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Abstract. With any given convex body we associate three numbers that
exhibit, respectively, its deviation from a ball, a centrally symmetric body, and
a body of constant width. Several properties of these deviation measures are
studied. Then, noting that these special bodies may be defined in terms of their
normals, corresponding deviation measures for normals are introduced. Several
inequalities are proved that show that convex bodies cannot deviate much from
these special types if their corresponding deviations of the normals are small.
These inequalities can be interpreted as stability results.

1. Introduction

Let Kn denote the class of convex bodies (compact convex sets) in n-dimensional euclidean
space Rn, and Kn

∗ the subclass of Kn consisting of all centrally symmetric bodies. For any
K ∈ Kn let hK(u) denote the support function and wK(u) = hK(u) + hK(−u) the width
of K in the direction u. As underlying metric on Kn we use the distance concept based
on the L2-norm

‖Φ‖ =
(∫

Sn−1
Φ(u)2dσ(u)

)1/2

,

where the real valued function Φ is defined on the unit sphere Sn−1 in Rn (centered at the
origin o on Rn) and σ refers to the surface area measure on Sn−1. For any pair K, L ∈ Kn

the corresponding L2-distance δ(K, L) is then defined by

δ(K, L) = ‖hL(u)− hK(u)‖.
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With each K ∈ Kn we now associate three ‘deviation measures’ that indicate, respectively,
the deviation of K from being spherical, being centrally symmetric, and having constant
width.

The spherical deviation of K is defined by

S(K) = inf {δ(K, Bn(p, r)) : p ∈ Rn, r ≥ 0},

where Bn(p, r) denotes the n-dimensional ball of radius r centered at p.
As a deviation measure for central symmetry, which will be called eccentricity, we

introduce the expression
E(K) = inf {δ(K, Z) : Z ∈ Kn

∗}.

Finally we define the width deviation of K by

W(K) =
1
2

inf {‖wK(u)− w‖ : w ≥ 0}.

In view of the definitions of S and E it appears that it might be more appropriate to define
W(K) as the infimum of δ(K, X) where X ranges over all convex bodies of constant width.
This, however, would lead to difficulties regarding the existence of certain convex bodies of
constant width. For an alternative possibility to define the width deviation see (2) below.

In Section 3 some properties of these deviation measures will be discussed. In par-
ticular, it will be shown that S, E , and W are closely related with the mean width, the
Steiner point and the Steiner ball of K.

A normal at a boundary point q of a convex body K is defined as a line that passes
through q and is orthogonal to a support plane of K at q. There are various theorems that
characterize particular classes of convex bodies in terms of properties of the normals. For
example, balls are characterized as convex bodies such that all their normals pass through
a common point, or convex bodies of constant width are characterized by the property
that each normal is a ‘double normal’, that is, a normal at two boundary points (see [3,
Sec. 2]). In Section 4 we supply new analytic proofs for such theorems and also prove
inequalities relating the deviation measures to certain properties of the normals. These
inequalities can be interpreted as stability results. (See [5] concerning the general idea of
stability for geometric inequalities.) More specifically, we obtain inequalities that provide
estimates for the spherical and width deviation of a convex body from a ball or a body of
constant width if, respectively, its normals are close to a fixed point, or any two parallel
normals are close to each other. A similar estimate is proved for the eccentricity. One of
our results has an interesting implication (formulated as a corollary) concerning physical
bodies that are nearly in equilibrium on a flat surface in any position.

2. Definitions and notation

In this section we introduce some definitions and describe the notation that will be essential
for the following sections. If K ∈ Kn and u ∈ Sn−1 then HK(u) denotes the support plane
of K of direction u, i. e., HK(u) = {x + hK(u)u : x · u = 0}, where the dot indicates the
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inner product in Rn. We repeatedly use the fact that the support function satisfies the
translation formula

h(K+p)(u) = hK(u) + p · u.

One of the advantages of the L2-distance in comparison to other distance concepts for
convex bodies is the possibility to employ the inner product for functions on Sn−1. For
any two bounded integrable functions Φ and Ψ on Sn−1 it is defined by

〈Φ,Ψ〉 =
∫

Sn−1
Φ(u)Ψ(u)dσ(u).

As usual, Φ and Ψ are said to be orthogonal if their inner product is zero. We let | · |
denote (in addition to the absolute value) the euclidean norm in Rn. If F (u) is a function
on Sn−1 with values in Rn we simply write ‖F (u)‖ instead of ‖ |F (u)| ‖.

The volume of the unit ball Bn(o, 1) will be denoted by κn and its surface area measure
by σn. We write w̄(K) for the mean width of K. Hence,

w̄(K) =
2
σn
〈hK(u), 1〉.

Using an obvious notational extension of the integral, one defines the Steiner point s(K)
of K by

s(K) =
1
κn

∫
Sn−1

hK(u)u dσ(u). (1)

The ball Bn(s(K), w̄(K)/2) is called the Steiner ball of K and denoted by B(K). We
sometimes use the obvious fact that the support function of Bn(p, r) is r + p · u and, in
particular, that

hB(K)(u) =
1
2
w̄(K) + s(K) · u.

For any K ∈ Kn let K∗ denote the convex body obtained from K by central symmetriza-
tion, and Ko the translate of K that has its Steiner point at the origin of Rn. Hence,

K∗ =
1
2
(K + (−K))

and
Ko = K − s(K).

3. Properties of the deviation measures

The following theorem shows where the infima that are used in the definition of the devia-
tion measures are attained, and it provides therefore more explicit representations of these
measures.
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Theorem 1. Let K be a convex body in Rn.
(a) δ(K, Bn(p, r)), considered as a function of p and r, is minimal exactly if p = s(K)

and r = w̄(K)/2. Hence,

S(K) = δ(K, B(K)) = ‖hKo
(u)− w̄(K)/2‖.

(b) δ(K, Z), considered as a function of Z ∈ Kn
∗ is minimal exactly if Z = K∗ + s(K).

Consequently,

E(K) = δ(Ko,K∗) =
1
2
‖hKo

(u)− hKo
(−u)‖.

(c) ‖wK(u)− w‖, considered as a function of w is minimal exactly if w = w̄(K). Hence,

W(K) =
1
2
‖wK(u)− w̄(K)‖ = δ(K∗, B(K∗)) = S(K∗). (2)

Moreover, the deviation measures have the property that

S(K)2 = E(K)2 +W(K)2. (3)

Before we turn to the proof of this theorem we add several pertinent remarks. The fact that
the Steiner ball is the best L2-approximation of a convex body by balls (and the Steiner
point its center) could be used as the definition of these concepts. It certainly would be
a better motivated approach than using (1) as a definition. The relation (3) provides a
quantitative version of the well-known theorem that a convex body that is both of constant
width and centrally symmetric must be a ball. In fact, it allows one to obtain information
on the spherical deviation of a convex body if corresponding data on the width deviation
and eccentricity are available.

Proof of Theorem 1. One could prove this theorem using the development of functions
on the sphere in terms of spherical harmonics. But, as will be shown here, it can also be
proved using only elementary analysis.

The following easily proved relations (cf. [6, Sec. 3.2]) will be used repeatedly without
explicitly mentioning it. It is assumed that u = (u1, . . . , un) ∈ Sn−1 (and each ui is viewed
as a function of u on Sn−1), p ∈ Sn−1 and i, j = 1, . . . , n (i 6= j).

〈ui, 1〉 = 0, 〈ui, uj〉 = 0, ‖ui‖2 = κn , ‖p · u‖2 = κn|p|2.

(The last relation is an obvious consequence of the two preceding ones.) We also note that
the integral of any odd function on Sn−1 vanishes.

First let us show that for all K, L ∈ Kn

δ(K, L)2 = δ(Ko, Lo)2 + κn|s(K)− s(L)|2. (4)

We obviously have δ(K, L)2 = ‖hK(u)−hL(u)‖2 = ‖[hKo
(u)−hLo

(u)]+[(s(K)−s(L))·u]‖2.
Furthermore, since s(Ko) = s(Lo) it follows from (1) that 〈hKo

(u) − hLo
(u), ui〉 = 0 and

this implies that the functions hKo(u) − hLo(u) and (s(K) − s(L)) · u are orthogonal.



H. Groemer: Deviation Measures and Normals of Convex Bodies 159

Consequently, ‖[hKo(u)−hLo(u)]+ [(s(K)− s(L)) ·u]‖2 = ‖hKo(u)−hLo(u)‖2 + ‖(s(K)−
s(L)) · u‖2 and we obtain (4).

Let us now prove part (b) of the theorem. Using (4) we find

δ(K, Z)2 = δ(Ko, Zo)2 + κn|s(K)− s(Z)|2

= ‖[ 12 (hKo
(u)+hKo

(−u))−hZo
(u)]+ 1

2 [hKo
(u)−hKo

(−u)]‖2+κn|s(K)−s(Z)|2.

Since the first one of the two functions in brackets is even and the other one is odd it
follows that they are orthogonal and we obtain

δ(K, Z)2 = δ(K∗, Zo)2 +
1
4
‖hKo

(u)− hKo
(−u)‖2 + κn|s(K)− s(Z)|2.

This shows that δ(K, Z) is minimal if and only if s(K) = s(Z) and K∗ = Zo. Clearly, this
happens exactly if Z = K∗ + s(K).

To prove part (c) we note that ‖wK(u) − w‖2 = ‖[wK(u) − w̄(K)] + [w̄(K) − w]‖2
and that the definition of the mean width shows that the two functions in brackets are
orthogonal. Hence,

‖wK(u)− w‖2 = ‖wK(u)− w̄(K)‖2 + σn(w̄(K)− w)2 (5)

and this is apparently minimal if and only if w = w̄(K).
For the proof of part (a) of the theorem we use again (4) and find that

δ(K, Bn(p, r))2 = δ(Ko, B
n(o, r))2 + κn|s(K)− p|2

= ‖[ 12 (hKo
(u)+hKo

(−u))− r]+ 1
2 [hKo

(u)− hKo
(−u)]‖2+κn|s(K)− p|2.

Since the product of the two functions in brackets is odd they are orthogonal and this
implies that

δ(K, Bn(p, r))2 =
1
4
‖wK(u)− 2r‖2 +

1
4
‖hKo(u)− hKo(−u)‖2 + κn|s(K)− p|2.

Thus, using (5) (with w = 2r) we obtain

δ(K, Bn(p, r))2 =
1
4
‖wK(u)− w̄(K)‖2 +

1
4
‖hKo

(u)− hKo
(−u)‖2

+
1
4
σn(w̄(K)− 2r)2 + κn|s(K)− p|2.

This shows that δ(K, Bn(p, r)) is minimal exactly if r = w̄(K)/2 and p = s(K), as stated
in (a). Letting Bn(p, r) = B(K), one also finds that

S(K)2 = δ(K, B(K))2 =
1
4
‖wK(u)− w̄(K)‖2 +

1
4
‖hKo

(u)−hKo
(−u)‖2 = W(K)2 +E(K)2,

which proves the last statement of the theorem.
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We note that (4) shows that δ(K, L + p), considered as a function of p is minimal if and
only if p is such that the respective Steiner points of K and L + p coincide. This has been
proved previously by Arnold [1]. See also Groemer [6, Proposition 5.1.2] where spherical
harmonics are used to prove this result and to establish related properties of the Steiner
point, in particular the minimal property of the Steiner ball stated under (a) in the above
theorem.

4. Normals and deviation measures

We now consider the relationship between the deviation measures and the normals of
convex bodies. If K ∩ HK(u) consists of only one point then u is said to be a regular
direction of K. The set of all regular directions of K will be denoted by R(K). It is known
that for every convex body almost all directions are regular (see, for example, Schneider
[9, sec. 2.2]). If u is a regular direction of K the normal of K at K ∩ HK(u) that is
orthogonal to HK(u) will be denoted by NK(u). Furthermore, if X and Y are two parallel
lines or a point and a line we let d(X, Y ) denote the (orthogonal) distance between X and
Y . Corresponding to the three deviation measures we now define certain average values
associated with the normals. It will be shown (in the lemma below) that all these average
values, i. e., the corresponding integrals, exist.

If K ∈ Kn and p ∈ Rn, then the average distance of the normals of K from p is
defined by

ρK(p) =
√

1/σn ‖d(p, NK(u))‖,

It is easily shown (and will follow from our Theorem 3) that K is a ball with p as center
exactly if ρK(p) = 0.

As mentioned before, bodies of constant width are characterized by the property that
every normal is a double normal. This means that NK(−u) = NK(u). Suggested by this
fact we consider for regular directions u and −u the distance between NK(u) and NK(−u)
and the corresponding mean value

ωK =
√

1/σn ‖d(NK(u), NK(−u))‖.

Note that ωK does not depend on a particular point p.
Finally, to describe in terms of the normals those convex bodies that are centrally

symmetric with respect to a given point p consider first the case p = o. In this case the
central symmetry of K with respect to o implies that for any u ∈ R(K) and −u ∈ R(K) we
have NK(−u) = −NK(u). Clearly, the corresponding relation for symmetry with respect
to an arbitrary point p can be expressed by NK−p(−u) = −NK−p(u). Motivated by these
considerations we define

ηK(p) =
√

1/σn ‖d(NK−p(−u),−NK−p(u))‖.

Similarly as in the case of the deviation measures in Section 2 of particular interest are
the respective minima of ρK(p) and ηK(p) for all possible choices of p. Thus, we define
the following ‘normal deviation measures’ that correspond, respectively, to the spherical
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deviation, the eccentricity, and the width deviation. (The superscript ⊥ indicates that
these are deviation measures concerning the normals.)

S⊥(K) = inf {ρK(p) : p ∈ Rn}, E⊥(K) = inf {ηK(p) : p ∈ Rn} , W⊥(K) = ωK .

In analogy to Theorem 1 we now formulate a theorem that provides explicit evaluations
of S⊥(K) and E⊥(K). It also exhibits a relationship of the same kind as (3).

Theorem 2. Let K ∈ Kn and p ∈ Rn. Then, for any p ∈ Rn we have

ρK(p)2 = ρK(s(K))2 +
(n− 1)

n
|p− s(K)|2, (6)

ηK(p)2 = ηK(s(K))2 + 4
(n− 1)

n
|p− s(K)|2, (7)

and
4ρK(p)2 = ηK(p)2 + ω2

K . (8)

Hence, considered as functions of p, both ρK(p) and ηK(p) are minimal exactly if p = s(K)
and it follows that

S⊥(K) = ρK(s(K)) , E⊥(K) = ηK(s(K)),

and
4S⊥(K)2 = E⊥(K)2 +W⊥(K)2.

Next we consider the stability of the characterization of balls, symmetric bodies, and convex
bodies of constant width in relation to the corresponding properties of their normals. In
other words, we estimate S(K), E(K), andW(K) in terms of S⊥(K), E⊥(K), andW⊥(K),
respectively.

Theorem 3. For any K ∈ Kn we have

S(K) ≤
√

κn/2 S⊥(K). (9)

E(K) ≤
√

σn/12(n + 1) E⊥(K), (10)

W(K) ≤
√

κn/8 W⊥(K), (11)

Equality holds in (9) exactly if the support function hK of K is of the form Q0 + Q1 + Q2,
where Qk denotes a spherical harmonic of order k. In (10) and (11) equality holds if
and only if the expansion of hK is, respectively, of the form Q1 + Q3 +

∑∞
k=0 Q2k and

Q0 + Q2 +
∑∞

k=0 Q2k+1.

If there is a point p such that ρK(p) = 0, ηK(p) = 0, or ωK = 0 and therefore, respectively,
S⊥(K) = 0, E⊥(K) = 0, or W⊥(K) = 0 then Theorem 3 implies the previously mentioned
characterizations of balls, symmetric bodies, or convex bodies of constant width.
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Inequality (9) can be used to obtain a result concerning bodies that are nearly in
equilibrium in any position on a horizontal plane. To describe this result, K will now be
assumed to be a three-dimensional physical convex body. It is known (see [4] or [8]) that
K must be a ball if it rests in equilibrium in any position on a horizontal plane. (This
and a more general problem is mentioned in the well-known ‘Scottish Book,’ see Mauldin
[7, Problem 19].) We wish to estimate the deviation of K from a ball if for any position
on a horizontal plane the corresponding moment, say MK(u), of K is small. Here MK(u)
is defined as follows: If u is a regular direction of K then MK(u) is the total mass of K
multiplied by the distance of the normal NK(u) from the center of mass of K. In this
connection K is not assumed to have uniform mass distribution, it may be endowed with
any mass distribution, that is, an integrable density function. In terms of physics, if u
is considered the vertical direction and K is assumed to be placed on a horizontal plane,
then MK(u) is the moment that has to be applied to keep K in equilibrium. Applying (9)
and Theorem 1 (part (a) with n = 3) and observing that S⊥(K) ≤ ρK(p), where p is the
center of mass of K, we obtain immediately the following result.

Corollary. Let K be a convex body in R3 having a given mass distribution with total mass
m(K) > 0. If for some µ ≥ 0 and every regular direction u of K its corresponding moment
MK(u) has the property that MK(u) ≤ µ, then there is a ball B such that

δ2(K, B) ≤
√

2π/3
m(K)

µ.

As a suitable ball one may choose the Steiner ball of K. Letting µ = 0, one obtains the
result stated before, that K must be a ball if it rests in equilibrium in any position on a
horizontal plane. We also mention that this corollary can even be applied to the case when
K is not convex since one may apply it to the convex hull K̃ of K and put the density
function zero at all points of K̃ \K. Then, the above inequality holds if on the left hand
side K is replaced by K̃ (and in the assumptions the regular directions of K are replaced
by the regular directions of K̃). Clearly, one could also state an n-dimensional version of
this corollary but this would not have the physical interpretation mentioned before.

To prove Theorems 2 and 3 we first show a lemma relating for any K ∈ Kn the distances
d(o,NK(u)), d(NK(u), NK(−u)), and d(NK(−u),−NK(u)) with the gradient of the sup-
port function of K and an associated series of spherical harmonics. A real valued function
Φ on Sn−1 will be said to be smooth if it is twice continuously differentiable. The (spher-
ical) gradient of Φ will be denoted by ∇oΦ. Thus, if Φ is a (differentiable) function on
Sn−1 and if ∇ denotes the ordinary gradient operator for functions on open subsets of
Rn then ∇oΦ(u) is defined as the ordinary gradient of the constant radial extension of
Φ evaluated at the point u. A more appropriate notation might be (∇oΦ)(u) but this
would lead to an unsightly accumulation of parentheses. Note, however, that this nota-
tional convention implies that for all u ∈ Sn−1 we have ∇oΦ(u) = (∇Φ(x/|x|))x=u and
∇oΦ(−u) = (∇Φ(x/|x|))x=−u. It is customary, to assume that the support function hK

is extended from Sn−1 to Rn by stipulating that it be positively homogeneous. It is of
importance to notice that for the evaluation of ∇ohK the constant radial extension of hK
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has to be used. Thus, if hK is defined in the conventional way then for any u ∈ Sn−1 we
have ∇ohK(u) = (∇hK(x/|x|))x=u and therefore

∇hK(u) =
(
∇(|x|hK(x/|x|))

)
x=u

=
(

1
|x|

hK(x)x + |x|∇hK(x/|x|)
)

x=u

= hK(u)u +∇ohK(u).
(12)

If
∑∞

k=0 Qk is the expansion of Φ as a series of spherical harmonics, where Qk is of order
k, we indicate this by writing

Φ ∼
∞∑

k=0

Qk.

Lemma. Let K be a convex body in Rn.
(i) If u ∈ R(K) then ∇ohK(u) exists and

d(o,NK(u)) = |∇ohK(u)|. (13)

If both u ∈ R(K) and −u ∈ R(K) then ∇o(hK +h−K)(u) and ∇o(h−K−hK)(u) exist
and

d(NK(−u),−NK(u)) = |∇o(hK − h−K)(u)|, (14)

d(NK(u), NK(−u)) = |∇o(hK + h−K)(u)|. (15)

Thus, (13), (14), and (15) hold for almost all u ∈ Sn−1.
(ii) d(o,NK(u)), d(NK(−u),−NK(u)), and d(NK(u), NK(−u)) are bounded integrable

functions on Sn−1. Consequently, ρK(o), ηK(o), and ωK exist.
(iii) If

hK ∼
∞∑

k=0

Qk, (16)

then

σnρK(o)2 ≥
∞∑

k=1

k(n + k − 2)‖Qk‖2, (17)

σnηK(o)2 ≥ 4
∑
k≥1

k odd

k(n + k − 2)‖Qk‖2, (18)

and
σnω2

K ≥ 4
∑
k≥2

k even

k(n + k − 2)‖Qk‖2. (19)

Moreover, each of the relations (17), (18), (19) holds with equality if the respective functions
hK , hK − h−K , hK + h−K are smooth.

Proof. It is known (see [2, Sec. 16]) that for any u ∈ R(K) the gradient ∇hK(u) exists
and equals the support point K ∩HK(u). Furthermore, (12) shows that ∇ohK(u) is the
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vector from the intersection point of the line of direction u with H(u) to the support
point H(u) ∩ K. Hence, obvious geometric considerations together with the fact that
∇ohK(−u) = −∇oh−K(u) show that

d(o,NK(u)) = |∇ohK(u)|,

d(NK(−u),−NK(u)) = |∇ohK(−u) +∇ohK(u)| = |∇o(hK − h−K)(u)|,

and
d(NK(u), NK(−u)) = |∇ohK(u)−∇ohK(−u)| = |∇o(hK + h−K)(u)|.

These relations show the validity of (13), (14), and (15).
Turning to the proof of part (ii) we use the known fact (see for example Schneider [9,

Sec. 3.3]) that for any K ∈ Kn there exists a sequence {Kj} of strictly convex bodies that
converges in the Hausdorff metric to K and is such that for every j the support function
hKj is smooth. Routine convergence arguments show that for any u ∈ R(K) we have
limj→∞Kj ∩HKj (u) = K ∩HK(u) and therefore

lim
j→∞

d(o,NKj (u)) = d(o,NK(u)), (20)

lim
j→∞

d(NKj (−u),−NKj (u)) = d(NK(−u),−NK(u)), (21)

lim
j→∞

d(NKj (u), NKj (−u)) = d(NK(u), NK(−u)). (22)

Moreover, since the functions d(o,NKj (u)), d(NKj (−u),−NKj (u)), and d(NKj (u) +
NKj (−u)) are obviously uniformly bounded and integrable the same is true for their re-
spective limits d(o,NK(u)), d(NK(−u),−NK(u)), and d(NK(u), NK(−u)).

Finally, for the proof of part (iii) we assume that (16) holds and consider first the case
when hK is smooth. Then it follows from (13) and known facts about spherical harmonics
(see [6, Sec. 3.2]) that

σKρK(o)2 = ‖d(o,NK(u))‖2 = ‖∇ohK(u)‖2 =
∞∑

k=1

k(n + k − 2)‖Qk‖2. (23)

Also, (16) implies that

h−K(u) = hK(−u) ∼
∞∑

k=0

(−1)kQk(u)

and therefore
(hK − h−K)(u) = hK(u)− h−K(u) ∼ 2

∑
k≥1

k odd

Qk(u), (24)

and
(hK + h−K)(u) = hK(u) + hK(−u) ∼ 2

∑
k≥0

k even

Qk(u). (25)
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Similarly as before, but using (14) and (15), and assuming that, respectively, hK − h−K

or hK + h−K is smooth we find

σnηK(o)2 = 4
∑
k≥1

k odd

k(n + k − 2)‖Qk‖2 (26)

and
σnω2

K = 4
∑
k≥2

k even

k(n + k − 2)‖Qk‖2. (27)

This proves the assertion expressed in the last sentence of the lemma.
Finally, to prove the remaining part of (iii) we use again the sequence {Kj} and note

that (20), (21), (22) together with the ‘bounded convergence theorem’ allows one to deduce
that

lim
j→∞

ρKj (o) = ρK(o), lim
j→∞

ηKj (o) = ηK(o), lim
j→∞

ωKj = ωK . (28)

Furthermore, if hKj ∼
∑∞

k=0 Qj
k, then (for all u ∈ Sn−1)

lim
j→∞

Qj
k(u) = Qk(u). (29)

This relation is a consequence of the fact that for fixed k each Qj
k and Qk are linear com-

binations of the members of a finite orthonormal set of spherical harmonics Pk,1, . . . , Pk,m

whose coefficients are r espectively of the form 〈hKj (u), Pk,i(u)〉 and 〈hK(u), Pk,i(u)〉, and
that uniformly limj→∞ hKj = hK . This also shows that for each k the functions Qj

k are
uniformly bounded and it follows from (29) that

lim
j→∞

‖Qj
k‖ = ‖Qk‖. (30)

From (23), (26), and (27) (applied to each Kj) one obtains that for any positive integer m

σnρKj (o)2 ≥
m∑

k=0

k(n + k − 2)‖Qj
k‖

2, σnηKj (o)2 ≥ 4
∑

1≤k≤m
k odd

k(n + k − 2)‖Qj
k‖

2,

σnω2
Kj ≥ 4

∑
2≤k≤m
k even

k(n + k − 2)‖Qj
k‖

2.

Using (28) and (30) and letting first j → ∞ and then m → ∞ we obtain the desired
inequalities (17), (18), and (19).

For the following proofs of Theorems 2 and 3 we assume that (16) holds and repeatedly
use the fact that Q0 + Q1 is the support function of the Steiner ball B(K) (see [6, Sec.
5.1]) and therefore Q0 = w̄(K)/2 and Q1 = s(K) · u. If K ∈ Kn is given, the sequence
{Kj} and the spherical harmonics Qj

k are defined as in the proof of the Lemma.
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Proof of Theorem 2. It suffices to consider only the case p = o since the general result can
the be obtained by replacing, if necessary, K by K − p. From (23), (26), and (27), applied
to Kj (with equality) and Qk replaced by Qj

k one sees that (8) holds for each Kj . Letting
j →∞ and observing (28) one obtains (8) for all K ∈ Kn.

To prove (6) we first note that

hK−s(K)(u) = hK(u)− s(K) · u ∼
∑
k≥0
k 6=1

Qk(u).

Hence, if hK is smooth it follows from (23) that

σn(ρK(o)2 − ρK(s(K))2) = σn(ρK(o)2 − ρK−s(K)(o)2) = (n− 1)‖Q1‖2.

Since
‖Q1‖2 = ‖s(K) · u‖2 = κn|s(K)|2

we obtain (6) for smooth hK . The general case is again settled by the use of the sequence
{Kj} and (28). (Note that it can be assumed that for all j we have s(Kj) = s(K),
otherwise replace Kj by Kj − s(Kj) + s(K).) Finally, (7) is an obvious consequence of (6)
and (8).

Proof of Theorem 3. Observing that the inequalities of Theorem 3 are invariant under
translations we may assume that s(K) = o. This implies that K = Ko and

Q1 = 0.

Since Q0 = w̄(K)/2 we obtain from (16), (24), and (25), combined with Parseval’s equality,
that

S(K)2 = ‖hKo(u)− w̄(K)/2‖2 =
∞∑

k=2

‖Qk‖2,

E(K)2 =
1
4
‖hKo(u)− hKo(−u)‖2 =

∑
k≥3

k odd

‖Qk‖2,

W(K)2 =
1
4
‖hK(u) + hK(−u)− w̄(K)‖2 =

∑
k≥2

k even

‖Qk‖2.

Hence, in conjunction with part (iii) of the above lemma, it follows that

σnS⊥(K) = σnρK(o) ≥
∞∑

k=1

k(n + k − 2)‖Qk‖2 ≥ 2n
∞∑

k=2

‖Qk‖2 = 2nS(K)2, (31)

σnE⊥(K) = σnηK(o)2 ≥ 4
∑
k≥1

k odd

k(n+k−2)‖Qk‖2 ≥ 12(n+1)
∑
k≥3

k odd

‖Qk‖2 = 12(n+1)E(K)2,

(32)



H. Groemer: Deviation Measures and Normals of Convex Bodies 167

σnW⊥(K) = σnω2
K ≥ 4

∑
k≥2

k even

k(n + k − 2)‖Qk‖2 ≥ 8n
∑
k≥2

k even

‖Qk‖2 = 8nW(K)2. (33)

These inequalities contain the inequalities of Theorem 3. If in (9) equality holds then
equality must hold between the third and fourth term in (31). This implies that Qk = 0 if
k ≥ 3. Hence, hK ∼ Q0 + Q2 and therefore hK = Q0 + Q2. Conversely, if hK = Q0 + Q2

then hK is smooth and (according to (23)) equality must also hold between the second
and third term of (31) and therefore in (9). Hence, under the assumption that s(K) = o
equality holds in (9) if and only if hK = Q0 + Q2. In the general case this shows that
hK−s(K) = Q0+Q2 and consequently hK = Q0+Q1+Q2 as stated in Theorem 3. Similarly,
equality in (10) implies that hK − h−K ∼ Q3 and therefore hK − h−K = Q3. This is also
sufficient for equality in (32) and therefore in (10). Since (24) shows that this relation is
satisfied exactly if in (16) all odd terms except Q3 vanish we find that hK ∼ Q3+

∑∞
k=0 Q2k.

Thus, adding the term Q1 to remove the condition s(K) = o we see that the conditions for
equality in (10) are as stated in Theorem 3. Analogous arguments, applied to (33), and
correspondingly to hK + h−K establish the assertions concerning equality in (11).

References

[1] Arnold, R.: Zur L2-Bestapproximation eines konvexen Körpers durch einen bewegten
konvexen Körper. Monatsh. Math. 108 (1989), 277–293. Zbl 0712.52005−−−−−−−−−−−−

[2] Bonnesen T.; Fenchel, W.: Theorie der konvexen Körper. Ergebn. d. Math. Bd. 3,
Springer Verlag, Berlin 1934. (Engl. transl.: Theory of Convex Bodies, BCS Assoc.
Moscow, Idaho, 1987.) Zbl 0008.07708−−−−−−−−−−−−

[3] Chakerian, G. D.; Groemer, H.: Convex bodies of constant width. In: Convexity and
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