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Abstract. In this paper we present some geometric properties of isoptics of pairs
of nested closed strictly convex curves. The theory of isoptics provides a simple
geometric method to prove some generalizations of well-known integral formulas of
Crofton-type.

1. Introduction

In this paper we consider a pair of two nested strictly convex curves C1 and C2 such as in
Figure 1.1. Choose a coordinate system with the origin O in the interior of C2. Assume that
the curves Ci are given by the equation zi(t) = pi(t)e

it + ṗi(t)ie
it, i = 1, 2, where p1, p2 are

the support functions of the curves C1 and C2, respectively. Consider the tangent line k1 to
the curve C1 at a point z1(t) and the tangent line k

′
2 to C2 parallel to k1 in the manner shown

in Figure 1.1. Rotate the tangent line k′2 in a clockwise direction to the position k2 in such
a way that the tangent lines k1 and k2 form an angle α, α ∈ (0, π). Then k2 is the tangent
line to C2 at the point z2(t+ α). Let zα(t) denote the intersection point of the tangent lines
k1 and k2. The curve Cα : z = zα(t), where α is fixed, is said to be the α-isoptic of the first
kind of the pair C1 and C2. If we rotate the tangent line k

′
2 in the counterclockwise direction

we get a point z = z̃α(t). The curve z = z̃α(t) is said to be the α-isoptic of the second kind
of the pair C1 and C2. Note that according to the above definitions there are exactly two
isoptics of the same kind passing through each point exterior to the curve C1.
Consider the isoptics of the first kind. We fix α ∈ (0, π). Then
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Figure 1.1

zα(t) = z1(t) + λ(t)ie
it = z2(t+ α) + µ(t)ie

i(t+α).(1.1)

In this case µ < 0, however λ is arbitrary. It is easy to check that

λ(t) = −ṗ1(t)− cotα p1(t) + p2(t+ α)
1

sinα
(1.2)

µ(t) = −p1(t)
1

sinα
− ṗ2(t+ α) + cotα p2(t+ α).(1.3)

Hence we get an equation of an α-isoptic of the first kind

zα(t) = p1(t)e
it +

(
p2(t+ α)

1

sinα
− p1(t) cotα

)
ieit.(1.4)

Similarly,
z̃α(t) = z1(t) + λ̃(t)ie

it = z2(t+ α− π) + µ̃(t)ie
i(t+α−π).(1.5)

Then

λ̃(t) = −ṗ1(t)− p2(t+ α− π)
1

sinα
− p1(t) cotα,(1.6)

µ̃(t) = p1(t)
1

sinα
+ p2(t+ α− π) cotα− ṗ2(t+ α− π),(1.7)

and

z̃α(t) = p1(t)e
it +

(
−p2(t+ α− π)

1

sinα
− p1(t) cotα

)
ieit.(1.8)
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Note that in both cases the isoptic of the pair of nested strictly convex curves is at least of
the class C1.
From now on, we consider only the isoptics of the first kind, unless otherwise stated. We

have
żα(t) = −λ(t)e

it + %(t)ieit,

where

%(t) = p1(t) + ṗ2(t+ α)
1

sinα
− ṗ1(t) cotα.(1.9)

Let q(t) = z1(t)− z2(t+ α). Then

q(t) = sin2 α(%(t)− λ(t) cotα)eit − sin2 α(λ(t) + %(t) cosα)ieit.(1.10)

It is easy to check that

|żα(t)|
2 =

1

sin2 α
|q(t)|2.(1.11)

Since the considered curves are nested and α ∈ (0, π) then from formula (1.11) it follows that
the isoptic Cα is always regular, i.e. |żα(t)| 6= 0.

Corollary 1.1. The length |q(t)| is constant if and only if t = as+s0, where s is the natural
parameter on the isoptic.

2. Sine theorem for a pair of curves

Let C1 and C2 be a pair of two nested strictly convex curves such as in Figure 1.1 and Cα
its α-isoptic of the first kind. Define the angles ϕ and ψ formed by the tangent lines to C1
and C2 at z1(t) and z2(t + α) with the tangent line to the isoptic Cα at the point zα(t),
respectively.
Define [v, w] = ad− bc, when v = a+ bi and w = c+di. Following these notations we get

sinϕ =
[żα(t), ie

it]

|żα(t)|
=
−λ(t)

|żα(t)|
=
|z1(t)− zα(t)|

|żα(t)|
.(2.1)

Note that here we have λ < 0. Similarly, we get

sinψ =
|z2(t+ α)− zα(t)|

|żα(t)|
.(2.2)

Hence we obtain the so-called sine theorem

Theorem 2.1.

|q|

sinα
=
|z1(t)− zα(t)|

sinϕ
=
|z2(t+ α)− zα(t)|

sinψ
= |żα(t)|.(2.3)

A theorem analogous to the one above holds for isoptics of the second kind.
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3. Convexity of isoptics

From now on, in considerations involving the curvature, we always assume that the curves C1
and C2 are of class C

2 and of positive curvature. It is easy to establish the following useful
formulas:

λ̇(t) = −
1

k1(t)
+ %(t),(3.1)

%̇(t) = −λ(t)−
1

k1(t)
cotα+

1

sinα
·

1

k2(t+ α)
,(3.2)

where k1(t) and k2(t) are the curvature functions of curves C1 and C2, respectively. Then

[żα(t), z̈α(t)] =(3.3)

= 2λ2(t) + 2%2(t) +
λ(t)

k1(t)
cotα−

λ(t)

k2(t+ α)
·
1

sinα
−

%(t)

k1(t)
.

On the other hand,

[q(t), q̇(t)] = −
−λ(t)

k1(t)
cotα+

λ(t)

k2(t+ α)
·
1

sinα
+

%(t)

k1(t)
.(3.4)

Hence

kα(t) =
[żα(t), z̈α(t)]

|żα(t)|3
=
sinα

|q(t)|3

(
2|q(t)|2 − [q(t), q̇(t)]

)
.(3.5)

Finally, we get

Theorem 3.1. An isoptic Cα is convex if and only if

∣∣∣∣∣
d

dt

(
q(t)

|q(t)|

)∣∣∣∣∣ < 2.(3.6)

An analogous theorem is valid for the isoptics of second kind.

Reconsider formula (3.3). Since λ cotα− % = µ
sinα
, we have then

[żα(t), z̈α(t)] = 2λ
2(t) + 2%2(t)−

1

sinα

(
−µ(t)

k1(t)
+

λ(t)

k2(t+ α)

)

.(3.7)

Corollary 3.1. An isoptic Cα is convex if and only if

2|q(t)|2 > sinα

(
λ(t)

k2(t)
−
µ(t)

k1(t)

)

(3.8)

for every t.

Since µ(t) < 0 for each t for any isoptic of first kind, we have

−µ(t) = |zα(t)− z2(t)|(3.9)



A. Miernowski, W. Mozgawa: Isoptics of Pairs of . . . Curves . . . 285

and
|λ(t)| = |zα(t)− z1(t)|.(3.10)

Assume that in a neighborhood of the point t we have λ(t) > 0. Then condition (3.8) can be
written in the form

2|q(t)|2 > sinα

(
|zα(t)− z1(t)|

k2(t)
+
|zα(t)− z2(t)|

k1(t)

)

.(3.11)

Then, by the virtue of sine theorem,

2|q(t)| >

(
sinϕ

k2(t)
+
sinψ

k1(t)

)

.(3.12)

Note that the right hand side is equal to the sum of lengths of projections in the direction
determined by the vector q of curvature vectors of curves C1 and C2 at points t and t + α,
respectively. If λ < 0 then the first member of the right hand side in (3.8) is taken with the
minus sign. Consequently, we get

Theorem 3.2. An isoptic Cα is a convex curve if and only if for each t double the length of
the vector q(t) is greater then the sum of the length of the projection on the direction of the
vector q(t) of the curvature vector of the curve C1 at the point t and the algebraic measure of
the projection of the curvature vector of the curve C2 at the point t + α on the direction of
the vector q(t).

Note that this theorem allows us to check the local convexity of the isoptic knowing only the
point at which we examine the isoptic. We need not know even the equation of the isoptic.

Similar considerations can be carried out for the isoptics of the second kind.

4. Crofton-type formulas

Let ω(t) be an angle formed by the tangent line to C1 at the point z1(t) and the segment
z1(t)z2(t+ α). Consider a mapping

F (α, t) = zα(t).(4.1)

Then ∂F
∂α
= − µ

sinα
ieit and ∂F

∂t
=
(
(p+ p̈) + λ|t

)
− λeit. The Jacobian J(F ) of the mapping F

is equal to

J(F ) = −
µλ

sinα
.(4.2)

If A = {(α, t) ∈ (0, π) × (0, 2π) : ω(t) < α < π} then F is a diffeomorphism of the domain
A onto the exterior of the curve C1 less some half-line. Moreover, it is easy to see that for a
point F (α, t) we have λ > 0, µ < 0 so J(F ) > 0. On the other hand, this mapping restricted
to a set B = {(α, t) : 0 < α < ω(t)} is a diffeomorphism as well; however in this case λ < 0
and µ < 0 and so |J(F )| = λµ

sinα
.

For each point (x, y) ∈ Ω, where Ω is the exterior of the curve C1, we consider four
segments from the point (x, y) tangent to the curves C1 and C2. These segments we denote
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respectively by l1,m1,m2, l2, where l1, l2 are tangent to C1 and m1,m2 are tangent to C2. Let
us observe that we have the same formula (1.2) for l1 and l2 and, similarly, formula (1.3) for
m1 and m2. This fact will be used in our calculations of integrals. With the above notations
we obtain

∫ ∫

Ω

(
sin(l2,m2)

l2m2
+
sin(l2,m1)

l1m2

)

dxdy =(4.3)

=
∫ 2π

0

∫ ω(t)

0

sinα

(−λ)(−µ)
·
λµ

sinα
dαdt+

∫ 2π

0

∫ π

ω(t)

sinα

λ(−µ)
·
−λµ

sinα
dαdt =

=
∫ 2π

0

∫ π

0
dαdt = 2π2.

Similarly, we can prove that

∫ ∫

Ω

(
sin(l1,m1)

l1m1
+
sin(l2,m1)

l2m1

)

dxdy = 2π2.(4.4)

Let us observe that these formulas are more general then the one in Santalo [5]. By adding
the corresponding sides of the above formulas we get the well-known formula

∫ ∫

Ω

(
sin(l2,m2)

l2m2
+
sin(l2,m1)

l1m2
+
sin(l1,m1)

l1m1
+
sin(l2,m1)

l2m1

)

dxdy = 4π2.

This demonstrates that the isoptics provide a nice and direct geometric method to prove
some integral formulas. In certain cases our method gives a simple way leading to stronger
results.
Let k1, k̂1, k2 be the curvatures of the curves C1 and C2 at the points z1, ẑ1, z2 and α, β, γ

be the angles as in Figure 4.1.

Figure 4.1
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Then we obtain

∫ ∫

Ω

(
sinα

l2m2

(
1

k1
+
1

k2

)
+
sinα

l1m2

(
1

k̂1
+
1

k2

))

dxdy =(4.5)

=
∫ 2π

0

∫ ω(t)

0

sinα

(−λ)(−µ)

(
1

k1(t)
+
1

k2(t)

)
λµ

sinα
dαdt+

+
∫ 2π

0

∫ π

ω(t)

sin γ

λ(−µ)

(
1

k1(t)
+

1

k2(t+ β)

)
−λµ

sin γ
dβdt =

=
∫ 2π

0

∫ ω(t)

0

(
1

k1(t)
+

1

k2(t+ α)

)

dαdt+

+
∫ 2π

0

∫

ω(t)

(
1

k1(t)
+

1

k2(t+ β)

)

dβdt =

=
∫ 2π

0

∫ π

0

(
1

k1(t)
+

1

k2(t+ α)

)

dαdt =

=
∫ 2π

0

∫ π

0
(p(t) + p̈1(t) + p2(t+ α) + p̈2(t+ α)) dαdt = π(L1 + L2).

Taking m1 instead of m2 we obtain an analogous formula. This formula again shows the
usefulness of our method to provide a generalization of another well-known formula. Let us
calculate the following integrals

∫ ∫

Ω

(
sinα

l2m2
·
1

k1
·
1

k2
+
sin γ

l1m2·

1

k1
·
1

k̂2

)

dxdy =(4.6)

=
∫ 2π

0

∫ π

0

1

k1(t)
·

1

k2(t+ α)
dαdt =

1

2

∫ 2π

0

∫ 2π

0

1

k1(t)
·

1

k2(t+ α)
dαdt =

=
1

2
L1L2.

The formulas (4.5) and (4.6) reduce to well-known formulas (cf. [5]) when C1 = C2. Analo-
gously, we obtain the following integral formulas

∫ ∫

Ω

sin2 γ − sin2 α

m2
= πL1,(4.7)

∫ ∫

Ω

sin2 γ − sin2 α

l2
= πL2.(4.8)

The above formulas generalize our integral formulas (3.5) and (3.6) from [2].
Finally, we prove an integral formula for an annulus. Since the isoptics investigated

in this paper can intersect one another, we have to restrict our considerations to certain
angles. Let ωM = maxt∈<0,2π> ω(t) and ωm = mint∈<0,2π> ω(t). Then for β2 > β1 > ωM
(or for ωm > β2 > β1) the isoptics Cβ2 and Cβ1 do not intersect. Fix β1 and β2 such that
β2 > β1 > ωM and consider an annulus Cβ1Cβ2 . Then we have

∫ ∫

Cβ1Cβ2

1

l1
dxdy =

∫ 2π

0

∫ β2

β1

dαdt =(4.9)
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=
∫ 2π

0

∫ β2

β1

(
1

sin2 α
p1(t) +

1

sinα
ṗ2(t+ α)−

cosα

sin2 α
p2(t+ α)

)
dαdt =

= L1(cot β1 − cot β2) + L2

(
1

sin β2
−

1

sin β1

)

.

Similarly, we get

∫ ∫

Cβ1Cβ2

1

m2
dxdy = L1

(
1

sin β2
−

1

sin β1

)

− L2(cot β2 − cot β1).(4.10)

Adding the above formulas we get

∫ ∫

Cβ1Cβ2

(
1

l1
+
1

m2

)
dxdy = (L1 + L2)(tan

β2

2
− tan

β1

2
).(4.11)

This formula is then a generalization of our integral formula (2.1) given in [3].

Acknowledgements. The authors would like to thank the referee for many valuable sug-
gestions which improved this paper.

References
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[3] Cieślak, W.; Miernowski, A.; Mozgawa, W.: Isoptics of a closed strictly convex curve II.
Rend. Sem. Mat. Padova 96 (1996), 37–49.

[4] Miernowski, A.; Mozgawa, W.: On some geometric condition for convexity of isoptics.
Rend. Sem. Mat. Univ. Pol. Torino, 55 (2) (1997), 93–98.

[5] Santalo, L.: Integral geometry and geometric probability. Encyclopedia of Mathematics
and its Applications, Reading, Mass. 1976.

Received May 5, 2000


