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Abstract. The classification of f-tilings was inspired in Stewart Robertson’s work
[5], “Isometric Foldings of Riemannian Manifolds” and was initiated by Ana Breda
[3], where a complete classification of all monohedral f-tilings of the Riemannian
sphere S2 was done. Here we shall classify, up to a spherical isometry, the class of
all dihedral f-tilings of S2 whose prototiles are spherical triangles and well centered
spherical quadrangles with all congruent internal angles. Table 1 and Figure 19
give a summary of the families involved in this classification.
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1. Introduction

Let S2 be the Riemannian sphere of radius 1. A spherical moon, L is well centered if its
vertices belong to the great circle S2 ∩ { (x, y, z) ∈ IR3 : x = 0 } and the semi-great circle
bisecting L contains the point (1, 0, 0). If L1 and L2 are two spherical moons with orthogonal
vertices then L1 and L2 are said to be orthogonal. By a well centered spherical quadrangle
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(WCSQ) we mean a spherical quadrangle which is the intersection of two well centered
spherical moons with distinct vertices. In [2] was established that any spherical quadrangle
with congruent internal angles is congruent to a well centered spherical quadrangle, which is
the intersection of two orthogonal moons.

In this paper we shall discuss dihedral f-tilings by spherical triangles and well centered
spherical quadrangles (WCSQ) with congruent internal angles.

By a dihedral folding-tiling or dihedral f-tiling for short, of the euclidean sphere S2 = {x ∈
IR3 : ‖x‖ = 1 }, we mean a polygonal decomposition of the sphere by polygons congruent to
a two fixed non-congruent polygons, where all vertices satisfy the angle-folding relation i.e.,
each vertex is of even valency and the sums of alternating angles at each vertex are π.

Two dihedral f-tilings of S2, S1 and S2, are isomorphic iff there is an isometry ψ of S2

such that ψ(S1) = S2. By “unique f-tiling” we mean unique up to an isomorphism.
We shall denote by Ω(Q, T ) the set, up to an isomorphism, of all dihedral f-tilings of S2,

whose prototiles are a WCSQ Q and a spherical triangle T .
Relations between faces, edges, vertices and angles of any dihedral f-tiling of S2, with

prototiles Q and T are stated in proposition 1.1.

Proposition 1.1. Let τ ∈ Ω(Q, T ). If M > 0 and N > 0 denote, respectively, the number
of spherical quadrangles congruent to Q and the number of spherical triangles congruent to
T of τ , and E and V denote, respectively, the number of edges and vertices of τ , then:

i) N + 2M = 2V − 4;

ii) 3V = 6 +M + E;

iii) there are at least 6 +M vertices of valency four;

iv) β + γ + δ < 3π
2
, where β, γ and δ denote the internal angles of T .

Proof. Let α1, α2, α3, α4 and β, γ, δ be the internal angles measure of the spherical quad-
rangle Q and the spherical triangle T , respectively, then:

M(α1 + α2 + α3 + α4 − 2π) +N(β + γ + δ − π) = 4π. (1.1)

Since

2πV = M(α1 + α2 + α3 + α4) +N(β + γ + δ)

we may conclude that

N + 2M = 2V − 4.

By the Euler’s relation we also have

M +N − E + V = 2

therefore

3V = 6 +M + E. (1.2)
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Denoting by Vk, k ≥ 2 the number of vertices of valency 2k, then∑
k≥2

kVk = E.

Now, using (1.2), one has

3
∑
k≥2

Vk = 6 +M +
∑
k≥2

kVk ⇔ V2 = 6 +M +
∑
k≥4

(k − 3)Vk

and so

V2 ≥ 6 +M, (1.3)

that is the number of vertices of valency four is at least 6 + M . Obviously V ≥ V2 and
by (1.3) we obtain, N + 2M = 2V − 4 ≥ 2(6 +M)− 4 and so

N ≥ 8.

Finally by (1.1) we may conclude that

β + γ + δ <
3π

2
. �

From now on Q denotes a spherical quadrangle with all congruent internal angles, say α, and
T denotes a spherical triangle with internal angles β, γ, δ such that β ≥ γ ≥ δ, see Figure 1.
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It follows straight away that π
2
< α < π and π < β + γ + δ < 3π

2
.

Next, we shall describe the set Ω(Q, T ), considering separately different cases depending on
the nature of Q and T .

In order to get the dihedral f-tilings of Ω(Q, T ), we always start by considering one of its
planar representation (PR) beginning with a common vertex to a spherical quadrangle and a
spherical triangle in adjacent positions (it must be pointed out that there is always a vertex
satisfying this condition).

In following sections we shall denote by WCSQ∗ a WCSQ with all congruent internal angles.
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2. Dihedral f-tilings by equilateral spherical triangles and WCSQ∗

Proposition 2.1. If T is an equilateral spherical triangle with internal angle measure, say
β, then Ω(Q, T ) is the empty set.

Proof. Let us suppose that Ω(Q, T ) is non empty. Let v be a vertex of Q. Considering that
α > π

2
and β > π

3
then v is a vertex of valency four and the cells surrounding v have, in cyclic

order, angles measure (α, α, β, β), with α + β = π, see Figure 2. Since 2β < π < 3β and
2β+α > π, then around w there is no way to position the other cells to have the angle-folding
relation full filled, i.e, Ω(Q, T ) = ∅. �
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Figure 2

To go on with the description of Ω(Q, T ) we find it useful to label any dihedral f-tiling
τ ∈ Ω(Q, T ) according to the following procedures,

1. Label 1 the tiles by which we begin the planar representation of the dihedral f-tiling τ .

2. Label a tile j, if the knowledge of the PR of τ by polygons labelled (1, 2, . . . , j − 1)
leads, in a unique way, to the extended planar representation (1, 2, . . . , j).

Observe that we have used the above labelling procedures in the diagrams illustrated in
Figure 2.

The arguments used in next results follow a fairly rigid pattern and we decided to give, in
detail, only the proofs we consider more representative. The proofs of all propositions can
be obtained, in full detail, from the authors.

3. Dihedral f-tilings by isosceles spherical triangles and WCSQ∗ with all congru-
ent sides

In this section Q and T denote, respectively, a spherical quadrangle and a spherical triangle,
where Q has congruent internal angles, say α ∈]π

2
, π[, and all congruent sides, and T has

internal angles β, γ, γ, β 6= γ.
We shall consider, separately, the cases γ > π

2
, γ = π

2
and γ < π

2
.

Proposition 3.1. If γ > π
2
, then Ω(Q, T ) = ∅. �



A. M. d’Azevedo Breda et al.: Dihedral f-Tilings of the Sphere . . . 451

Proposition 3.2. If γ = π
2
, then Ω(Q, T ) consists of a single tiling given by an antiprism

denoted by Aα, with α = arccos(1−
√

2) and β = π − α.

Sketch of the proof. Consider a vertex of Q in which α and γ are adjacent angles. We may
prove that the extension of the planar f-tiling is uniquely determined, with α+β = π = γ+γ,
Figure 3-I. Now, if b is the length side of Q (opposite to β), then

cos b =
1 + cosα

1− cosα
= − cosα, see [2].

Therefore

cos2 α− 2 cosα− 1 = 0 and so cosα = 1−
√

2.

Hence α = arccos(1 −
√

2) = α0 is the internal angle of Q, since α ∈]π
2
, π[. Similarly the

length side of T opposite to γ is π
2
. The 3D representation of τ = Aα0 , is illustrated in Figure

3-II. �
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Figure 3

Next, we shall consider that γ < π
2
. Let b and c be, respectively, the length sides of T opposite

to β and γ. Necessarily, the length side of Q, say a, has to be b or c.

Proposition 3.3. With the above terminology if a = c, then Ω(Q, T ) consists of a single
tiling given by an antiprism denoted by Aα, with α = 2π

3
.

The relation between angles is given by α+ γ = π = β + γ and so α = β and γ = π − α, see
Figure 4-I. Now, as c is the side of Q which is common to the side of T opposite to γ, then

cos c = −cosα(1 + cosα)

sin2 α
=

1 + cosα

1− cosα
.

Hence cosα = 1
2

and taking in account that π
2
< α < π, then α = 2π

3
= β and γ = π

3
. In

Figure 4-II is illustrate a 3D representation of τ = Aα, α = 2π
3

. �
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Proposition 3.4. If a = b, then Ω(Q, T ) =
{
Rk | k ≥ 2

}
, where Rk is a dihedral f-tiling

satisfying, α+ γ = π and β = π
k
, k ≥ 2.

In the presence of this situation, Figure 5-I illustrates the unique planar representation, that
we may obtain obeying the angle folding relation.
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For any k ≥ 2, one has

cosα =
−1 + cos π

k

2
, cos b =

1 + cos π
k

3− cos π
k

and c =
π − b

2
.

In Figure 5-II is illustrated a 3D representation of R4. �

4. Dihedral f-tilings by scalene spherical triangles and WCSQ∗ with all congruent
sides

Consider here a spherical quadrangle Q with congruent internal angles, say α, π
2
< α < π, and

congruent sides, and a spherical triangle T with internal angles β, γ, δ such that β > γ > δ.
As seen before, π < β + γ + δ < 3π

2
. Denote by b, c and d the length sides of T opposite to

β, γ and δ, respectively. Suppose that the length side of Q is a. Then a is either b or c or d.
We shall consider separately each one of these cases.
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Proposition 4.1. If a = b, then Ω(Q, T ) = ∅. �

Consider, next that a = c. The planar representation near a vertex v belonging to adjacent
tiles congruent to Q and T , respectively, is illustrated in Figure 6. With the labelling of this
figure θ = β or θ = γ.
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Proposition 4.2. If θ = β, then Ω(Q, T ) = ∅.

Proof. Suppose that θ = β, then the PR near v can be extended as follows:
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Taking in account that there are necessarily vertices of valency four, then α + β = π. Since
v1 is surrounded by δ, v1 cannot be of valency four, and so α + tδ = π, t ≥ 2 (note that
α+ γ + δ > β + γ + δ > π), see Figure 7.

The tile labelled 5 is completely identified (γ+β < α+β = π < β+γ+δ ≤ β+γ+ρ, ρ ∈
{α, β, γ, δ}), therefore the tile labelled 6 is a quadrangle and the tile labelled 7 is a triangle
as indicated above. The vertex v2 of tile 8 must be surrounded by three angles α, leading to
a contradiction. �

We shall consider now that θ = γ, see Figure 6.

Proposition 4.3. If θ = γ and α+γ = π, then Ω(Q, T ) consists of a family of antiprismatic
tilings (Aα)α∈] 2π

3
, π[.
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Sketch of the proof. In Figure 8-I is illustrated a PR of such f-tiling, where α+γ = π = β+δ,
β > α > γ > δ. A 3D representation is presented in Figure 8-II.
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One has,

cos c =
1 + cosα

1− cosα
= −cosα+ cos2 β

sin2 β
,

π

2
< α < π,

π

2
< β < π,

where c is the length side of T opposite to γ. Therefore,

sin β =
sinα√
−2 cosα

. (4.1)

On the other hand β > α, and so α ∈]2π
3
, π[. By the relation (4.1) we may also observe that

2π
3
< β < π. �

Proposition 4.4. If θ = γ and α + γ < π, then Ω(Q, T ) = { Ik | k = 2, 3, . . . }, where for
each k ≥ 2, Ik is a dihedral f-tiling satisfying,

α+ γ + (k − 1)δ = β + kδ = π ∧ β + γ = π.

In Figure 9 is illustrated a complete PR of I2, that can be obtained from the PR illustrated
in Figure 6.
The current conditions between angles allows write α, β and γ as functions of δ, namely,

α = π − (2k − 1)δ, β = π − kδ, γ = kδ, k ≥ 2.

Since

1 + cosα

1− cosα
=

cos γ + cos β cos δ

sin β sin δ
,

we conclude that

1− cos((2k − 1)δ)

1 + cos((2k − 1)δ)
=

cos kδ(1− cos δ)

sin kδ sin δ
. (4.2)
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Given 0 < kδ < π
2
, k ≥ 2, δ is completely determined for each k ≥ 2, by equation (4.2). For

instance if k = 2, 3 and 4, then
δ ≈ 16, 8◦, δ ≈ 8, 6◦ and δ ≈ 5, 4◦, respectively.

As vertices P1 and P2 (Figure 9) are in antipodal positions, observe that b+ c = π, where b
and c are the length sides of T opposite to β and γ, respectively.

In Figure 10 we show a 3D representation of I2 and I3. �

Figure 10

Proposition 4.5. If a = d, then Ω(Q, T ) consists of a family of antiprismatic tilings

(Aα)α∈]α0, 2π
3

[ , α0 = arccos(1−
√

2).

In Figure 11 is illustrated a PR and a 3D representation of Aα, α ∈]α0,
2π
3

[.
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As seen before if d is the side length of T opposite to δ, then

sin β =
sinα√
−2 cosα

.

Since α ∈]π
2
, π[ , β ∈]π

2
, π[, then by previous relation β < α iff α < 2π

3
. On the other hand

sinα ≤
√
−2 cosα, and so

α ≥ α0 = arccos(1−
√

2) ≈ 114, 47 ◦.

The case α = α0 implies that T is an isosceles triangle (proposition 3.2), consequently
α0 < α < 2π

3
. �

5. Dihedral f-tilings by isosceles spherical triangles and WCSQ∗ with incongruent
adjacent sides

In this section Q represents a spherical quadrangle with congruent internal angles, say α,
α ∈]π

2
, π[ and distinct congruent opposite pairs of sides; T is an isosceles spherical triangle

with internal angles measure, say β, γ, γ such that π < 2γ + β < 3π
2

.

Proposition 5.1. With the above terminology if γ ≥ π
2
, then Ω(Q, T ) = ∅. �

Next, we shall assume that γ < π
2
.

If τ ∈ Ω(Q, T ) then there are necessarily two cells of τ congruent to Q and T , respectively,
such that they are in adjacent positions and in one of the following situations:
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Proposition 5.2. With the above terminology, if γ < π
2
, and Q and T are adjacent tiles as

indicated in Figure 12-I, then Ω(Q, T ) = ∅. �
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Proposition 5.3. If γ < π
2

and Q and T are adjacent tiles as indicated in Figure 12-II, then
for each integer k ≥ 2 there is a family of dihedral f-tilings, denoted by Rk

α, such that:

α+ γ = π, β =
π

k
, α ∈

]
π

2
,
(k + 1)π

2k

[
and cosα 6=

−1 + cos π
k

2
.

In Figure 13 is shown a 3D representation of R4
α. Similarly we may draw Rk

α, for any k ≥ 2.

Figure 13

The restriction on cosα comes from the following facts: Denoting by A(Q) the area of Q
then

0 < A(Q) = 4α− 2π <
2π

k

therefore

π

2
< α <

(k + 1)π

2k
.

Since Q has distinct pairs of opposite sides then by proposition 3.4

α 6= arccos
−1 + cos π

k

2
= αk. �

6. Dihedral f-tilings by scalene spherical triangles and WCSQ∗ with incongruent
adjacent sides

As in last section, Q stands for a spherical quadrangle with internal angle α, α ∈]π
2
, π[, and

congruent distinct opposite pairs of sides, while T stands for a scalene spherical triangle with
internal angles β, γ and δ, such that, β > γ > δ.

Any element of Ω(Q, T ) has, at least, two cells congruent to Q and T , respectively, such that
they are in adjacent positions and in one of the following situations:
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Proposition 6.1. If Q and T are in adjacent positions as illustrated in Figure 14-I, then
Ω(Q, T ) is the empty set. �

Proposition 6.2. If Q and T are in adjacent positions as in Figure 14-II, then Ω(Q, T ) =
{ Jk | k = 2, 3, . . . }, where Jk, k ≥ 2 is a dihedral f-tiling, such that the sum of alternating
angles around vertices are of the form

α+ kδ = β + kδ = π ∧ α+ γ = β + γ = π ∧ β + γ = π.

Sketch of the proof. Suppose that Q and T are adjacent tiles as illustrated in Figure 14-II.
Taking in account the side length of Q and T we may extend in a uniquely way the PR, see
Figure 15. The main step of the proof is to prove that α + θ1 = π, θ1 = γ, and θ2 = δ that
can be done studying all possible cases for θ1 and θ2.
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Thus we obtain α + γ = β + γ = π, α + kδ = β + kδ = π, k ≥ 2 and β + γ = π as the sums
of alternating angles around vertices.

Considering k = 2 the extended PR, is given in Figure 16-I. We denote such f-tiling by
J2. In Figure 16-II is represented a generic PR of Jk, k ≥ 2.
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The relations between angles allow us to write α, β and γ as functions of δ, namely,

α = π − kδ, β = π − kδ and γ = kδ.

Now, the diagonal of Q divides Q into two congruent spherical triangles T1 and T2 of internal
angles measure α, α1, α2, α1 + α2 = α, see Figure 17.
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T and T1 have two congruent sides and considering that α = β we conclude that T and T1

are congruent spherical triangles. Therefore α1 = γ and α2 = δ.
Denoting by b and c the length sides of T opposite to β and γ, respectively, we obtain

b+ c = π (observe that α1 + β = α+ γ = π. And so T ∪ T1 is a spherical moon). Now,

α = α1 + α2 ⇔ β = γ + δ ⇔ π − kδ = kδ + δ.

Therefore

δ =
π

2k + 1
.

Consequently

γ =
kπ

2k + 1
α =

(k + 1)π

2k + 1
= β , k ≥ 2.

In Figure 18 is illustrated a 3D representation of J2, where

α =
3π

5
, β =

3π

5
, γ =

2π

5
and δ =

π

5
. �

Figure 18

Proposition 6.3. If Q and T are in adjacent positions as in Figure 14-III, then Ω(Q, T ) is
the set obtained in proposition 6.2. �

In Table 1 is shown a complete list of all dihedral f-tilings, whose prototiles are an isosceles
spherical triangle of angles β, γ, γ or a scalene triangle of angles β, γ, δ, with β > γ > δ
and a WCSQ∗ with angle α. (There is not any dihedral f-tiling if T is equilateral and Q is a
WCSQ∗). Our notation is as follows.
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• βα and δk are the solutions of equation (4.1) and equation (4.2), respectively;

• αk = arccos
−1+cos π

2

k
;

• |V | is the number of distinct classes of congruent vertices (we shall say that vertices v1

and v2 are congruent iff there is a spherical isometry that maps the faces incidents to
v1 into the faces incidents to v2);

• M and N are, respectively, the number of quadrangles congruent to T and the number
of triangles congruent to Q, used in such dihedral f-tilings.

f-tiling α β γ δ |V | M N

Aα0 α0 π − α0
π
2 - 1 2 8

Aα α0 < α < 2π
3 βα π − βα π − α 1 2 8

A 2π
3

2π
3

2π
3

π
3 - 1 2 8

Aα
2π
3 < α < π βα π − α π − βα 1 2 8

Rk, k ≥ 2 αk
π
k π − αk - 2 2k 4k

Rk
α, k ≥ 2 ]π

2 , (k+1)π
2k [\{αk} π

k π − α - 2 2k 4k

Ik, k ≥ 2 π − (2k − 1)δk π − kδk kδk δk 2 2 8(2k−1)

Jk, k ≥ 2 (k+1)π
2k+1

(k+1)π
2k+1

kπ
2k+1

π
2k+1 3 2 8k

Table 1: Dihedral f-Tilings by Spherical Triangles and WCSQ∗

In Figure 19 we present in 3D all the dihedral f-tilings obtained before, whose prototiles are
a spherical triangle, T , and a WCSQ∗, Q, consisting of

• A family of square antiprisms (Aα)α∈[α0, π[, in which T is an isosceles triangle iff α ∈
{α0,

2π
3
}. We have considered α0 < α1 <

2π
3
< α2 < π . α0 = arccos(1−

√
2)

• For each k ≥ 2 a family of 2k-polygonal radially elongated dipyramids, Rk
α, α ∈

]π
2
, (k+1)π

2k
[ in which T is an isosceles triangle and Q is a spherical square iff α = αk.

• A class of f-tilings Ik, k ≥ 2, in which Q is a square and T is a scalene triangle. We
illustrate I2.

• A class of f-tilings Jk, k ≥ 2 in which Q is a spherical quadrangle with distinct pairs of
opposite sides and T is a scalene triangle. We have considered k = 2.



A. M. d’Azevedo Breda et al.: Dihedral f-Tilings of the Sphere . . . 461

0
Aa 1

Aa A 2p
3 2

Aa

Rk
, k>2 , k>2Ra

k , k>2I
k

, k>2J
k

Figure 19
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