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1. Introduction

A conjecture raised by J. Koh asks whether a module-finite extension of commutative rings
R — S in which S, viewed as an R-module, has finite projective dimension, splits as a map
of R-modules. This question is a natural generalization of the Direct Summand Conjecture
(D.S.C.) of Hochster. This conjecture asserts that in the case where R is a regular ring (and
consequently S has finite projective dimension over R) this inclusion splits as a map of R-
modules. Its validity is known for equicharacteristic rings and for rings of mixed characteristic
in dimensions one and two but remains open in dimension three and higher [11]. Koh’s
question replaces the condition of R being regular for the weaker condition of S having finite
projective dimension over R. It has been shown in several cases that by weakening the
hypothesis of R being regular, and replacing it by the condition that certain modules have
finite projective dimension, the conclusions of many theorems fail to hold. For instance, the
rigidity of Tor fails under the weaker hypothesis [9], as well as the positivity of the intersection
multiplicity, xz(M, N), for modules M, N of finite projective dimension over R [10].

Throughout this paper all rings will be commutative with identity. In the first part we
will construct several new examples in which we will show that Koh’s conjecture is false for
rings of prime characteristic as well as for rings of mixed characteristic. These examples
will be constructed, in the prime characteristic case, as pushouts of quotients, by quadratic
polynomials, of Stanley-Reisner rings over the field Z,, associated to a three-dimensional
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simplicial complex whose underlying space is the union of three tetrahedra touching at three
points (Figure 1-2). These counterexamples, as the ones constructed in [6], also lift to mixed
characteristic. Unlike the examples previously constructed, we will be able to provide a direct
proof, and one which does not use computers, of the fact that the inclusion map does not
split. Besides, these examples are conceptually clearer and have smaller Krull dimension.

In the second part of this paper we will prove some cases of the Direct Summand Conjecture
in the following set up. As it was shown in [6], the D.S.C. is equivalent to the following
statement. Let (R,m) be a local regular ring and S a ring of the form 7'/J where J is an
ideal of T such that JN R = (0) (so that R <— S = T'/J is injective) where T is an R-algebra
of the form

T=R[Z,...,Z.)/([L(Z1),..., [u(Z0)),

where each f;(Z;) is a monic polynomial on the variable Z; alone. In this set up, the splitting
of R — S is equivalent to the fact that Anng(J) € mT [6]. We will show how to reduce the
problem to the case where J is a principal ideal of T, and that in this case Anng(J) € mT
if the projective dimension of J, as an R-module, is less than two.

2. New counterexamples to Koh’s conjecture

In this section we construct two new counterexamples to Koh’s conjecture for rings of char-
acteristic equal to two and will show how to lift these examples to mixed characteristic. We
will construct a module-finite extension R < S in which S will be a ring, which viewed as
an R-module, will have torsion free rank equal to two and projective dimension equal to one.

2.1. First counterexample

Let us consider the abstract simplicial complex A with vertices
V' = {12, T30, T3, 11, b2, 13, Y1, Y2, Y3},
and facets (faces of maximal degree) given by
Fy = {t1,t2,y3, 732}, Fo = {1, 712, %0, 3}, F3 = {t1,13, T2, %2},

(see Figure 1), i.e., A consists of all subsets (simplexes) of Fy, Fy, F3.
Let us denote by Ry = Zs[A] the Stanley-Reisner ring

ZQ[xiZ: Y, t’L]

Ry =
0 In

corresponding to A where

IA = (xiijQa xiQtia Zi2Y5, Yilj, yztza t1t2t3): 1= 152a3, .7: 152:35 Z%]a
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Z32
t2 tl
12 22
Y1 t3 Y2
Figure 1

is the ideal associated to the complex A (generated by all square-free monomials in the
variables of the set of vertices V' which are not elements of A [7]).

Let
R = Ro[11,221, 31|/ Ho (2.1)

be the ring obtained by first adjoining to R, the variables x11, 91, £31, and then killing the
ideal Hy of R, generated by the homogeneous elements

hi = tix11 + T32Yy3 + T22Yo,
he = tox91 + T12Y1 + T32Y3,
hs = t3x31 + T12Y1 + T22Yo.

Remark 2.1. As it is well known, the primary decomposition for the ideal Ix in Ry is given
by

IA = ﬁFl N BF2 N BFg
where 5, are the ideals of R, generated by the facets of A
Bry = (Y1, Y2, 212, T2, 13), By, = (Y2, Y3, T2, T32, 1), By = (Y1, s, T12, T32, t2).

The following lemma shows that this decomposition lifts naturally to a primary decomposition
for the ideal H() + Ia in Ry = Zz[l'ij, yi,ti], 1= 1, 2, 3, ] = 1, 2.

Lemma 2.1. If8p,8Br,, Br, s, Hy denote the ideals as above, regarded as ideals of Rs, then
(i) The ideals Q1 = (Br, + Hy), Q2 = Br, + Hy), Q3 = Br, + Hy) are prime.
(ii) The primary decomposition of In + Hy is given by

In+Hy=Q1NQ2N Q3.
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Proof of (i). Let us observe first that

Ry /Q1 = Zo|x11, To1, T31, T32, Y3, L1, tz]/QI1

where Q) = (z11t1 + Zorta, T3oys + To1tz). In order to show that @y is prime, it suffices to
do this after we localize at t,. But after localization )} becomes a principal ideal generated
by the polynomial z11t; + Z32y3 which is clearly irreducible in (Ry);, and consequently (), is
a prime ideal in R,. In a similar way we conclude that )2, ()3 are also prime ideals. O

Proof of (ii). Let 8% , HS, I§ denote the expansions of 85, , Hy, and Ia to (R3)q,. We observe
that the ideal Q1 (R2)q, is equal to the sum of the ideals 8% and HS. To see this, note that
each generator

yit1/1, yoys/1l, xsats/1, T1at1/1, Tooxs2/1

of 8%, is contained in I%, and since t1, 3, 23, are units in (R3)g,, then the result follows.

In a similar way we prove that Q;(Ry)q, is equal to (Ia + Hg)® in (Rp)q,, for j = 2,3. This
implies that the primary components of In + Hy are precisely @)1, ()2, (03 and therefore

In+Hoy=Q1NQ2NQs. O
From this lemma we immediately obtain the following corollary.

Corollary 2.2. The Krull dimension of R ~ Ry/(Hy + IA) is equal to 5.

Lemma 2.3. Let C be the cokernel of the matriz

T11 Z12
X=| T T2
T31 T32
Then the sequence
0-RPEAR 5C o0 (2.2)

is a free resolution of C.

Proof. 1t suffices to see that X is injective. For this we use the Buchsbaum-Eisenbud criterion
for exactness: in this case we just have to check that depthy R > 1, where A denotes the
ideal generated by the 2 x 2 minors of the matrix X. Let z be the sum of the three minors
of X, i.e.,

z = (X11%92 — To1%12) + (T11T32 — T31T12) + (T21%30 — T31T22)-

In order to show that z is not a zero divisor, it is enough to verify that it is not contained in
any of the primes Q;, 7 = 1,2,3. But in R/, the element Z = 35(x11 + x91) is clearly not
zero since both z3 and x1; + 29 are not in ). In a similar way we prove that z is not in
any of the other two primes. U
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Remark 2.2. The fact that X is injective can also be shown by direct computation as follows:
let (a,b) be an element of the first syzygy module Syz,(C), of C. Thus

1. axri, + bxlg =0
2. axo1 + bIEQQ =0
3. ars; + b.’L‘32 = 0,

in R = Ry/(Ia + Hy). Multiplying the first equation by ¢; we obtain axi1t; + bz12t; = 0, and
since t1219 € In + Hg, then btiz15 = 0.

Therefore azi1t; = 0, i.e., axyit; € In + Hy. From this it follows that azqit;/1 €
Q1(Rs2)g,- Since z11/1,t1/1 are units in this ring we get that a € Q). Similarly, we show that
a € 2, and a € (Y3. This forces a to be 0 in R. Therefore, bx1s, bxss, and bxs, are contained
in In + Hy, and in particular bz, is contained in Q2(R2)g,. But z13/1 is a unit in (Ry)g,
and consequently b € ()5. A similar reasoning shows that b is contained in (); and ()3 what
forces b =0 in R.

With notation as above, we have the following:

Theorem 2.4. Let f € Hompg(R?%,R) be the homomorphism that sends ey, ey, the standard
basis of R?, to the elements x11t1 + 12y and 0, respectively. Then the R-module

S=(R&R)/(fle:),—X(ei)), =12,

can be endowed with an R-algebra structure satisfying the following properties:

(i) The structural homomorphism R — R-1 C S is injective and makes S into a module
finite extension algebra of R of projective dimension equal to one, pdz(S) = 1.

(ii) The inclusion R — S does not split as a map of R-modules.

Proof of (i). Let T be the quotient of the polynomial ring R[X;, X5, X3] given by
T = R[X1, X2, X3]/ (X1 X2, X1 X3, Xo X3, X7 — t:.X1, X5 — tX5, X3 — t3.X3).

Notice first that 7" is a free R-module generated with basis given by {1, u,us,u3}, where
u; denotes the class of X;, i = 1,2,3. (For any relation of linear dependence ag + aju; +
asuy + azuz = 0, after we kill X5, X3 in T we get ag + a;u; = 0 in R[X;]|/(X? —,X}), which
implies that ag = a; = 0. In a similar manner one shows that a; = 0, and ag = 0.) Thus,
T ~ R® R3. Let N denote the R-submodule of T" generated by the images in T of

fler) = X(er) and  f(e2) — X(e2), ie, N = Rvi+ Ruy,
where

U1 = (3512?}1 + 3311751) — T11U; — T21U2 — T31U3,

Vo = —T12U1 — T22U2 — T32U3.
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Note that N is an ideal of T'. For this, it is enough to check that u,N C N. But for each
1 =1,2,3 one can readily check that

wivy = [(T1291 + T11t1) — tizaJui = yive,

and wu;v; = O.

Since S and T'/N are isomorphic as R-modules, S acquires, via this isomorphism, the struc-
ture of an R-algebra. O

Proof of (ii). S is constructed in the same way as in [6], i.e., as the pushout that makes the
following diagram commutative

0 y R —— S C
fT gT idT
X

0 y R? y R3 y C > 0

~
e}

v

Here C' denotes the cokernel of the matrix X, as in the previous lemma, g the canonical map
sending e; into u;, ¢+ = 1,2, 3, and ¢d the identity map on C. The exactness of the second row
is precisely the content of the previous lemma. From this, it readily follows that 7 is injective
and that pdg(S) = pdx(C) = 1.

Finally, in order to prove that the inclusion R < S does not split it is enough to show
that JS N R # J, where J denotes the ideal J = (Z171,Z21,Z31)R (as it is shown in [12] if
R — S splits every ideal J of R is equal to the contraction of its own expansion to S).
Clearly, z = x1oy1 + x11t1 is contained in JS N R since z = 11Uy + To1us + x31u3. On the
other hand, let ¢ denote the homomorphism

1/) : R/J — ZQ[Xl,XQ,Xg]/C,
where
C = (X1 Xy, X1X3, XoX3, X2 — 1 X1, X5 — t9Xo, X2 — 13X3)

that sends ¥ (T) = X;, ¥(W) = X;, ¥() =0, i = 1,2,3. Then one immediately sees that
Y(z) = Y? # 0 and therefore z ¢ J. O

2.2. Second counterexample

Now we see that if we specialize some of the variables of R in the previous example we obtain
a counterexample of smaller Krull dimension. Actually, we will see that the Krull dimension
of this counterexample is two, which makes it the smallest counterexample as far as we know.

In the ring R, constructed above we set x;; = ¢;, and replace each variable x;5 by z;. This ring
is just the Stanley-Reisner ring Ry = Zo[z;, i, z:]/Ia associated to the simplicial complex A
with maximal faces the simplexes

A1 = {ylax1>t27t3}7 AQ = {y27$2’t17t3}’ A3 = {yS,$3;t2;t1}-
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Y3

x3
t2 tl

1 Z2

hn t3 Y2

Figure 2
Let R be the quotient of Ry by the ideal generated by the homogeneous elements
hi = t? — T3Yz — TaY2, ho = t% — ZT1Y1 — T3Y3, hy = t% — T1Y1 — T2Yo.
Clearly,

R = Zo|z;, yi, i) /H

where

H = (z;zj, xiti, T;y;, ViY;, Yiti, titats, hy), 1<1i,5<3,i+# j.

351

Now we check that by passing to this new ring we preserve all the good properties of the

previous construction.

Lemma 2.5. A primary decomposition of H is given by

H=qNgNg

where

q1 = (t1, To, T3, Yo, Y3, t3 — T1Y1, t3 — T1Y1),
g2 = (to, T1, T3, Y1, Y3, 1 — ToYo, t3 — Taya),

q3 = (t?ﬂ Z1, T2, Y15 Y2, t% — T3Y3, t% - $3y3)

are primary to the prime ideals

Q1 = (t1, T, T3, Yo, Y3, ta — T1Y1, ta + t3),
QZ - (tQa X1, T3, Y1, Y3, t% — T2Y2, tl +t3)>
Qs = (t3, T1, To, Y1, Y2, L3 — T3ys, t1 + o).
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Proof. 1t is clear that R/Q ~ Zy[x1,y1,t2]/(t2 — x1y1) is a domain and therefore @, is a
prime ideal. In a similar way we show that (02 and ()3 are prime. These primes are precisely
the minimal primes of H by the same argument as in the previous counterexample.

Now, let us see that the expansions of H and ¢; coincide in any localization of R at any
of the vertices of the tetrahedron A; = {y;,z1,%9,t3}. To see this, notice that if we invert
any of the vertices of A; the monomial generators of H become the variables t,, 9, 3, Y2, y3,
up to units. Thus, the polynomial h; becomes superfluous and hs, h3 can be replaced with
t2 — x1y1,12 — 11y;. Consequently H coincides with ¢, after localization. From this we see
that HRg, = ¢1 Rg, and therefore ¢; must be the ();-primary component of H. If we localize
at any prime () different from the homogeneous maximal ideal m of R, and containing @),
the expansions of H and ¢; also coincide because any such prime () cannot contain all the
vertices of A; (since this would imply that it contains all the nine variables of Ry and this
in turn would imply @ = m). Thus, H cannot have any embedded component with radical
a prime () containing ;.

By symmetry, localizing at any of the vertices of Ay (respectively Aj), we see that gy
and g3 are the (s, respectively (03, primary components of H and no other components exist
that contain any of these two primes. O

From this lemma it follows that
Corollary 2.6. The Krull dimension of R is equal to two.
Lemma 2.7. Let C be the cokernel of the matrix

t1 11
X = tg 9
t3 w3

Then C' has projective dimension one over R.

Proof. As in the Lemma 2.5 we check that the element

t1 1
ty X9

t1 11
t3 w3

tag X9

Z:tl +t2 +t3

t3 3

is not in any of the minimal primes of H. But in R/Q; (recall that)

Q1 = (t2, x1, 23, Y1, Y3, t1 + t3, t§ + Z2ys),

we see that zZ = t2z, is not zero. In a similar way we show that z is not contained in any of
the other two primes @), 3. O

With R and C constructed as above we can construct as in the previous theorem a smaller
counterexample to Koh’s conjecture.

Theorem 2.8. Let R = Zy|x;,y;, t;]/H, 1 = 1,2,3, and f € Homg(R? R) be the homomor-
phism that sends ey, ey, the standard basis of R?, to the elements t2+z1y, and 0, respectively.
Then the R-module S constructed as a pushout, as in Theorem 2.4, is a module-finite exten-
sion of R with pdg(S) =1, and the natural inclusion of R in S does not split.



J.D. Vélez, R.Flérez: Failure of Splitting from Module-Finite Extension Rings 353

Proof. The fact that S is a module-finite extension algebra of R follows from the fact that
R is a homomorphic image of the original R constructed in the first counterexample, and
S, as an R-module, is of finite projective dimension by the previous lemma. On the other
hand, the inclusion of R in S does not split since the element w = z,y; + 2 is in JS N R,
where J denotes the ideal J = (t1,t,t3)R, (because w = tju; + toug + t3usz), and it is not
contained in J; to prove this, we use the same homomorphism v constructed above to show
that ¢ (w) = X? # 0. O

3. Lifting these counterexamples to mixed characteristic

These counterexamples can be lifted to counterexamples in mixed characteristic following
the same procedure as in [6]. The ring R is defined as in any of the two examples before,
except that we know replace the field Z, by the ring of integers. Let us denote this ring by
Rj. Notice now that in both counterexamples above the ideal Hj is already defined over the
integers so it makes sense to define R’ = R{,/H|} , where H{ denotes ideal H, (respectively
H), as in counterexamples 1 and 2, respectively, but viewed as ideals with integer coefficients.
Let S’ be a ring constructed over R’ using the same pushout construction as before. Clearly
Ry = R} /2R),, and we have the obvious surjection h : R' — R. If m’ denotes the contraction
of m, the homogeneous maximal ideal of R to R', then h extends to a map h: R, — R, .
Now, we can show that the inclusion

R, — S,

does not split using the same argument as above: the elements z and w constructed in
counterexamples 1 and 2 are contained in J'S] , N R, , but not in J'R] , since otherwise they
would be contained in JR,,, a contradiction since R,, — S, does not split.

Alternatively, one can see that one could also modify the two counterexamples above by
changing the coefficient field Z, by the ring Z,) of integers localized at the prime (2), without
changing the projective dimension of S (as before, one can verify that the sum of minors of
X is not a zero divisor). These new extensions do not split either since one can easily check,
using the same arguments as above, that the contraction of the expansion of J to S is strictly
bigger than J.

4. Some remarks on the Direct Summand Conjecture

The Direct Summand Conjecture D.S.C. asserts that every module-finite extension R <— S
of a regular ring R splits as a map of R-modules. This conjecture has been proved when the
ring R contains a field and for rings of dimension less than three, in mixed characteristic [11].
In [6] it is shown that the problem of determining whether an extension R < S splits can be
reformulated in the following way. First, as it is proved in [11] one can easily reduce to the
case where R is a local regular ring (R, m). Since S is a finite R-module one can represent S
in the form 7'/J, with T denoting the free R-algebra

T = R[Zla s azn]/(fl(Zl)’ T afn(Zn)),



354 J.D. Vélez, R.Flérez: Failure of Splitting from Module-Finite Extension Rings

where f;(Z;) is a monic polynomial on the variable Z; alone and J C T is an ideal of T such
that JN R = (0) (so that R — S = T'/.J is injective). If d; denotes the degree of f; then T’

is a free R-module of rank m, with m = dyds - - - d,,, and with free R-basis consisting of the

product monomials u{'ug® - - -u8*, 0 < a; < d;, where u; denotes the class of Z; in T'. In this

set up the splitting of R < S is equivalent to the fact that Anng(J) € mT [6].

In this section we will show that the problem of determining whether
Anng(J) € mT

can be reduced to the case where J is a principal ideal. We will show that this is the case if
the projective dimension of J, as an R-module, is less than two, or equivalently, in the case
where pdg(S) < 3.

Lemma 4.1. Let (Ry, mqg) be a regular local ring and let Ty denote the ring

To = Ro[Zy, .., Za]/(f1(Z0), - - - s fu(Zn))-

Let J = (g1,...,9s) be an ideal of Ty such that J N R = (0), so that Ry — Sy = Ty/J
is a module-finite extension algebra. Let R = Ry[X1,...,X;| be the polynomial ring in the
variables X, ... , X5 over Ry, and let T be the algebra

T = T() ®R0 R~ R[Zl, e ,Zn]/(fl(Zl), e ,fn(Zn))e.

If g denotes the element g = X191+ - - -+ X595 in T and S denotes the quotient ring (T'/gT)
then

1. ¢T N R = (0) and therefore Ry, — Sm = (T/9T)m is a module-finite extension of
R, where R,, and S,, denote the localization of R and S at the mazximal ideal m =
moR + (Xl, cee ,XS)R.

2. If the inclusion R, — Sy, splits then the original inclusion Ry — So = To/J also splits.

Proof. First, since Ry — R is faithfully flat the inclusion Ry — T/J stays injective after
tensoring with R hence R — (T ®g, R)/J¢ = T/JT is also injective. Since (g)T C JT we
get ()TN R C JTNR = (0) thus R — T/gT is also injective and this is preserved after
localizing at m. This proves the first part.

Now, for part 2, let us assume that R,, — S,, splits. This implies that there is an element

h= ZZ:EX)UQ’ w$X) g

X) sa(X)
which is contained in the annihilator of g in T,, = R,,[u1, ..., u,| but not in mT,,, where
a = (aq, ... ,q,) denotes a multiindex, and u* the monomial u®* - - - u®. This means that at
aa(X)

least one of the coefficients 72 &9 is not contained in mR,,. After multiplying by the product
s =[] sa(X) of the denominators we may assume that h has the form h = ¢, (X)u®, with

o]
all its coefficients in R. Since the s,(X) are all units of R,,, we may still assume that at least
one of the coefficients ¢,(X) is not in mR. Now, since the coefficients of h and g, viewed
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as polynomials in the u;, are all contained in R = Ry[X;, ..., X;] the equation hg = 0 in
R, [uy, ... ,u,) also holds in Rluy, ..., u,):
an (Xig1 + -+ Xog5) = 0in Rlu, ..., up). (4.1)

We may ldentlfy R[’U,l, P ,Un] = RQ[Xl, P 7Xs][ZI: c. 7Zn]/(fl(Zl)7 c. 7fn(Z’n.)) with

RO[ZI: s 7Zn]/(f1(Z1)7"' :fn( ))[le ;Xn] = T[Xla--- ;Xs]'

We thus may view (4.1) as an equation in T'[ X1, ..., X,]. Let us write c,(X) as
= rasX’,
B

where § = (04, ..., [s) denotes a multiindex, and 7,4 denote coefficients in Ry. By changing
the order of summation we may write h as

h= ZZraﬁu“Xﬂ = Zraou + ZZragu

p#0

and then the equation (4.1) takes the form

ZTaOU + eraﬂu Xﬁ g1X1 B ngs) = 0.

B#0 «

In this product the coefficient of X is given by
hogi = (Z%oua)g =
e

fori=1,...,s, where hy denotes the polynomial hy = > roou®. Thus hy is an element in the

annihilator of J in 7. On the other hand, since not all the ¢,(X) are contained in mR there
must exist one element r,g, for some «, which is not contained in myq (clearly all the other
coefficients of u® in ¢, (X) are multiples of the X;) and consequently hg is not contained in
moTy. Thus Ry — Ty/J splits as we wanted to show. O

Theorem 4.2. (Notation as above) Let (R, m) be a regular local ring of mized characteristic
and of Krull dimension n. Suppose R — S is a module-finite extension ring and write S as
T/J with J = (C) a principal ideal such that pdg(J) < 2. Then the inclusion of R in S splits
as a map of R-modules.

Proof. We notice first that the module J = (() is generated as an R-module by the m
elements vy = Cufuf---ul', 0 < i; < dj. If a: R™ — J — 0 denotes the map that
sends the canonical base e;) — v(;), then the kernel of this map is precisely the anni-
hilator of J in 7" since it is the set of all m-tuples of the form (r;) C R™ such that
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S rpCuiluy - uft = 0 <= (X rpuitu -+ ujt) = 0. Now, to say that Anng(J) ¢ mT
is exactly the same as saying that among the linear relations

g rauruy - ut =0

there is at least one with some coefficient r¢;) not in m. By Nakayama’s lemma this is
equivalent to the fact that J is minimally generated as an R-module by less than m elements,
or equivalently, that there is at least one entry which is a unit in the matrix of the map 3 of
the resolution:

0o R - RS R 0, (4.2)

where 0 - R¥F — --- — R? ﬁ)Ker(a) — 0 is a minimal resolution of the Kernel of . In
the case where J is free as an R-module we have = 0 and therefore J must be minimally
generated by m elements otherwise the sequence 0— (J ~ R™) — (I'~ R™) - T/J — 0
would be exact and therefore the torsion free rank of 7'/J would be zero, a contradiction.

Now, let us assume that pdgz(J) = 1. In this case § # 0, and to prove that at least
one entry of the matrix representing (3 is a unit we can proceed by descending induction on
the dimension of R. Without loss of generality we may assume that dim(R) > 3 since the
D.S.C is true for ring of Krull dimension less that 3, [11]. At the top, where dim(R) = n, we
have depth,,(J) = n — 1 since pdz(J) = 1. Hence by avoiding the union of the associated
primes of 7'/ J and the square of the maximal ideal in R we can choose x € R such that after
tensoring the inclusion R — S = T'/J with R/x we get to the situation where

R/z = R/z®T/() ~T/(C)

is also injective, depth of J/zxJ in the maximal ideal of R/x equals depth,, (J) — 1 =
dim(R/xz)—1, and where R/x is regular of dimension n—1. (The injectivity of the map follows
from the fact that depth(J) = n — 1 implies depth(S = T/J) = n — 2 = depth(S/R) > 0
otherwise, since we are assuming n > 3, depth(S/R) = 0 = depth(R) = 1, a contradiction.)
Finally, tensoring the exact sequence

0= RF = s RAR™ 5 J s T=R"=T/J =0

with R/z we get an exact sequence over R/z in which the matrix of 3 has its entries in m
if and only the same is true for 3, and thus we can use the inductive hypothesis to conclude
the argument. O
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