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Abstract. We construct sets in Euclidean spaces of dimension d = (4"12_2), where

m is a power of a prime, with the property that they can only be covered with a
large number of sets having smaller diameter. Thereby we generalize a result of
A.M. Raigorodskii and, in addition, we prove that there exists a counterexample
to the so called “Borsuk-conjecture” already in dimension (324) — 1 = 560.

1. Introduction

In 1933 Karol Borsuk [3] asked the following question (literal copy):

Lisst sich jede beschrinkte Teilmenge E des Raumes R"™ in (n + 1) Mengen zerlegen, von
denen jede einen kleineren Durchmesser als E hat?

(Can every bounded subset E of the Euclidean space R™ be partitioned into n + 1 sets, such
that each of these sets has a smaller diameter than E?)

Of course, we have to assume that the diameter of E' is positive, i.e., it consists of at least 2
points. In order to present some of the known results concerning this problem we need some
notation. In the following let E be a subset of the d-dimensional Euclidean space R¢ with
diameter diam F = ¢ > 0. The smallest positive integer k£ with the property that E can be
partitioned into k sets with diameter less than ¢ is called the Borsuk number b(E) of the
set E. The current best upper bound on b(E) depending only on the dimension d is due to
Schramm [11]. The number

b(d) := max {b(F) : ECR? 0 < diamF < co}.
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will be called the d-th Borsuk number. For the d-dimensional unit ball B? we have b(B%) =
d+ 1 and this observation was the motivation for Borsuk’s question. Nowadays this question
is known as Borsuk’s conjecture although Borsuk himself never posed the problem as a
conjecture. The question was answered in the affirmative way in dimensions d < 3 and for
all smooth convex bodies. In spite of these supporting results the validity of the conjecture
was doubted for quite a while. Paul Erdés [4] and C.A. Rogers [10] made some comments
in this direction. Nevertheless, it was a big surprise, when 1992 Jeff Kahn and Gil Kalai [7]
proved b(d) > d + 1 provided d is large enough. More precisely, they showed

Theorem 1.1. (Kahn&Kalai) Let m be a power of a prime p and let d(m) = (%) —1. Then
there exists a set E C RY™ with

1(4m im
b(E) > q(m) = 552’2)1 = (im). (1.1)

2()  G)
Obviously, ¢(m) > d(m) + 1 if m is sufficiently large. Without giving further details
Kahn&Kalai claimed that their proof leads to a counterexample in dimension d(13) = 1325;
maybe they made a flaw at this point since ¢(13) < 781. The smallest admissible number
m with g(m) > d(m) + 1 is 16 and we have d(16) = 2015. The book [12] of Chuanming
Zong contains a detailed description of a slightly different construction of Kahn&Kalai’s
counterexample. The disproof of Borsuk’s conjecture due to Kahn and Kalai is based on a
result of P. Frankl and J. Wilson [5]. From today’s perspective it is quite astonishing that
Frankl&Wilson themselves didn’t find a counterexample, because they were very close to it.
The basic theorem of Frankl&Wilson used for the construction of a counterexample reads as

follows:

Theorem 1.2. (Frankl&Wilson) Let m be a power of a prime, n = 4m, and lgt X =Az=
(@1, mn] € {=1,1}" 30 2; = 0}, Then #X = (37) and every subset X C X with

#)~( > 2(47;”:11) contains an orthogonal pair of points.

Now it is easy to see that the set X* = {z* = 2Tz : x € X} provides a counterexample
to Borsuk’s conjecture: X* lies in an affine space of dimension d(m) in R* and consists of
exactly %(;”:L) points. Since (u*,v*) = (u, v)? we know by the theorem of Frankl&Wilson that
every subset of X* with more than 2(47;”__11) points contains a pair of points whose distance is
equal to the diameter of X*. Thus X* can not be partitioned in less than ¢(m) sets having
a smaller diameter than diam X*. The relation to the result of Kahn&Kalai is obvious. The
main difference is that the set E constructed by Kahn&Kalai consists of 0/1-vectors.

In 1993 A. Nilli [8] first used the tensorial products for the construction of counterexam-
ples. In a remarkable, brief and clear presentation (for a more detailed version we refer to

[2]) he proved the following result:

Theorem 1.3. (Nilli) Let p > 3 be a prime and let do(p) = (). There exists a set E C
R%®) with
24p72

b(E) = qi(p) == ST () (1.2)
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The bound ¢, (p) is much larger than the number ¢(p) and already for p = 11 we get ¢;(P) >
do(p) + 1. Thus the answer to Borsuk’s question is “No” for d = (%) = 946. By a slight
modification of Nilli’s construction J. Grey and B. Weilbach [6] could lower the dimension to
di(p) = (*, ") for which (1.2) holds. Obviously, we have ¢;(11) > di(11) + 1 and therefore,
they found a counterexample already in dimension d = (423) = 903. However, in the same
year A.M. Raigorodskii [9] proved a much better bound. He constructed a counterexample
in dimension d = (324) = 561. His construction also is based on the work of A. Nilli. In a first
step Weifibach generalized Raigorodskii’s investigations to

Theorem 1.4. (Weifibach) Let p > 3 be a prime and let do(p) = (**;%). There ezists a set
E C R%2®) such that

24]1 4
Z (4;0 3)
A detailed presentation of his proof can be found in the book “Proofs from THE BOOK” by
M. Aigner and G.M. Ziegler [1]. We remark that the lower bound on b(E) given in this book
is insignificantly worse than in (1.3). Again for p = 11 we have ¢2(p) > da(p) + 1 and thus
one has a counterexample in dimension d = 861.

In order to get the bound 561 Raigorodskii also showed that Theorem 1.4 remains valid
for the number 9 = 32 instead of a prime p. The purpose of the present paper is to embed
Raigorodskii’s result in a more general context. We show that the prime p in Theorem 1.4

may be replaced by any power p* > 3 of a prime p. In addition we will show that there exists
a counterexample to Borsuk’s conjecture in dimension d = 560.

b(E) = ¢2(p) := (1.3)

2. The construction

Let p be a prime, m = p* > 3 and let n = 4m — 2. In R" we consider the set
F={z=z1,...,z,) € {-1,1}" : #{i : 2; = =1} =0mod 2, z, = 1}, (2.1)

and let F* := {z* = 272 : © € F'}. We show

Theorem 2.1. The Borsuk number of F* is not less than

24m—4

ga(m) = S Ay

j=0 J

For the proof we note some basic facts first.
1. Since z, = 1 the map £ — 27z is an injective map on F' and thus

#F* = HF =244 (2.2)

2. Let u = [u1,. .., Up],v =[v1,...,v,] € F and let u* = uTu,v* = vTv be the corresponding
points in F*. Then we have

n

(u*,v*) = Z (upug) (vpvg) Zuhvh Zukvk

hk=1
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3. The Euclidean length of each vector of F'is y/n, and for the inner product of two vectors
u,v € F we find (u,v) = 2 mod 4. More precisely we have

(u,v)+2=4z, ze{-(m—-2),—(m—-3),...,(m—1),m}. (2.3)

One way to verify (2.3) is the following. Let u =[1,...,1] — 2[dy, ..., G,] with [Ty, ...,T,] €
{0,1}" and " ,4; = 0 mod 2. If we write v in the same way, then we observe, that
—n = —4m + 2 < (u,v), because u, = v, = 1 implies —x ¢ F for all x € F.

From these facts we can deduce an upper bound on the Euclidean distance of two points
of F*

lu* =" = [lu|* + Il = 2w", v") = fJull* + [[o]|* = 2(u, v)* < 2n* — 8,

where equality holds iff [(u,v)| = 2. In other words, each pair of points u,v in F with
|{u,v)| = 2 leads to a pair of points u*, v* attaining the diameter of the set F*. The next
fundamental proposition says that any sufficiently large subset of F' contains such a pair of
points.

Proposition 2.1. Let G C F with #G > Z;.n:_(f (4";._3). Then there exists u,v € G with
[(u, v)| = 2.

This proposition immediately implies Theorem 2.1, because now we know that any subset
G* C F* with #G* > Z;n:_OZ (4";.73) contains two points with ||u*—v*|| = diam (F*). However,
by the pigeonhole principle and since #F* = 2'™~% we see that any partition of F* in sets
with smaller diameter consists of at least [go(m)] sets.

For the proof of the proposition let G C F' be a set with |(u,v)| # 2 for all u,v € G. In
the following we want to estimate the cardinality of such a set. To this end we use an idea
of A. Nilli: We assign injectively to each point v € F' a map ¢, : F — Z, x — ¢, (x), where
©u(z) is given by

pule) = ol ey +2), ot = (1) = com(273).

m — 2 m — 2

Now the following lemma holds:

Lemma 2.1. Let m = p* > 3 be a power of a prime and z € {—(m — 2),... ,m}. Then
(mn:i;z) Z 0 mod p holds if and only if z € {0,1, m}.

The proof is simple. It is sufficient to show that (zf;) is divisible by p for s € {0, ... ,m—3}.
If g # 0 (mod m) is dissected in prime factors then the prime p occurs precisely as frequently
as in the residual modulo m = p®. The factors of the numerator from (’m”fg) belong to m — 2
residue classes modulo m. Among these classes the class [0] = [m] occurs for the values of
s which we have to consider. This class does not occur among the m — 2 residue classes for
the factors of the denominator. Consequently, the numerator contains at least one factor p
more than the denominator.

Since for all u,v € G we assume |(u,v)| # 2 the lemma implies

ou(v) Z0modp < u=wv forallu,v,€G. (2.4)
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This shows that different points v € G lead to different maps ¢,. Next we show that these
maps are rational independent. Otherwise there exist integers \,, u € G, with ged(\, : u €

G) = 1 such that

uelG uEG\{v}

for all x € F. With x = v we get

0=2A 1)901) Z )‘u(pu

ueG\{v}

where ¢,(v) Z 0 mod p and ¢,(v) = 0 mod p for u # v. Hence A\, = 0 mod p for all v € G
which contradicts the assumption ged(A, : v € G) = 1.

In order to estimate #{¢, : u € G} we note that ¢,(x) is a polynomial of degree m — 2
with rational coefficients in the n — 1 variables z1,... , 2, 1;

_ il Z.71,—1
qu(m) - E : Qiy.oi 1 L1 " Ty _q -

0<i1++ip_1<m—2

Now for x € F' we have z2 = 1 and thus on the set F the polynomial ¢,(x) can be regarded
as a multi-linear polynomial @, (z) with rational coefficients of degree at most (m — 2). Of
course, (2.4) remains true for the polynomials @,(z). Therefore #G = #{@.(z) : u € G}
and the latter set of multi-linear polynomials is rational independent. Now the set of all
multi-linear polynomials with (n — 1) variables with rational coefficients and of degree at
most (n — 2) form a vector space V over Q. A basis of this space is given by the monomials

1,$i1,$i1$i2, R T TP TR ¥ c {1, e, = 1},

and since #G < dim V' the proposition is proven.

3. Counterexamples to Borsuk’s conjecture

The bound for the Borsuk number of the set F* given in Theorem 2. 1 grows exponentially;
it is go(m) > %5 (22)™. (This follows from the rough estimate > i (4"; ) <m(*™) and
Stirling’s formula, cf. [1], 83-88). Since the matrix zTx is symmetric and since all elements
on the main diagonal are 1 for x € F, the dimension of the affine hull of F™* is equal to
(3) = (2m — 1)(4m — 3) = dy(m). Therefore F* is a counterexample to Borsuk’s conjecture,
if m is large enough.

With m = 32 we get do(9) = 561 and [¢2(9)] = 759. This is the result of A.M. Rai-
gorodskii. With some extra work it should also be possible to prove go(m) > do(m) + 1
for all m > 9. It seems to be worth to mention that for m = 23 one gets do(8) = 435
and [g2(8)] = 432. So the gap is rather small and one has “almost” a counterexample in
dimension 435. Nevertheless, one can improve Raigorodskii’s bound by 1. To this end we
note that [g2(9)] is much larger than what is needed and this means that for m = 9 we can
drop many points from the set F', F*, respectively. The correctness of the proposition is not
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affected by this. We just have to ensure that we still have so many points that the set can
not be partitioned into 562 sets with a smaller diameter. Now we observe that

E(h(gﬂ — {%w — 569 > 562.

Thus for each subset F' C F with #F > 3-2% the corresponding set F'* can not be partitioned
into less than dim(aff F™*) +1 sets having a smaller diameter. With the right choice of F' one
can construct a set F* whose dimension is less than 561. We choose

F={ze€F:|r,xz3] ¢ {[-1,-1,-1],[1,1,1]}}. (3.1)

It is easy to see that #F = S#F = 3-2%. With z; + 2o+ 23 = £1 we get (z1+22+123)" = 1
and thus z129 + zox3 + 2321 = —1. This implies that dim(aff F*) = dim(aff F*) — 1 and we
have shown

Theorem 3.1. There exists a counterexample to Borsuk’s conjecture in dimension d = 560.
Finally, we would like to comment this new “record” with the words

parturient montes
nascetur ridiculus mus.
Quintus Horatius Flaccus (Ars poética 139).

The author thanks Giinter M. Ziegler for helpful comments.
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