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Abstract. The existence of mixed curvature measures of two sets in R? with posi-
tive reach introduced in [6] is discussed. An example shows that the non-osculating
condition from [6] does not ensure the locally bounded variation of the mixed cur-
vature measures. Further, some sufficient conditions for the local boundedness of
mixed curvature measures involving absolute curvature measures are presented.

For any two subsets X,Y C R¢ with positive reach and r,s € {0,1,...,d—1}, r +s > d, the
mixed curvature measures C, (X, Y;-) have been defined in [6] (where a different notation,
U, o(X,Y;-), has been used) as integrals of certain (2d — 1)-forms ), s over the joint unit
normal bundle

nor (X,Y) = f(((nor X x norY) N R) x [0, 1]),

where nor X, norY are the unit normal bundles of X, Y, respectively,
R={(z,m,y,n) €R*™:m+n+#0}

and

sin(1 — )6 sin t6
: t) —

/(@ m,y,n.t) (m,y, sinf ' sind n),

0 = Z(m,n) € [0,7]. Then, a translative integral formula involving these mixed curvature

measures was proved ([6, Theorem 1]) under the ‘non-osculating assumption’

LY{z € R%: 3(x,m) €nor X, (z + z,—m) €EnorY}) = 0. (1)
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It may, however, occur (as remarked by Joseph Fu in personal communication) that nor (X, Y)
has not finite H??~! measure (since f is only locally Lipschitz) and the signed measures
C,s(X,Y;-) may not be correctly defined (see Example 1 below). Therefore, it has been
assumed additionally in [7] that

|Cl,,s(X,Y; ) is locally finite, 0 <7, s <d— 1,7+ s > d, (2)

where the (nonnegative) measures |C|,,(X,Y;-) are defined below. Under this assumption,
C,+(X,Y;") is well defined for any admissible 7, s and |C|,,(X,Y;-) is the total variation
measure of its projection C,(X,Y;:) = C,4(X,Y;- x S¥1) (cf. [6, Theorem 2], [7, Theo-
rem 4.2]).

The functionals C, ,(X,Y;-) were studied more extensively for convex bodies X,Y (or
sets from the convex ring), see e.g. [9, 10]. Note that in [3], the notion ‘mixed curvature
measure’ has been used for a different functional.

Let k; = ki(z,m) (A; = Ai(y,n)) be the (generalized) principal curvatures and a; =
a;(xz,m) (b; = b;(y,n)) the corresponding (generalized) principal directions of X (V') defined
at Hé l-almost all (x,m) € nor X ((y,n) € norY, respectively). We set for any bounded
Borel subset A C R?¢

|Cl,s(X,Y; A) =
La(z,y) Frs(0)|W,5Y (m,m,y,n)|[H* 7 (d(z, m, y, n)), (3)
(nor X xnor Y)NR
where i i1
_ 0 1 (sin(1—-)0\" " [sintd\" "’
Frs = 1 7/ - -
#(0) O2d’1”"75sin0 0 ( sin > (sin@) dt,

2
WA =3 % igr ki lljgs )‘j[/\iel ai, Njes b]}

I ims TS /1 4+ 8211021 /1 + A2

(the summation is taken over all subsets I, J C {1,...,d— 1} of given cardinality), O is the
k-dimensional measure of the unit sphere in R¥*! and [/\ie 1 @i Njes bj} is the Jacobian of

the orthogonal projection of the linear subspace spanned by {a; : ¢ € I} onto the orthogonal
complement of that spanned by {b; : j € J}. Note that the measure C,  (X,Y;A) can be
represented as in (3) with the difference that the absolute value in the integrand is missing
(see [7, Theorem 4.2]).

Example 1. There exists a compact set X C R* with positive reach and m € S* such that
L*{x-m: (z,m) € nor X or (r,—m) € nor X}) =0 (4)

and the positive part of the mized curvature measure Cy3(X, mk;-) is infinite on a compact
set.

Remark 1. (4) is the particular form of (1) for X and Y = m* (cf. [5, Assumption (3.1)]).
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Proof. Let m € S* be given and let Z C R* be a four-dimensional cube of edge length
a > 0 and two facets Fi, F5 perpendicular to m. Let there be in F; a disjoint family of
three-dimensional balls C; of radii r; > 0, i = 1,2,.... Note that we have >, 7} < oo.
Then, for each i, a unit four-dimensional ball B; is placed so that its centre lies outside of
Z and B; N F; = C;. The compact set X = Z \ U;(int B;) has reach greater than 3/4. Let
a; = a;(z,n) be the (generalized) principal directions and k; = k;(z,n) the corresponding
(generalized) principal curvatures of X at (z,n), i = 1,2,3. Using [5, Theorem 3.1] (or,
equivalently, applying directly [6, Theorem 2]), one gets the formula

0173(X, mL;A X B)
1 / ( kika(as - m)* + kikz(az - m)? + koks(ar - m)
= A
A Jx [sin Z(m, n)]/1+ Kk3\/1 + k31 + &3

valid for any bounded Borel subsets A C R* and B C m* with £3(B) =1 Ifz e A, =
int ZNOB; (A; is the surface of the spherical hole digged by B; in X) then k1 = kg = k3 = —1
and the principal directions can be chosen so that a;,a; L m and a3 - m = sin Z(m,n). We
thus obtain

H(d(z,n))

1

B 1
X J“Ai B) = 7/ 14, -
Ci3(X,m™; A; x B) 8v/27 Jnor x Al(x)|sin4(m,n)|

H3(d(z,n)).

Consider the projection v : (z,n) — m - n restricted to nor X N (A; x S?), with Jacobian
Jip(z,n) = % sin Z(m,n). Applying the co-area formula, we get

_ 1 1
1. q. _ L 2/, -1
Cua(X,m*5 A x B) = — / T
= 1/1 ;8 (1 —u?)du
 8r Syl —u? "

= 1—4/1-12

Thus, choosing the r;’s so that 3=, 72 = oo (to see that this is possible, consider a partition of
the cube Z into infinitely many parallel slices and fill a constant volume proportion of each
slice by balls of diameters equal to the slice height), the positive part of C 3(X, m*; X x B x
S3) will be greater or equal to

SO (X,mb A x By =3 (1= /1 —12) = 0.
To see that (1) is satisfied, note that the set {z - m : (x,m) € nor X or (z,—m) € nor X} \
(F1 U F3) is countable. O

Remark 2. The construction from the proof can be easily adapted to R, yielding a set
X with positive reach and m € S$* with locally unbounded negative part of 6_’174(5( ,mL; ).
Embedding then the set X from the example into a hyperplane in R® containing m, we get
the positive part of C} 4(X, m*;-) locally unbounded (note that the intersection of X with a
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translate of m™* is the same set, whether in R*, or embedded in R®, and its zeroth curvature
measure - which is obviously connected with the mixed curvature measures in question -
does not depend on the embedding space). Thus, the union of disjoint translates of X and X

presents an example of a set with positive reach in R® which has locally unbounded positive

and negative parts of the mixed curvature measure with the hyperplane m= .

Theorem 1. If for any compact subset K C R*

(sin Z(m,n))* " H*"2(d(z,m,y,n)) < oo,
KN(nor X XxnorY)xXR

then (2) holds. Consequently, (2) is satisfied automatically in dimensions d < 3. Moreover,
for any X, Y C R? with positive reach, (2) is satisfied by X, pY for 94-almost all rotations
p € SO(d), where ¥4 is the rotation invariant probability measure on SO(d).

Proof. Note that F,,(0) < (sin6)~24=1=7=%) for any 6§ € [0, 7] and
(A ai, \ b] <sinZ(m,n)
el jeJ

for all I,J C {1,...,d — 1}. Thus, the first statement follows directly from (3). The last
statement follows from the first one by integration over SO(d) since

Lo (51 £, o))* )

is a finite constant depending on d only (see [7, Proposition 4.6] for a more detailed expla-
nation). O

In the sequel, let G(d, k) denote the Grassmannian of k-dimensional linear subspaces in R¢

endowed with the rotational invariant probability measure v{. For X C R with positive

reach, 0 <k <d—1and W € G(d, k + 1), we define the mapping
tw:nor XN (R x W) =W x W, (x,m)— (pwz,m),

where py is the orthogonal projection from R? onto W. Further, let 7y : (2,m) — =z
denote the first coordinate projection defined on the image of ty,. The image Ty X =
(mw oty )(nor X N (R? x W)) will be called the tangential projection of X onto W. Note that
TwX is a closed subset of R since nor X is a closed set. We need the following fact (cf. [8,
p. 230]). Let Ry X denote the set of all points z € Ty X such that (my o ty) "1 {2} is either
a singleton or a pair of points of the form (z,m), (z, —m) € nor X.

Lemma 1. We have
vi  ({W € G(d,k+1): H*(TwX \ RwX) > 0}) = 0.

In other words, for v, -almost all W € G(d,k + 1) and HF-almost all = € TwX, if
mw (tw (z,m)) = mw(tw(y,n)) = z then £ =y and m = +n.
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Proof. Consider the countably p-rectifiable set
G={(zx,m,W)enorX x G(d,k+1): me W},

p=d—1+k(d—1-k) =k+ (k+1)(d—1—k)

(G corresponds to the (d — 1 — k)th Grassmann bundle of X introduced in [8]). The points
(,m) € nor X where Tan(nor X, (z,m)) is not a (d — 1)-dimensional linear subspace have
H4 l-measure zero, thus, their contribution to the tangential projections can be neglected
since the corresponding set Gy C G has HP-measure zero. Let Gi, G2 be the set of such
points (z, m, W) € G where

dim Tan(nor X, (z,m)) N (R% x W) > k,

dim Tan(nor X, (z,m)) N ({0} x W) > 0,

respectively. The co-area formula applied to the projection F' : (z,m, W) — W defined on
G yields

/G(d,kJrl) Hk(Gl M F_l(W))Vg_,’_l(dW) = /G1 J(kJrl)(d,l,k)F dHP.

Since the Jacobian J(gy1)a—1-k)F vanishes on G (ker DF(x,m,W) contains all vectors
(v,w,0) such that (v,w) € Tan(nor X, (x,m)) and w € W and has thus dimension at least
k + 1), the last integral vanishes and the contribution of points from G; to the tangential
projections can be neglected. Consider further the projection f : (xz,m, W) ~ (pwz, W)
defined again on G. We have J,f = 0 on G and, consequently, HP(f(G2)) = 0 by the area
formula and the contribution of points from G5 to the tangential projections can be neglected
as well.

Finally, we consider the tangential projection of points from G5 = G \ (Go U G1 U G3).
Denote

Z = {(z,m,y,n,W) €nor X xnorX x G(d,k+1):
(x,m,W) € Gs, (y,n,W) € G3,0 £z —y L W}.

In fact, Z consists of pairs of ‘regular’ points from the unit normal bundle of X which have
different first coordinates and whose first coordinates of the tangential projections coincide.
(Note that we need not consider pairs with x = y and m, n linearly independent since both of
these points fall into Go with the corresponding subspace W.) We shall show that H?(Z) = 0.
Consequently, the image of Z under the Lipschitz mapping f : (z,m,y,n, W) — (pwz, W)
has again HP-measure zero and the assertion follows then when applying the co-area theorem
for the projection on the second coordinate on the set f(Z).
Note that the points of Z are zero points of the Lipschitz mapping

h(z,m,y,n, W)= (WAmW AR, WA (z—1y)).
Choose any 0 < ¢ < reach X and let Z. denote the image of Z under the bi-Lipschitz mapping

qbe : (me?anJ W) ’_> ($+8m7y+8n7 W)'
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Z. is a subset of the C! manifold 0X. x 0X. x G(d,k + 1) of dimension

g=2d—2+ (k+1)(d—1—k)

1

(here X, denotes the e-parallel body to X) and the Lipschitz mapping h o ¢_' vanishes on

Z.. Further, for any (z,m,y,n,W) € Z, ho ¢! is differentiable at 2 = ¢.(x, m, y,n, W) and
rank D(ho ¢_')(z) > 2d — 1 — k,
since im D(h o ¢-1)(z) contains the vectors

(W Aw,0,0), ve W,
(0, W A w,0), veEWH,
(Wnu)A(z—y) Am,(Wnul)A(z —y) An, Wt Au), ueW.

Using [1, Lemma 6.1], we infer that Z. is countably (p — 1)-rectifiable, since p—1 = g — (2d —
1—k). Hence, H?(Z.) = 0 and, consequently, also H?(Z) = 0, which completes the proof. O

Remark 3. Using the notation from the proof of Lemma 1, we have that
fG)={(z,W): z€TwX, W € G(d, k + 1)}

is countably p-rectifiable and HP-mesurable. Consequently, applying [2, §3.2.22] for the
projection (z2,W) +— W, we get that Ty X is (HF, k)-rectifiable and H*-measurable for
HEHD(E=1=F) _almost all W € G(d, k + 1) and the function W + H*(TyX) is measurable.

The absolute curvature measure of X of order k can be defined by

[ g, m)Ci (X d(a,m)

= s / / g oty (z,m)Ci(Tw X; d(z, m))Ve, (dW), (5)
G(d,k+1)

where the measure Cy(Tw X;-) on Ty X x S* is defined by

CUlTwX;) = [ HOCnm =M (d2)
and
(d-1 HHDE1-R) (G (d, |+ 1))
Cak =\ HA-1-k(SA-1-k)k@—1-F)(G(d — 1, k))’

Note that t;;}(z,m) is correctly defined for almost all (z,m) by Lemma 1.

Remark 4. This definition is equivalent to the first equality in [8, Equation (3)]. The second
equality in [8, Equation (3)] holds as well if X is d-dimensional in the sense that there is
no (z,m) € nor X with (x,—m) € nor X. (For lower dimensional sets, the image points of
the mapping f introduced in [8] have typically two pre-images.) [8, Equation (4)] holds in
general since it has been derived from the first equality.
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We shall say that a set X C R? with positive reach has locally bounded tangential projec-
tions if for any compact subset K C R? and 0 < k < d — 2,

sup  HY(TwX NpwK) < co. (6)
WeG(d,k+1)
Note that
Cor(Tw X, pwk x 8% = [ HO (i {2} (d2)
TwXﬂpr

< 2H*(pw K NTwX)

for almost all W € G(d, k+1), since H°(m;/ {z}) < 2 for H*-almost all z € Ty X by Lemma 1.
We present now a sufficient condition for (2). As an immediate consequence one obtains
that any two convex sets satisfy (2) (cf. [7, Proposition 4.5]).

Lemma 2. Let X, Y C R? have positive reach and assume that X,aY fulfil (1) for each
0 < a <1 and that for any 0 < k < d — 1 and bounded Borel subsets A, B C RY,

sup [ C(X N (aY + 2); B x ST £4dz) < oo

a€Z JA
for some subset T C (0,00) of cardinality d+ 1. Then X,Y satisfy (2).

Remark 5. Note that, due to the positive homogeneity of mixed curvature measures (see
[6, Proposition 1)), if XY satisfy (2) then also X, aY satisfy (2) for any a > 0.

Proof. We shall assume without loss of generality that X,Y are compact. Then we have by
the assumption

c(k) :=sup ) C™(X Na(Y + 2); R x STHL£4d2) < oo
acT JR
for any 0 < k < d— 1. Since the absolute curvature measures majorize the total variations of
the curvature measures (see [8]), we have for any measurable function 4 on R?? x S¢-1 with
h| <1

|/h(z,m, u) Cp(X N (Y + 2);d(x,u))LYd2)| < c(k).

Assume, on the contrary, that (2) does not hold, and let sy be the least natural number such
that |Cl.s(X,Y;+) is unbounded for some d —sp < 19 < d — 1. Let A C R* x S ! be a
Borel set which supports an unbounded (positive or negative) part of |C|,, s,(X,Y’;-). Given
€ > 0, denote

A.=AN f(((norX x norY) N R%) x [0, 1]),

where R = {(z,m,y,n) € (R)*: Z(m,n) <7 —¢c}. Then all the mixed curvature measures
are locally bounded on A® (cf. [7, Definition 4.1]) and the translative integral formula [6,
Theorem 1] can be applied for the function h®(z, x,u) = 14:(z,z — z,u) and k = ro + so — d,
yielding
d+k
/ he (2, 2,0) Co(X N (Y + 2);d(z, w)) L4dz) = 3 Copnosa(X, Y3 A%).

s=k
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Replacing Y with aY and taking into account the positive homogeneity of mixed curvature
measures, we get

d+k

/hi(z, z,u) Ce(X N (aY + 2);d(z,u))LYdz) = Y a*Cyipss(X,Y; A°)

s=k
for the function hS(z,z,u) = 14:(z,a (z — 2),u) with |h5| < 1. The left hand side is
bounded by c(k) for any € > 0 and « € Z by the assumption. Since any polynomial in R?
is uniquely determined by its values at any d + 1 different points, all the coefficients of the
polynomial in a on the right hand side of the last equation have to be uniformly bounded in
¢ as well. This contradicts the fact that

lim |Crys0 (X, Y5 A%)| = |Chy 50 (X, Y5 A)| = 00. O
6—>0+

Finally, we present a sufficient condition for a set with positive reach to satisfy (1) and (2)
with any affine subspace of R?. Under this condition, the translative formulae from [5] can
be applied.

Theorem 2. Let X C R with positive reach have locally bounded tangential projections.
Then, for any 0 < j <d and L € G(d, ), the pair X, L satisfies (1) and (2).

Proof. First, we shall verify (1). We have to show that the Lebesgue measure of
N={zecR:3(z,m) €nor X,m L L,pyrox=py .2z}

is zero. Note that N = T;,. X @ L. The H% 7 '-measure of T;. X is locally bounded by
assumption. Hence, the H% l-measure of N is locally bounded, which implies £¢(N) = 0.
Note that (1) implies that X N (L + z) has positive reach for £477-almost all shifts z € L+
(cf. [1, Theorem 4.10], [6, Proof of Theorem 1]).

To verify (2), we shall assume without loss of generality that X is compact. Due to
Lemma 2, it suffices to show that for any 0 < k < j — 1,

/C’st(X N (L 4+ 2); R x ST £47(dz) < oo.

Due to the considerations above, it is enough to integrate over the complement of 7. X
in L, hence we can neglect the points (z,m) € nor X with m 1 L. Note that the total
(absolute) curvature measures are independent of the dimension of the embedding space (cf.
[8, Theorem 2]). Hence, we can treat the sets X N (L + z) as subsets of the j-dimensional
space L and we have by definition

C3S(XN(L+2);L xS
< 2 [ HATW(XN( 1AW
< 2 [ HA T L+ 2o (W)
for £ J-almost all z € L+ (for the existence of the last integral, see Remark 3). Let W €

G(j, k + 1) be fixed and consider the subspace W = W + L+ € G(d,d + k — j + 1). For any
z € LY\ T, X we have

Tw(X N (L+2) =Tz X Np,i{z}.
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Applying [4, §7.7] or [2, §2.10.25] for the set T}; X and projection z — py1 2, we get

/L L HA(Tw (X 0 (L +2)))L47(dz) < const - H (T X)),

where the last term is bounded uniformly in W by the assumption and the assertion follows. O

Remark 6. Theorems 1, 2 hold for locally finite unions of sets with positive reach (see [7])
as well. For these sets, an additional multiplicity term ix(x, m)iy(y,n) appears under the
integral in (3), but both index functions i, iy are locally uniformly bounded.
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