely, if C is a composition t-ring, let 0 # k € Found(C) be such that
x = kx. Then t = k(t)t for all t € R and so k(1) = 1. Since k is constant, we conclude that
l=kecC.

If Found(C) =0 and 1 =k € C, then C is a composition #-ring. If R has no non-zero zero
divisors, then also the converse is true, i.e. if C' is a composition t-ring, then 1 € C.

(2) R[z] is always a composition t-ring since 1 € R[z]. Ry[z] need not be a composition
t-ring. For example, suppose R has a non-zero nilpotent element b, say b™ = 0 but y"~! # 0.
Then Ry[z] is not a composition ¢-ring. To the contrary, if it is, then x = sz for some
0 # s € Ry[x]. Thus, if s = s12+ 5922+ - - + s,2%, we get t = s(t)t = 5112+ 5913 + - - - + s4tF T
for all t € R. Hence t"~! = 51t 1 4 59t"2 4 ... 5,t" k=1 for all t € R. For t = b, we get
0#b" 1 = 510" + 550" 2 + -+ - + 5,07 TF~1 = 0, a contradiction.

6. Ideals in composition rings

At first we will consider the relationship between the ideals of C' and those of the foundation
F of C. Most of these are known results (often with their origins in the more general
composition near-rings) and are, of course, only interesting if F' # 0.
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Let ¢ : C' — M(F') be the composition ring homomorphism defined by ¢ (c) = 4. : F — F (F
= Found(C)),¢.(n) =conforalln e F,ce C. Kery=(0: F)¢, ={c€C|coF =0}<C
and if Kery = 0, then C can be regarded as a subcomposition ring of M (F'). In particular,
if C is simple and F' # 0, then C is a subcomposition ring of M (F). But one can say more:

6.1. Proposition. (Adler [1]) Let R be a ring. If every subcomposition ring C' of M(R)
with Found (C) = R 1is simple, then R is simple. Conversely, if R is a simple ring with
identity, then every subcomposition ring C of M(R) with Found(C) = R is simple. O

The foundation F' can always be considered as a C-module in the following sense: Let C' be
a composition ring and let S = (S, +, ) be a ring. Then S is called a C-module if there is a
mapping C X S — S, (¢, s) — cs which satisfies (¢ + d)s = ¢s + ds, (cd)s = (cs)(ds) and
(cod)s =c(ds) for all ¢,d € C,s € S. A subset J of S is an C-ideal of S if J is an ideal of
Sandc(s+j)—cse Jforallce C,s € Sand j€ J. Sis C-simple if it has no non-trivial
proper C-ideals. Clearly, if S is simple, then it is C-simple. The foundation F' of C' is always
an C-module in the cannonical sense: (c,n) := con.

The composition rings C' for which the notions “C-ideal” and “ideal” of F' coincide, are called
compatible. Any composition ring with F' = 0 is trivially compatible. Not all composition
p-rings are compatible. For example, let R be a commutative ring with 1 € R which contains
a nil ideal N and suppose N has a non-zero ideal J which is not an ideal in R (an example
of such a ring R is given below). Then there are elements j € J and r € R such that rj ¢ J.
Let C = Ry]|[z]]. Then Found(C) = N and J is an ideal of N which is not a C-ideal of N:
reo(n+j)—rrxon=rjé¢J (re € C,n € N). We now give an example of the ring R with
the properties as claimed. Let A be a commutative ring with 1 € R and which contains an
ideal B # 0 with B%2 = 0 (for example, take B any ring with zero multiplication and let A be
any unital ideal extension of B). Let R be the subring of the full 3 x 3 matrix ring over A
a b c
consisting of all matrices of the form | 0 a b | . It can be verified that R is a commutative
0 0 a

ring with identity (the usual matrix ring identity).
Let J be the set of all matrices of the form

[0 b 0]

0 0 b | with b€ B and let N be the set of all matrices of the form

o OO
oSO
S O

with b € B and c € A. Then J < N <R, N> =0 and J is not an ideal of R: For 0 # b € B,
[0 b 0] [Obﬂ-l[lll-l [Obb-l
00bledbut|00b||lo11]=|000b]¢d

100 0 looo]loo1] |ooo]

6.2. Proposition. Let C' be a composition ring with commuting composition identity x. If
every ¢ € Cy is of the form ¢ = vy + vix + vex? + - - - + v for some k > 0, v; € B for all
1=0,1,2,--- , k, then C is compatible.

Proof. Let j € J < F = Found(C), c€ C withc=m+u € F+Cy and u = XF_jv;z?, k >
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0,v; € B. Let n € F. Then (n + j)" = n® + d;j for some d; € F and we get:

co(n+j)—con
=mo(n+j)+Xvrio(n+j)—mon—Yyzion
=Yvio(n+3)-(n+j) —Svion-n'
=Yv;on-(n+j)+Svioj-(n+j) —Yvon-n'
=Yy, on-dij+Sv;0j-n'+Xv;07-d;j
= Y; o (nd;j) + Zv; o (jn*) + Zw; o (jd;j).

Now v;0(nd;j) = (viond;)j € FJ C J, v;o(jnt) = (v;on')j € FJ C J (cf. Proposition 2.2(1))
and v; o (jd;j) = (v;04d;)j € FJ C J. Hence co(n+j)—coné€J. O

For a composition ring C' with F' = Found(C') we will use the following notation: Let A C C
and let S C C be either a subring of C or a subnear-ring of C5 or a subcomposition ring
of C.

(A), denotes the ideal in S generated by AN S. For example, if § = C; then (4).
denotes the ideal in C; generated by A. If S = (C,+,-,0), then we usually write (A4), just
as (A). We will also use

(ANF:F)g,:={ceC|coF CANF}.

We recall two further results; the latter already part of the folklore of the theory of polynomial
near-rings.

6.3. Proposition. [4] Let J<F, F = Found(C), C a composition ring. Then the following
1S equivalent:

(1) J is an C-ideal of F.

(2) (J: F)g, <C.

(3) J= (J)NF. O

6.4. Proposition. Let I < C. Then there is a unique C-ideal J of F (namely J =FN1I)
such that (J) C I C (J: F)g,- O

6.5. Proposition. The mapping 6 : {I | I < C} — {J | J an C-ideal of F} defined by
0(I) = INF is a surjective function which retains sums of ideals, inclusions and intersections.
In general, 6 need not be a bijection.

Proof. Let I =X ,1,, I,<<C. Then c € INF ifand only if c € F and ¢ = Zle Sa;sSa; € Lo;.
For such a¢, ¢=co0 = 3s,, 00 and s, 00 € I,, N F. Thus §(I) =), 0(I,) and so ¢
retains sums of ideals. 6 is surjective: Let J be an C-ideal of F. Then (J) C (J : F)¢, and
JCANHNF=0({J)) CO({(J:F)c,) =(J: F)g,NF = J. 0 need not be a bijection: For a C-
ideal J of F', ((J)) = 0((J : F)¢,) = J, but (J) and (J : F')¢, need not coincide. For example
it C =Cy, let J=0. Then (0: F)g, = (0:0)g, = C and 0(0) = 0=6(C) =0((0 : F)c,)-

The remaining assertions are clear. U
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6.6. Proposition. (Peterson and Veldsman [3]) Let C' be a composition ring with
Found(C) =F # 0. Then (0 : F)¢, is a maximal ideal of C' if and only if F' is C-simple and
(0: F)e, +(F)=C. O

6.7. Corollary. (Peterson and Veldsman [3]) Let C' be a composition ring with Found(C) =
F #0 and (F) =C. Then:

(1) F is C-simple if and only if (0: F)¢, is the unique mazimal ideal of C.

(2) C is simple if and only if F is C-simple and (0: F)¢, = 0. O

Let us mention that if C' is infinite and 0 # Found(C) = F is finite, then C is not simple.
Indeed, (0 : F)¢, is non-zero (otherwise ¢ : C' — M(F') defined by 9(c) = 9. : F — F,
¥¢(n) = comn, is an injective mapping from the infinite set C' into the finite set M (F')) and
(0: F)¢, # C (otherwise F' = 0). Note also that if the composition ring is compatible, then
all occurrences of “C-ideal” can be replaced by “ideal”. We next look at the relationship
between the ideals of F' and those of B.

6.8. Proposition. Let C' be a composition ring with commuting composition identity zx,
Found(C) = F and Base(C) = B.

(1) If J<F, then Jx < (Fx,+,0).

(2) If J is an C-ideal of F, then BoJ+ Jo B C J and Jx < (B,+,0).

(3) Let K<B. Let J={n€ F|nxe KNF}. Then Jt = KNFz and J<F. If B= Fx,
then K < B if and only if K = Jx for some J < F.

Proof. (1) Forje€ Jandn € F, jronz = (jn)x € Jr and nzo jr = (nj)z € Jx.

(2) JoB=J (since JCF). Forve B, je Jjvoj=vo(0+j)—vo0e€ Jsince Jis an
C-ideal of F. Hence Jo B+ BoJ C J. Furthermore,

jrov =jv
=vj since j € J C F, cf. Proposition 2.2(1)
=(woj)x since v € B

€ (Boj)x CJx
and vojr = (voj)r € (BoJ)x C Ju.

(3) Clearly Jr = KN Fzx. Let j € J;n € F. Then (jn)z = (jx)n € (KN Fx)F C KN Fzx
(cf. Proposition 2.2 (6)). Hence jn € J and thus also nj = jn € J. O

Next we will look at the transfer of ideals between C and its base B. For this we will make
the following

Assumption. In the sequel we suppose that 3 : (C,+) — (B,+) is a surjective group
homomorphism.

Let A C B. We define

[A]:={ce C|B(c) e A+ FB}.
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If C' is a composition p-ring, we take 3 to be the mapping as defined in §3 and if C
is a composition ¢-ring we take § as defined in Proposition 5.2. For both these two cases,
FB = Fz. In case C is both a composition p-ring as well as a composition ¢-ring (cf §5),
then it doesn’t matter how we choose 3, at least for the purpose we have in mind here. This
follows, since in this case, F'# 0, B = Fz and hence [A] ={ce€ C | f(c) € A+ B} =C.

We will at times impose further conditions on 3. The first of these are:

(B;) Forall a,b € C,B(ab) € FB or for all a,b € C, 3(ab) = B(a) o B(b).
(By) Foralla,b € C,B(aob) — B(a)o B(b) € FB.

For a composition p-ring, both these conditions are satisfied. For a composition ¢-ring con-
dition (B;) holds and if F' # 0, then also (B,) is satisfied. More generally, any composition
ring C' with 3 surjective and B = F B satisfies (B;) and (By) (trivially) but in such a case
[A] = C for any A C B.

6.9. Proposition. Let J be a subgroup of B such that Jo B+ Bo.J C J+ FB (for
ezample, if J < B orif JC FB). Then 3([J]) = J + FB and:

(1) If B satisfies (B1), then [J] < Cy.

(2) If B satisfies (B1) and (By), then [J] < C.

Proof. 3([J]) = J + FB follows from the definition and since j is assumed to be surjective.
Let ¢,d € [J] and p,q € C. Then f(c—d) = 3(c) — 5(d) € J + FB.

(1) Suppose /3 satisfies condition (By). Either 5(cp) € FB C J+FB or f(cp) = 3(c)o B(p) €
(J+ FB)oB C J+ FB and similarly either 3(pc) € FB C J+ FB or B(pc) = B(p) o B(c) €
Bo(J+FB) C J+FB. Thus [J] < Cy.

(2) Suppose  also satisfies condition (B;). Then f(cop) = B(c) o 8(p) +u € (J+ FB)o
B+ FB C J+ FB for some u € FB. Lastly, B(po(¢+¢c) —poq) = B(p)oB(c) +w €
Bo(J+ FB)+ FB C J+ FB for some w € FB. Hence [J] < C. O

6.10 Proposition. Suppose 3 satisfies condition (Bg). Let I < C. Then J := B(I) is a
subgroup of B which satisfies Jo B+ BoJ C J+ FB and I C [J]. If J' is any other
subgroup of B with I C[J'], then J+ FB C J' + FB.

Proof. Let a,d € I and b € B = 3(C), say b = 3(c),c € C. Then f(a) — B(d) = f(a — d) €
B(I). Also, B(a) o B(c) = Blaoc)+g € B(I)+ FB = J + FB for some g € FB and
B(c) o B(a) = B(coa) + w for some w € FB. If c = k +u with k¥ € F and u € Cj, then
B(coa)=p(uoca) € B(I)+ FBsince CoolI C I and B(k) = B(ko0) = B(k)oB(0)+h=nh
for some h € FB. Thus 3(c) o B(a) € B(I) + FB. Clearly I C [J]. Let J' be a subgroup of
B such that I C [J']. Let j+d € J+FB,say j = 3(i),i € I. Since I C [J'], (i) € J'+FB
and so j +d e J + FB. O

6.11. Corollary. Suppose (3 satisfies conditions (B1) and (Bz). The mapping @ : {I |
IaC}y — {J+ FB | J a subgroup of B with Jo B+ BoJ C J+ FB} defined by
®(I) = B(I) + FB is a well-defined surjection which preserves inclusions and sums.
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Proof. Most of the proof follows from Propositions 6.9 and 6.10. The remainder is straight-
forward. 0

6.12. Proposition. Suppose ( satisfies conditions (By) and (Bs). Let I be a mazimal
tdeal of C. Then one and only one of the following three cases holds:

(1) FE€ I and I =(INF:F)g, with INF a mazimal C-ideal of F.
(2) FFC I and I =[B(I)] with B(I) a mazimal ideal of B.
(38) FCI and f(I)+ FB = B.

Proof. By Proposition 6.4 and the fact that I is maximal, we have I = (INF : F)¢, or
(INF:F)g =C.

Suppose firstly I = (INF : F)g,. Then FZ I forif FC IthenI =(INF:F)g, = (F:
F)¢, = C; a contradiction. We show I N F is a maximal C-ideal of F'. Let K be a C-ideal
of FwithINFCKCPF. Then I=(INF:F)g, C(K:F)g, andso I = (K : F)¢, or
(K : F)¢, = C. If the latter equality holds, then F' = C o F = K, a contradiction. Thus
I = (K : F)¢, and from this we get K C I N F, also a contradiction. Hence I N F is a
maximal C-ideal of F'.

Suppose now (INF : F)g, = C. Then F C I. By Proposition 6.10 J := $(I) is a subgroup
of B which satisfies JoB+Bo.J C J+FB and I C [J]. From Proposition 6.9 we get [J]<C
and so I = [J] or [J] =C.

If [J]] = C, then B = 3(C) = 3(]J]) = J + FB = $(I) + FB. Suppose thus [J] = I.
Then J < B: Note firstly that J = B(I) = B([J]) = J + FB; hence J C FB. Thus
JoB+BoJCJ+ FB = J. Finally we show that J is maximal in B. Let K < B such
that J C K C B. By Proposition 6.9 we have [K]<1C and I = [J] C [K]. Thus [J] = [K] or
[K]=C. If [J] = [K], then J = J+FB = ([J]) = 3(|K]) = K + FB = K; a contradiction.
If [K] = C, then B = 3(C) = 3([K]) = K + FB = K; also a contradiction. Hence 3(I) = J
is a maximal ideal of B. O

The next two results are immediate special cases of this result:

6.13. Corollary. Suppose [ satisfies conditions (B1) and (Bs) and that Found(C) = 0.
If I is a mazimal ideal of C, then only case (2) or (3) of Proposition 6.12 can occur, i.e.:
I =[B(I)] and B(I) is a mazimal ideal of B or B(I) = B. O

6.14. Corollary. Suppose C = (F) and [ satisfies conditions (By) and (By). If I is a
mazimal ideal of C, then I = (INF : F)g, and I N F is a mazimal C-ideal of F. O

The third case in Proposition 6.12 can occur (cf. Example 6.16 below) and in the known
cases with a stronger conclusion:

6.15. Proposition. Let C be a composition ring with commuting composition identity x,
let I <C suchthat FF C I and B(I)+ Fx = B. Suppose C' and 3 satisfies:

(Bs) For all m >0 (m € Z) there ezists a function B : C — B with fy(c) := (co 0)z for
all c € C and By = B3, such that for all m > 0 and for all ¢ € C, there exists a ¢ € (c) such
that ﬂm(c) = Bm+1 (CI)-
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Then B, (I) = B for all m > 1.

Proof. We start by showing £(I) = f(I) = B, i.e. Fx C ((I). Let £k € F. Then
kx = (ko 0)x = Bo(k) = pi(k') for some k' € (k). From F C I we get k' € I and thus
kx € B1(I) = B(I). Hence B(I) = B.

We proceed by induction and suppose B = f3,,,(I) for some m > 1. Let b € B = (3,,(I), say
b= fn(a),a € I. By (B3) thereis an a’ € (a) C I such that b = 3,,(a) = Bni1(a’) € Bni1();
hence B = f,41(1). O

6.16. Example. Let C' be a composition p-ring. As we have seen before, for any £ > 0 and
any c¢ € C, there is a unique representation.

c=nc+vo+v1x+vzx+---+vkxk_1+ukxk

where n. € F, v; € B and wug € Cy. Define 3,, : C — B as follows: fy(c) = n.x =

(co0)zx; Bi(c) = B(c) = vo, Pa(c) = v1,---, Bmy1(c) = U, ... Let ¢ € C. Then cx € {c) and

since cx = ner + vz +v122 + - - - + V2P 4wk (and remember BN Bx € BN Cyx = 0),

we get B (¢) = U1 = By (cx) for m > 2, By(c) = nex = Bi(cx) and fi(c) = vy = Ba(cz).
Thus B,(¢) = Bm+1(cx) and cx € (c) for all m > 0. O

We know exactly when only cases (1) and (2) of Proposition 6.12 can occur:

6.17. Proposition.. Suppose ( satisfies conditions (B1) and (By). Let I be a mazimal
ideal of C. Then only cases (1) and (2) of 6.12 can occur if and only if there is a c € C
such that B(c+1)NFB = ¢.

Proof. Suppose only cases (1) and (2) can occur. From the proof of Proposition 6.12 we
then know that I = [3(I)] C C. If B(c+I)NFB # ¢ for all ¢ € C, we will derive a
contradiction. Let ¢ € C and i € I such that B3(c + i) = w for some w € FB. Then
B(c) = —B(i) + w € B(I) + FB. Thus ¢ € [(I)]. Hence [3(I)] = C; a contradiction.
Conversely, suppose 3(c + 1) N FB = ¢ for some ¢ € C. If [3(I)] = C, then ¢ € [3(I)]
implies 3(c) = B(i) + u for some i € I,u € FB. Thus $(c — i) € FB which contradicts our
assumption. Hence 3(I) C C. O

6.18. Corollary. Suppose Found(C) =0 and [ satisfies conditions (By) and (Bg). Let I
be a mazimal ideal of C. Then I = [B(I)] and B(I) is a mazimal ideal of B if and only if
there is a ¢ € C such that B(c+1i) # 0 for all i € I. O
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