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1. Introduction

Let f1, . . . , fr denote a system of polynomials in the polynomial ring P = k[x1, . . . , xd] such
that

0 = (0, . . . , 0) ∈ V (f1, . . . , fr) ⊂ An
K .

Suppose that fR is an xR-primary ideal, where R = P(x). Then the Hilbert-Samuel multi-
plicity e0(f ; R) provides a certain information about the local structure of the affine variety
V = V (f1, . . . , fr) as considered in Bézout’s theorem and related problems.

The goal of our interest in this note is the following question: Suppose that a d-dimensio-
nal local Noetherian ring (A, m, k) contains the residue field k. Let x = x1, . . . , xd denote a
system of parameters of A. Suppose that the polynomials f satisfy the above requirements.
What is the relation between the multiplicities e0(f ; R) and e0(f ; A)? Recall that the system
of parameters x in A is algebraically independent (cf. [2, Corollary 11.21]), so that P =
k[x1, . . . , xd] is a polynomial subring of A.
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Theorem 1.1. Let (A, m, k) denote a d-dimensional local ring containing the residue field k.
Suppose that fR is an xR-primary ideal. Let x = x1, . . . , xd denote a system of parameters
of A. Then

e0(f ; A) = e0(f ; R)e0(x; A),

where R = k[x](x) denotes the localized polynomial ring.

We will prove this result in Section 3 as a consequence of the additivity formula for multi-
plicities. This formula as well as further preliminaries are summarized in Section 2. In fact,
we discuss the behavior of the multiplicity with respect to a short exact sequence.

As an application there is the following Cohen-Macaulay criterion for the rings we consider
here.

Corollary 1.2. With the previous notation we have the following inequality

e0(f ; A) ≤ e0(f ; R)LA(A/xA).

The equality holds if and only if A is a Cohen-Macaulay ring.

We continue the considerations with an example for the computation of multiplicities mo-
tivated by the work of [3]. Furthermore we conclude with a short, direct proof of Serre’s
formula for the multiplicity of a system of parameters. A similar to Serre’s approach was
developed by Auslander and Buchsbaum (cf. [1]).

Corollary 1.3. With the previous assumptions let x = x1, . . . , xn denote a system of pa-
rameters of a finitely generated A-module M. Then

e0(x; M) =
n∑

i=0

(−1)iLA(Hi(x; M)),

where Hi(x; M), i ≥ 0, denotes the Koszul homology of M with respect to x.

See the third section for all the definitions. Of course the result is true without the assumption
that (A, m, k) contains k (cf. [6] resp. [1]). We present here a proof without the use of spectral
sequences as a consequence of the additivity formula. Moreover it could be of some interest
for a short, direct approach to the multiplicity theory.

2. On the additivity formula

In the following let (A, m) denote a local Noetherian ring. Let M be a finitely generated
A-module. We say that an ideal I of A is an ideal of definition with respect to M provided
the A-module M/IM is of finite length.

Then it follows that M/InM is an A-module of finite length for all n ∈ N. For large n
this length function becomes a polynomial in n usually written as

LA(M/InM) =
d∑

i=0

ei(I; M)

(
n + d− i− 1

d− i

)
,
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where its degree d coincides with dimA M, the dimension of M (cf. e.g. [5, p. 107]).
We call the integer coefficients ei(I; M) the Hilbert-Samuel multiplicities of M with

respect to I. The first of it, e0(I; M), is just called the multiplicity of M with respect to
I. It covers various interesting information concerning the properties of M, in particular for
parameter ideals with respect to M.

Lemma 2.1. With the previous notation let 0 → M ′ → M → M ′′ → 0 denote a short exact
sequence of A-modules. Let I denote an ideal of A.

a) The ideal I is an ideal of definition of M if and only if it is one for both M ′ and M ′′.

b) Suppose that I satisfies the equivalent conditions in a). Then

LA(M ′/InM ′) + LA(M ′′/InM ′′)− LA(M/InM)

is for large n a polynomial of degree ≤ dim M ′ − 1.

Proof. The given short exact sequence of A-modules induces an exact sequence

0 → InM ∩M ′/InM ′ → M ′/InM ′ → M/InM → M ′′/InM ′′ → 0

for any integer n ≥ 1. Now let I be an ideal of definition for M ′ and M ′′. Then the sequence
considered for n = 1 provides the finite length of M/IM. Therefore I is also an ideal of
definition for the A-module M.

Now let I be an ideal of definition for M. Then it will be immediately also an ideal of
definition for M ′′. Moreover, by the Artin-Rees lemma (cf. [5, Theorem 8.5]) there is an
integer k such that

In+kM ∩M ′ ⊆ InM ′ for all n ≥ 1.

Now consider the corresponding injective homomorphism of A-modules

0 → M ′/Ik+1M ∩M ′ → M/Ik+1M.

It provides that M ′/Ik+1M∩M ′ – and also M ′/IM ′ as an epimorphic image – is an A-module
of finite length. So I is an ideal of definition for M ′.

In order to prove b) first note that the above exact sequence provides the following
equality for the length functions

LA(M ′/InM ′) + LA(M ′′/InM ′′)− LA(M/InM) = LA(InM ∩M ′/InM ′)

for all n ≥ 1. That means, for large n the length function at the left hand side is a polynomial
in n. In order to finish we have to estimate its degree. To this note that

LA(In+kM ∩M ′/In+kM ′) ≤ LA(InM ′/In+kM ′)

for all n ≥ 1 as follows by the Artin-Rees lemma above. But now we know that LA(InM ′/
In+1M ′) is for large n a polynomial of degree dimA M ′−1. By summarizing k−1 subsequent
polynomials for a large n provides the estimate of the claim stated in b). �

The previous is a slight simplification of an argument by Flenner and Vogel (cf. [4]). It
applies to the computation of multiplicities concerning modules that are related by a short
exact sequence. That is, there is the following additivity formula.



186 E. Bod̆a, P. Schenzel: On Multiplicities

Corollary 2.2. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of A-modules.
Suppose that I is an ideal of definition for M. Then

e0(I; M) = e0(I; M ′) + e0(I; M ′′).

Moreover e0(I; M) = e0(I; M ′) resp. = e0(I; M ′′) provided dim M ′′ < dim M resp. dim M ′ <
dim M.

Proof. The proof of the multiplicity formula is a consequence of 2.2. It follows by comparing
the coefficients of degree d = dim M of the corresponding Hilbert functions. Note that under
the additional dimension inequalities the corresponding leading coefficient of the Hilbert
polynomial will be zero. �

With these preliminary results we are prepared to prove the additivity formula for multiplic-
ities. The result is well-known. We have included here a proof as a consequence of 2.1 which
we believe is of some interest in itself.

For an A-module M we denote by AsshA M = {p ∈ AssA M | dim A/p = dim M} the set
of highest dimensional associated prime ideals of M.

Lemma 2.3. Let M denote a finitely generated A-module. Suppose that I is an ideal of
definition of M. Then

e0(I; M) =
∑

p∈Assh M

e0(I; A/p)LAp(Mp).

Proof. By view of [5, Theorem 6.4] there is a finite filtration {Mi}0≤i≤t such that

0 ⊂ Mt ⊂ . . . ⊂ M1 ⊂ M0 = M and Mi−1/Mi ' A/pi,

where pi, i = 1, . . . , t denotes a prime ideal in A. Moreover

AssA M ⊆ {p1, . . . , pt} ⊆ SuppA M,

and all of the three sets have the same set of minimal elements. Therefore

e0(I; M) =
t∑

i=1

e0(I; A/pi),

as follows by 2.2. Clearly e0(I; A/pi) = 0 whenever dim A/pi < dim M. So it will be enough
to take the sum over all primes in Assh M. In order to finish the proof note that e0(I; A/p)
occurs as many times as LAp(Mp). This follows by an easy localization argument. �

3. On a formula for multiplicities

Now let f1, . . . , fr denote a system of polynomials in the polynomial ring P = k[x1, . . . , xd]
such that

0 = (0, . . . , 0) ∈ V (f1, . . . , fr) ⊂ An
K .
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Suppose that fR is an xR-primary ideal, where R = P(x). Then the Hilbert-Samuel mul-
tiplicity e0(f ; R), R = P(x) provides a certain information about the local structure of the
affine variety V = V (f1, . . . , fr) as considered in Bézout’s theorem and related problems.

Let (A, m, k) denote a local ring containing the residue field k. Let x = x1, . . . , xd denote
a system of parameters of A. Then k[x] is a polynomial subring of A (cf. [2, Corollary 11.21])
such that A is a finitely generated k[x]-module. It induces an embedding of R = k[x](x) into
A such that A is a finitely generated R-module.

Theorem 3.1. With the previous notation we have

e0(f ; A) = e0(f ; R)e0(x; A).

Proof. By our construction the fibre ring A/xA of the local homomorphism

(R, (x)) → (A, m)

is of dimension zero. Therefore mn ⊆ xA for a certain integer n ∈ N. Moreover xkR ⊆ fR ⊆
xR for a certain integer k ∈ N. This implies the following containment relation

mnk ⊆ xkA ⊆ fA ⊆ xA ⊆ m.

Therefore fA is an m-primary ideal.
Now the additivity formula applied to the multiplicity e0(f ; A) provides the following

equality
e0(f ; A) = e0(f ; R)LR(0)

(A(0)).

Recall that A is a finitely generated R-module. Moreover, R is a domain with the single
minimal prime (0).

In order to finish the proof we have to show that the rank of A over R, i.e. LR(0)
(A(0))

is equal to the multiplicity e0(x; A). In fact, this is another consequence of the additivity
formula. More precisely it follows that

e0(x; A) = e0(x; R)LR(0)
(A(0)).

But now e0(x; R) = 1, because (R, (x)) is a regular local ring. �

In fact, the previous result 3.1 proves the claim of the result 1.1 of the introduction. Now we
continue with the corollary about the Cohen-Macaulayness of (A, m).

Corollary 3.2. With the previous notation we have the following inequality

e0(f ; A) ≤ e0(f ; R)LA(A/xA).

The equality holds if and only if A is a Cohen-Macaulay ring.

Proof. Let x = x1, . . . xd denote a system of parameters of A. Then it is well known that

e0(x; A) ≤ LA(A/xA).

Moreover equality holds if and only if A is a Cohen-Macaulay ring (cf. [5, Theorem 17.11].
So the claim of the corollory is a consequence of 3.1. �

This proves the corollary 1.2 of our Introduction.
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Remark 3.3. By the Auslander-Buchsbaum formula it follows that A in 3.2 is Cohen-
Macaulay if and only if it is free as an R-module. Let us contribute with another argument
by the aid of multiplicities. By the Nakayama lemma the minimal number of generators of
A as R-module is given by

dimR/xR A/xA = LA(A/xA) =: e.

Then there is a short exact sequence of R-modules

0 → C → Re → A → 0,

where C denotes the kernel of the natural surjection. Since A is Cohen-Macaulay the sequence
x is A-regular. So it induces a short exact sequence

0 → C/xC → (R/xR)e → A/xA → 0.

By counting the length it implies C/xC = 0. Therefore C = 0 by Nakayama’s Lemma. That
is, A is a free R-module.

Finally we illustrate the previous results by an example considered in [3].

Example 3.4. Let (A, m, k) denote a two dimensional local ring containing the residue field
k. Suppose that x = a, b denotes a system of parameters of A. Then there are among others
the following computations for multiplicities (cf.[3])

a) e0(a
m − bn, ak − bl; A) = e0(x; A) min{ml, nk}, provided ml 6= nk.

b) e0(a
m, bn, akbl; A) = e0(x; A) min{mn, ml + nk}.

Moreover, let A = k[[s4, s3t, st3, t4]], where s, t denote two variables over k. Then x = a, b
with a = s4, b = t4 forms a system of parameters of A. By b) it follows that

e0(a
m, bn, akbl; A) = 4 ·min{mn, ml + nk}.

Note that e0(x; A) = 4 while LA(A/xA) = 5 as it is easily seen. We remind that A is not a
Cohen-Macaulay ring.

4. On Serre’s multiplicity formula

In the following let (A, m) denote a local ring. Let M be a finitely generated A-module.
For the investigations in this section let x = x1, . . . , xn denote a system of elements of the
maximal ideal m of A such that LA(M/xM) is finite.

Let K•(x; M) denote the Koszul complex of x with respect to M (cf. [6, Chapitre 4] resp.
[1]). It follows (cf. [6]) that the length of the Koszul homology modules Hi(x; M) is finite
for all i = 0, 1, . . . , n. Moreover it follows by the construction that Hi(x; M) vanishes for all
i < 0 and in.

Definition 4.1. With the previous notation let us define

χA(x; M) =
∑
i∈Z

(−1)iLA(Hi(x; M))

the Euler characteristic of x with respect to M.
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Recall that χA(x; M) is a well defined integer. In the following result we will relate it to
the multiplicity symbol e0(x; M).

Theorem 4.2. Suppose that (A, m, k) contains the residue field k. With the previous notation
and definition it follows that

χA(x; M) = e0(x; M)

provided n = dimA M, i.e. x = x1, . . . , xn is a system of parameters of M.

Proof. First of all we may pass to the ring A/ AnnA M, so that dimA M = n without loss of
generality. As in the third section let R = k[x](x) denote the regular local ring contained in A.
As in the proof of Theorem 3.1 it follows that e0(x; M) = LR(0)

(M(0)) as an easy consequence
of the additivity formula.

Next recall that M – considered as an R-module – is finitely generated. Clearly as an
R-module it is of finite projective dimension. But now (x) generates the maximal ideal of
the regular local ring R. Therefore there are the following isomorphisms

TorR
i (k, M) ' Hi(x; M), i ∈ Z.

Let 0 → Fn → . . . → F1 → F0 → M → 0 denote a minimal free resolution of M over R.
Recall that M is of finite projective dimension as an R-module. But now

rank Fi = dim TorR
i (k, M)

for all i ∈ Z. Furthermore the rank of M is given by

rank M = LR(0)
(M(0)) = e0(x; M)

as follows by the additivity formula (cf. 2.3). By counting all the ranks in the minimal free
resolution of M it provides that

rank M =
∑
i∈N

(−1)i rank Fi.

By using the above isomorphisms the claim is shown to be true. Note that the length is the
same over R and over A. �

Of course this result is true without any additional assumption on the local ring (A, m, k)
(cf. [6, Chapitre 4] and [1]). We have here included this short, direct argument (without a
spectral sequence) as another application of the additivity formula. In fact it proves 1.2 of
the introduction.
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Springer, 1975. Zbl 0296.13018−−−−−−−−−−−−

Received February 18, 2003

http://www.emis.de/MATH-item?0669.13011
http://www.emis.de/MATH-item?0794.13016
http://www.emis.de/MATH-item?0603.13001
http://www.emis.de/MATH-item?0296.13018

