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Abstract. We classify indecomposable racks of order p2 (p a prime). There are
2p2−2p−2 isomorphism classes, among which 2p2−3p−1 correspond to quandles.
In particular, we prove that an indecomposable quandle of order p2 is affine. As
an ingredient of the classification, we prove that the quandle non-abelian second
cohomology set of an indecomposable quandle of prime order is trivial.
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1. Introduction

Racks and quandles have been considered by G. Wraith and J. Conway in 1959 as a general-
ization of a group with the binary operation given by conjugation. Since then, they appeared
once and again in topological contexts (cf. [12, 17, 13, 9, 4]), in logics (cf. [5]), in algebra
(cf. [3, 8, 14, 10]).

In topology they were mainly used to provide invariants for knots: any knot has attached
a quandle (the knot quandle), which is a full invariant up to mirror symmetry (two knots
with isomorphic quandles are either isotopic or one is isotopic to a mirror image of the
other). This was the fact that attracted the attention of knot theorists to them at first. A
generalization of the classic invariant of “colorings” of a knot is given by counting how many
quandle homomorphisms there are from the quandle of a knot to a given fixed quandle. A
refinement of this invariant is given by taking a 2-cocycle of this fixed quandle with values in
an abelian group, and using it to give a “weight” to each homomorphism (similar ideas, with
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3-cocycles, were used to give invariants of knotted surfaces, cf. [4]). One of the advantages
of this last invariant is that it detects mirror symmetry.

More recently, led by his interest in Homotopical Quantum Field Theories, Turaev in-
troduced in [21] the concept of crossed categories. These are monoidal categories which split
as a disjoint union of a family of subcategories. This family is indexed by a group, and each
element of the group gives, in turn, an endofunctor in the whole category which, at the level
of the splitting, behaves like conjugation. If one considers set-theoretical versions of crossed
categories, one is immediately led to the notion of a rack.

On the other hand, in [8, 7, 20] and [14, 15] the authors attack a problem proposed by
Drinfeld: that of giving set-theoretical solutions to the Yang-Baxter equation. They find that
racks not only give a good set of solutions, but that each “good” solution (namely, faithful
and non-degenerate, in the words of [20]) has a rack attached. Studying this rack one can
have information about the solution. In particular, in [7] Etingof, Guralnick and Soloviev
classify indecomposable, faithful, non-degenerate set-theoretical solutions of the Yang-Baxter
equation with a prime number of elements. They do so by studying the enveloping group of
the attached rack.

Studying the internal structure of modules over the Drinfeld double of a finite group and
their relation to pointed Hopf algebras, in [10] I proposed a cohomology theory for racks and
quandles, which turned out to be the same as the one considered by knot theorists. A non-
abelian version of these theories gives rise to extensions of quandles, cf. [1]. With this help
we can pursue the next step in the seemingly wild project of classification of (isomorphism
classes) of finite racks. As said before, indecomposable racks of prime order are classified.
We classify here indecomposable racks of prime square order. This classification can be used
to give new concrete (as opposed to theoretical) invariants of knots and knotted surfaces
(some of the racks classified here were indeed used in [16]), to give new solutions to the
Yang-Baxter equation (both set-theoretical and “classical”), new set-theoretical versions of
Turaev’s crossed categories, new examples of pointed Hopf algebras.

2. Definitions and notation

Let us define the object of study:

Definition 2.1. A rack is a pair (X, .), where X is a set and . : X ×X → X is a binary
operation satisfying:

The functions φx : X → X, φx(y) = x . y are bijections for all x ∈ X, (2.2)

x . (y . z) = (x . y) . (x . z) ∀x, y, z ∈ X. (2.3)

A rack is a quandle if it further satisfies

x . x = x ∀x ∈ X. (2.4)

The main model for racks are unions of conjugacy classes in a group, where the operation is
the conjugation x . y = xyx−1. Notice that a rack like this is actually a quandle. As far as
the author knows, the problem of finding a necessary and sufficient condition for a quandle
to be isomorphic to a union of conjugacy classes in a group is still open.
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Definition 2.5. A rack (X, .) is decomposable if it can be split properly into stable subracks,
i.e., if X = Y t Z (a disjoint union), neither of them empty, and X . Y = Y , X . Z = Z.
A rack is indecomposable if it is not decomposable.

For X a set, we denote by SX the symmetric group SX = {f : X → X | f is bijective}. Let
X be a rack and let φ : X → SX , φ(x) = φx, (see (2.2)). We denote by G0

X the subgroup
of SX generated by the image of φ. This group operates on X by rack automorphisms; i.e.,
if σ ∈ G0

X then σ(x . y) = σ(x) . σ(y). Moreover, φ is a rack homomorphism taking the
conjugation in G0

X .
A rack is called faithful if φ is injective. In this case, X, being isomorphic as a rack to its

image, is naturally seen as a union of conjugacy classes inside G0
X , and then it is a quandle.

If X is a rack, we denote by Aut(X) the group of rack automorphisms of X.
A rack X is said to be trivial, or abelian, if φ is trivial, i.e., if x. y = y ∀x, y. A rack X is

said to be simple if (a) X is not trivial, and (b) any surjective rack homomorphism X → Y
is either an isomorphism or |Y | = 1. An example of a simple rack is, for p a prime number,
(Zp, .), x . y = y + 1. It is not difficult to see that a simple rack is either isomorphic to one
of these, or it is a quandle. Simple quandles are classified in [1] in terms of simple groups.

An affine quandle (also called Alexander quandle) is a pair (A, g), where A is an abelian
group and g ∈ Aut(A). Then A is a quandle with the structure x . y = (1 − g)(x) + g(y)
(x, y ∈ A). It is easy to see that such a quandle is indecomposable iff 1− g is surjective and
it is faithful iff 1− g is injective. If A is cyclic, we denote g usually by g(1).

Theorem 2.6. ([7]) An indecomposable quandle of prime order p is affine, isomorphic to
(Zp, q), where q ∈ Z∗

p − {1}.

Here, and throughout, for a ring R we denote by R∗ the group of its units.

If X is a quandle and H is a group, the (non-abelian) 2-cocycles with values in H are the
functions β : X ×X → H such that

β(x, y . z)β(y, z) = β(x . y, x . z)β(x, z) ∀x, y, z ∈ X.

We denote by Z2(X,H) the set of 2-cocycles with values in H. Two 2-cocycles β and β′ are
cohomologous if there exists a function γ : X → H such that

β′(x, y) = γ(x . y)β(x, y)γ(y)−1.

We denote by H2(X, H) the set of cohomology classes of 2-cocycles. A non-abelian 2-cocycle
is said to be a quandle cocycle if β(x, x) = 1 ∀x ∈ X. We denote by H2

Q(X, H) the set of
cohomology classes of quandle 2-cocycles.

If X is a rack, S is a set and β : X ×X → SS is a 2-cocycle, then there is a structure of
rack in the product X × S, given by

(x, s) . (y, t) = (x . y, β(x, y)(t)).

We denote by X ×β S the rack with this structure. Two cohomologous cocycles give rise to
isomorphic structures. If X is a quandle then X × S is a quandle iff β is a quandle cocycle.



668 M. Graña: Indecomposable Racks of Order p2

More general extensions are obtained by dynamical 2-cocycles. If (X, .) is a rack and
S is a set, a function α : X × X × S → SS is called dynamical 2-cocycle if the set X × S
is a rack under the operation (x, s) . (y, t) = (x . y, α(x, y, s)(t)). A non-abelian cocycle β
gives a dynamical cocycle by taking α(x, y, s) = β(x, y). See [1] for a detailed treatment of
dynamical cocycles.

Let X be a rack, let ι : X → X be defined by x . ι(x) = x. Define (X, .ι) as X with the
structure x.ι y = x. ι(y). It can be seen that ι is a bijection and (X, .ι) is a quandle. Notice
that x . (ι(x) . z) = (x . ι(x)) . (x . z) = x . (x . z), whence φx = φι(x).

For an integer n, we denote its p-valuation by vp(n), i.e., vp(n) = r if n = prq where q is
coprime to p.

3. Racks of order p2

Theorem 3.1. Let X be an indecomposable rack of order p2, p a prime number. Then X is
isomorphic to one of the racks in this list:

Zp ⊕ Zp, (x1, x2) . (y1, y2) = ((1− α)x1 + αy1, (1− β)x2 + βy2) α, β ∈ Z∗
p − {1} (3.2)

Zp ⊕ Zp, (x1, x2) . (y1, y2)

= ((1− α)x1 + αy1, (1− α)x2 + αy2 + y1 − x1) α ∈ Z∗
p − {1} (3.3)

Fp2 , x . y = (1− α)x + αy α ∈ Fp2 − Fp (3.4)

Zp2 , x . y = (1− α)x + αy α 6≡ 0, 1 mod p (3.5)

Zp2 , x . y = y + 1 (3.6)

Zp ⊕ Zp, (x1, x2) . (y1, y2) = ((1− α)x1 + αy1, y2 + 1) α ∈ Z∗
p − {1} (3.7)

Two racks in different rows are not isomorphic. The non-trivial isomorphisms inside each
row are as follows: in (3.2), the rack associated to (α, β) is isomorphic to that associated to
(β, α); in (3.4) the rack associated to α is isomorphic to that associated to σ(α), where σ is
the non-trivial element of the Galois group Gal(Fp2|Fp).

Proof. If X is faithful then X is a quandle and we prove in 3.10 below that it is affine. If X is
not faithful, then we consider its associated quandle (X, .ι), which is also non-faithful. Then
φ(X) has order either 1 or p. In the first case (X, .ι) is trivial, and then (X, .) is given by
a permutation σ ∈ Sp2 : x . y = σ(y). Since (X, .) is indecomposable, σ must be a p2-cycle.
Then it is of the form (3.6). In the second case, we have by [1, Prop. 2.11] that (X, .ι) is
a non-abelian extension of φ(X) by some set S of order p, i.e., (X, .ι) ' (Zp, α) ×β S for
some β a 2-cocycle in Z2((Zp, α), SS). By Lemma 6.1 below, β is cohomologous to the trivial
cocycle, and hence we may assume that β is trivial, i.e., (x, s) .ι (y, t) = ((1 − α)x + αy, t).
Since φx = φιx, we have that ι restricts to the fibers, i.e., ι|{x}×S : {x} × S → {x} × S.
Let ιx : S → S, x × ιx(s) = ι|{x}×S(x × s). The structure in X can be recovered from .ι

as (x, s) . (y, t) = (x, s) .ι (ι−1(y, t)) = ((1 − α)x + αy, ι−1
y (t)). Now, it is easy to see that

(2.3) implies ι−1
y.zι

−1
z = ι−1

x.zι
−1
z ∀x, y, z ∈ (Zp, α), and thus ι−1

x = ι−1
y ∀x, y. We can call then

f = ι−1
x , and we have (x, s) . (y, t) = (x . y, f(t)). But for this rack to be indecomposable f

must be a p-cycle whence X is isomorphic to a rack in (3.7).
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To see that (3.2), (3.3), (3.4), (3.5) cover all the affine cases, simply notice that there
are two groups of order p2: Zp ⊕ Zp and Zp2 . For Zp ⊕ Zp the isomorphism g ∈ GL2(Zp)
can be either diagonalizable (class (3.2)), it can be given by a Jordan block (class (3.3)) or
its minimal polynomial can be irreducible over Zp (class (3.4)). For Zp2 any automorphism
is given by an element in Z∗

p2 , and we get class (3.5). The conditions on α and β in the
statement are equivalent for these quandles to be indecomposable.

Now, by [1, Lemma 1.33] two indecomposable affine quandles (A, g) and (B, h) are iso-
morphic iff there is an isomorphism of the pairs (A, g) and (B, h); i.e., iff there exists an
isomorphism T : A → B such that Tg = hT . This proves that the classes have no intersec-
tion and shows also that the isomorphisms inside each class are those in the statement.

Before dealing with the rest of the proof, we derive two corollaries:

Corollary 3.8. If X is an indecomposable rack of order p2 then vp(|G0
X |) = 2 or 3.

Proof. For affine quandles, it is a consequence of [1, Cor. 1.25]. For the other cases, it follows
by inspection.

Corollary 3.9. The cardinalities of the classes in 3.1 are as follows:

Type Class #
Affine quandle over Z2

p; diagonalizable isomorphism (3.2) 1
2
(p2 − 3p + 2)

Affine quandle over Z2
p; Jordan block (3.3) p− 2

Affine quandle over Z2
p; irreducible polynomial (simple) (3.4) 1

2
p(p− 1)

Affine quandle over Zp2 (3.5) p2 − 2p
Rack which is not a quandle with |φ(X)| = 1 (3.6) 1
Rack which is not a quandle with |φ(X)| = p (3.7) p− 2

We now finish the proof of 3.1.

Proposition 3.10. Indecomposable quandles of order p2 are affine. In particular, they are
faithful.

Proof. Since for p = 2 this is known, we may assume that p 6= 2 (the tools used here work
also for the case p = 2, though sometimes the formulas are easier if we have 1

2
∈ Zp).

For simple quandles the result is a consequence of [1, Thm. 3.12]. Let X be an inde-
composable non-simple quandle of order p2. Then by [1, Cor. 2.10] we have X ' Y ×α S,
where Y is an indecomposable quandle of order p, S is a set of order p and α is a dynamical
2-cocycle. For y ∈ Y , let us denote by Xy the fibers y×S. These are quandles, and, since Y
is indecomposable, they are all isomorphic, i.e., Xy ' Xy′ as quandles. We claim that either
Xy is indecomposable or it is trivial. To see this, take for each y ∈ Y the decomposition
Xy = tnX

n
y , where Xn

y is the union of the orbits of Xy with cardinality n. Take (y, s) ∈ X;
since φ(y,s) : Xz → Xy.z is a quandle isomorphism, it must send Xn

z to Xn
y.z. Thus, we have
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a decomposition of X as X = tn(tyX
n
y ). But X is indecomposable, hence all the orbits in

Xy (any y) have the same cardinality. And since S has a prime cardinality, either there is
one orbit of order p (and Xy is indecomposable) or there are p orbits of order 1 (and Xy is
trivial), proving the claim.

We suppose first that X is faithful. By [7, Thm. A.2] the group G0
X is an extension

of a cyclic group by a p-group. That is, G0
X = N of C, N a p-group, C cyclic and f a

2-cocycle. Let M be the order of C and let t be a generator of it. We have the structure
(a, ti)(b, tj) = (aαi(b)f(i, j), ti+j), where f(i, j) = 1 ∈ N if i + j < M and t acts by α on N .
Since X is indecomposable, the image of φ is contained in {(a, ti) | i = i0} for some i0. As
this image must generate G0

X , we can assume that i0 = 1 (otherwise we re-name t to ti0).
The structure of X is given then by

(a, t) . (b, t) = (a, t)(b, t)(a, t)−1 = (a, t)(b, t)(1, t)−1(a−1, 1) = (aα(ba−1), t). (3.11)

Furthermore, G0
X has trivial center; in particular if g ∈ Z(N) then α(g) 6= g, and, since any

p group has a non-trivial center, α 6= id. Thus, to classify X we can seek what pairs N, α
can arise and then look for the structure of the orbits for the action a . b = aα(ba−1). The
strategy of the proof in [7] is the same as this one; however in that case X can be seen as an
orbit in the symmetric group Sp (actually, the faithfulness condition is immediate), whence
1 ≤ vp(|N |) ≤ vp(|Sp|) = 1; thus N ' Zp. With a similar reasoning we can prove that
vp(|N |) ≤ vp(|Sp2 |) = p + 1, but this gives too much freedom to N . However, the group N
is rather small: we claim that |N | ≤ p3. To see this, if Xy is indecomposable we have by
[7] that it is affine and vp(|Aut(Xy)|) = vp(|Zp o Z∗

p|) = 1. If Xy is not indecomposable, we
have that it is trivial and then vp(|Aut(Xy)|) = vp(|SXy |) = 1. Since X is indecomposable,
Y is indecomposable and again vp(|G0

Y |) = 1. By [1, Lemma 1.13] we have a morphism
of groups G0(π) : G0

X → G0
Y induced by the projection π : X → Y . We look to its

kernel K = ker G0(π). By an abuse of notation, we denote the elements of Y by those
of Zp. Let w ∈ K, we have w(Xy) = Xy ∀y ∈ Y . Then we can restrict w to X0 and
X1, i.e., we have a homomorphism of groups R : K → Aut(X0) × Aut(X1). But X0 ∪ X1

generates X as a quandle, since 0 and 1 generate Y . Then R is injective, which proves
that the order of K divides that of Aut(X0) × Aut(X1) ⊆ Aut(SX0) × Aut(SX1). Then
vp(|K|) ≤ 2× vp(|Aut(SX0)|) = 2, and vp(|GX |) ≤ vp(|K|)+ vp(|GY |) ≤ 3, proving the claim.

If N is abelian we are done, since in this case (3.11) defines an affine structure. Thus, if
N has order p or p2, there is nothing else to prove. The classification of groups of order p3

is well known (cf. [2]); there are 3 abelian groups and two groups which are not abelian. We
must concentrate the attention on the later. We prove in sections 4 and 5 that for each of
them we get affine quandles.

Suppose now that X is not faithful. The image of φ : X → G0
X must have order p, since

otherwise X would be trivial. Let Y = φ(X); as before it is an indecomposable quandle and
then Y ' (Zp, q), where q ∈ Z∗

p − {1}. By [1, Prop. 2.11], we have X = Y ×β S, where S is
a set of order p and β : Y × Y → SS is a non-abelian quandle 2-cocycle. Now, we prove in
6.1 that this set is trivial; whence any of these quandles is isomorphic to the product Y × S,
S a trivial quandle; but this implies that Y × S is decomposable.
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4. The group (Zp ⊕ Zp) o Cp

Let G = (Zp ⊕ Zp) o Cp be the group with t a generator of Cp acting on Zp ⊕ Zp by
t(x, y)t−1 = (x, x+ y). We denote the elements of G as (x, y)tz x, y, z ∈ Zp. Let α ∈ Aut(G).
As (0, 1) generates the center of G, we must have α(0, 1) = (0, q) for some q ∈ Z∗

p, and since
α must act non-trivially on the elements of the center, q 6= 1. We denote α((1, 0)) = (a, j)tb,

α(t) = (c, k)td. We have α((x, y)) = ((a, j)tb)x(0, yq) = (xa, xj + abx(x−1)
2

+ yq)tbx and

α(tz) = ((c, k)td)z = (zc, zk + cd z(z−1)
2

)tdz, whence

α((x, y)tz) = (xa + zc , bcxz + xj + zk + ab
x(x− 1)

2
+ cd

z(z − 1)

2
+ yq)tbx+dz.

It is easy to check that for α to be a group homomorphism we must have q = da− bc.
As said, for h ∈ G, we consider the orbits Oh under the action g .h = gα(hg−1). We seek

the conditions on α that give orbits of order p2. Take g = 1; we get that {αn(h) | 0 ≤ n <
N} ⊆ Oh. Take g = (0, y) and notice that (0, y) . h = (0, y)α(h)(0,−qy) = α(h)(0, (1− q)y).
Then {αn(h)(0, ∗)} ⊆ Oh. Let us compute the orbit of ζ = (0, 1). We have {(0, ∗)} ⊆ Oζ .
Acting by (−x, 0)t−z, we get

(−x, 0)t−z . (0, ∗) = (−x, 0)t−zα((0, ∗)tz(x, 0)) = (−x, 0)t−zα((x, ∗)tz)
= (−x, 0)t−z(xa + zc, ∗)tbx+dz = ((a− 1)x + cz, ∗)tbx+(d−1)z.

Let A = ( a c
b d ). We get that Oζ = G if A − 1 is invertible. We assume thus that A − 1 is

degenerate. It can be seen that if A = 1, then all the orbits have order p. Thus, we consider
A 6= 1.

Suppose that the first row of A− 1 is non-trivial. Then A =
(

r+1 s
ur us+1

)
for some r, s, u ∈

Zp, (r, s) 6= (0, 0). We compute the orbit of (λ, ∗):
(−x, 0)t−z . (λ, ∗)tµ = (−x, 0)t−z((r + 1)(λ + x) + s(µ + z), ∗)tur(λ+x)+(us+1)(µ+z)

= ((λr + xr + µs + zs) + λ, ∗)tu(λr+xr+µs+zs)+µ,

whence the orbits are characterized as OC := {(ν, σ)tτ | τ − uν = C}, and they have order
p2, as wanted.

If the first row of A− 1 is trivial we have A = ( 1 0
r s+1 ), (r, s) 6= (0, 0), and the orbits are

(−x, 0)t−z . (λ, ∗)tµ = (−x, 0)t−z(λ + x, ∗)tr(λ+x)+(s+1)(µ+z)

= (λ, ∗)trλ+rx+sµ+sz+µ,

whence the orbits are characterized as OC := {(λ, σ)tτ | λ = C}, also of order p2.

We compute now the rack structure of the orbits OC in these cases. We do it first for the case
A =

(
r+1 s
ur us+1

)
. Let ∆x = x̄− x, ∆y = ȳ − y. Notice that q = 1 + r + us. A straightforward

computation shows that in OC :

((x, y)tC+ux) . ((x̄, ȳ)tC+ux̄)

= (x, y)tC+uxα((x̄, ȳ)tu(x̄−x)(−x,−y))

= (q∆x + x , ∆2
x(

u

2
rq +

u2

2
sq) + ∆x(j + uk − u

2
(r + 1)r − u

2
s(us + 1) + Cq)

+ q∆y + y) tuq∆x+C+ux.
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Now we use the following bijection: f : OC → Zp⊕Zp, f((x, y)tux+C) = (x, y− ux(x−1)
2

). We
compute then the quandle structure of OC transported to Zp⊕Zp by f . It is easy to see that

f(f−1(x, y) . f−1(x̄, ȳ)) = f((x, y + u
x(x− 1)

2
)tux+C . (x̄, ȳ + u

x̄(x̄− 1)

2
)tux̄+C)

= f((q∆x + x , ∆2
x(

u

2
rq +

u2

2
sq)∆x(j + uk − u

2
(r + 1)r − u

2
s(us + 1) + Cq)

+ q∆y + y +
u

2
q(x̄2 − x̄− x2 + x) +

u

2
x(x− 1))tuq∆x+C+ux)

= (q∆x + x , q∆y + y + ∆x(j + uk − u

2
qr +

u

2
usr − u

2
sq +

u

2
sr + Cq)).

This means that OC is isomorphic to the affine quandle (Zp ⊕ Zp, g), where

g(x, y) = (qx, qy + (j + uk − u

2
qr +

u

2
usr − u

2
sq +

u

2
sr + Cq)x).

We consider now the case A = ( 1 0
r s+1 ). Notice that here q = s + 1. Let ∆z = z̄− z. We have

for the orbit OC :

(C, y)tz . (C, ȳ)tz̄ = (C, y)tzα((C, ȳ)tz̄−z(−C,−y)) = (C, y)tzα((0, ∆y −∆zC)t∆z)

= (C, y)tz(0, ∆zk + q∆y − Cq∆z)t
(s+1)∆z

= (C, q∆y + y + ∆z(k − Cq))tq∆z+z.

Then, taking the bijection f : OC → Zp⊕Zp given by f((C, y)tz) = (y, z) we get on Zp⊕Zp

the affine quandle (Zp ⊕ Zp, g) with g given by g(y, z) = (qy + (k − Cq)z, qz).

In both cases, we get an affine quandle.

5. The group Zp2 o Cp

Let G = Zp2 o Cp, where Cp is generated by t and the action is given by tat−1 = a(p + 1).

Notice that (atb)n = a(n + pbn(n−1)
2

)tbn. In particular (atb) has order p iff p|a.
Take α ∈ Aut(G), α(1) = atb, α(t) = ctd. Let us compute the conditions on a, b, c, d for

α to be a homomorphism. It is easy to check that α(t)α(1) = α(1+p)α(t) implies that either
pad = pa + pbc mod p2, or a(d− 1) = bc mod p. On the other hand, α(t) must have order
p, whence c = 0 mod p. This means that either a = 0 mod p or d = 1 mod p. The first
possibility is excluded since α(1) must have order p2. Then, d = 1 and α(t) = (pc′)t. Thus,

α(ntm) = (atb)n(pc′t)m = (a(n + pb
n(n− 1)

2
))tbn(pc′m)tm

= (an + pab
n(n− 1)

2
+ pc′m(1 + pbn))tbn+m = (an + p(ab

n(n− 1)

2
+ c′m))tbn+m.

It is thus straightforward to check that, taking ∆n = n̄− n and ∆m = m̄−m, we have

(ntm) . (n̄tm̄) = (ntm)α(n̄t∆m(−n))

= (n̄− (1− a)∆n + p(c′∆m + a(−∆mn̄ + ∆nm̄)

+ ab
∆n(∆n − 1)

2
))tb∆n+m̄.
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We write now n = r + ps (p - r), and D = n̄− r, and we get

(ntm) . (n̄tm̄) = (n̄− (1− a)D + p((1− a)s + c′∆m + a(−∆mn̄ + Dm̄)

+ ab
D(D − 1)

2
))tbD+m̄

= (n̄− (1− a)D + p((1− a)s + (c′ − an̄)∆m + aDm̄

+ ab
D(D − 1)

2
))tbD+m̄.

(5.1)

Suppose first that a 6= 1 mod p and put C = m̄− b
a−1

n̄. We have

On̄tm̄ ⊆ OC := {xt
b

a−1
x+C | x ∈ Zp2}.

Thus, all orbits have order ≤ p2. On the other hand, by (5.1), all orbits have order ≥ p2,
and then they coincide with the sets OC . We look to the rack structure in the orbit OC . Put
∆x = x̄− x;

xt
−b
1−a

x+C . x̄t
−b
1−a

x̄+C = (x̄− (1− a)∆x + p(c′
−b

1− a
∆x + a(

b

1− a
∆xx̄

−∆x
b

1− a
x̄ + ∆xC) + ab

∆x(∆x − 1)

2
))tb∆x− fracb1−ax̄+C

= (x̄− (1− a)∆x + p((
−bc′

1− a
+ aC − ab

2
)∆x +

ab

2
∆2

x))t
b∆x− b

1−a
x̄+C .

Consider now the function

f : Zp2 → G, f(x) = (x− p
b

1− a

x(x− 1)

2
)t

−b
1−a

x+C .

We translate the structure of OC to Zp2 via f . We have f−1(xt
−b
1−a

x+C) = x+p b
1−a

x(x−1)
2

, and
then one can check that

f−1(f(x) . f(x̄)) = f−1((x̄− (1− a)∆x + p(− b

1− a

x̄(x̄− 1)

2
+

b

2
(x̄2 − x̄− x2 + x)

+ (
−bc′

1− a
+ aC − ab

2
)∆x +

ab

2
∆2

x))t
b∆x− b

1−a
x̄+C)

= x̄− (1− a)∆x + p∆x(
−bc′

1− a
+ aC − ab

2
).

Thus, OC is affine, isomorphic to (Zp2 , g), with g(x) = (a + p(−bc′

1−a
+ aC − ab

2
))x.

Suppose now that a = 1 mod p and put C = n̄. We have

On̄tm̄ ⊆ OC := {(C + px)ty | x, y ∈ Zp}.
By (5.1), for the orbit On̄tm̄ to be of order p2, we must have b 6= 0 and c′ − n̄ = c′ − an̄ 6= 0
mod p. We look to the rack structure in OC . Put ∆y = ȳ− y; from (5.1) we get (notice that
D = 0)

(C + px)ty . (C + px̄)tȳ = (C + p(x̄ + (c′ − C)∆y))t
ȳ.

But this shows that OC is in this case decomposable as tyOC
y , with OC

y = {(C + px)ty | x ∈
Zp}, and we are not dealing with this case.

Therefore, an indecomposable rack with G0
X ' Zp2 o Cp is affine.
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6. Non-abelian cohomology of the quandle (Zp, q)

Let (X, .) = (Zp, q), q ∈ Z∗
p − {1}, and let H be a group.

Lemma 6.1. H2
Q(X, H) is trivial.

Proof. Let β : X ×X → H be a quandle non-abelian 2-cocycle. Let γ : X → H be defined
by

γ(x) = β(x/(1− q), 0)−1.

We deform β by γ, i.e., we take the cohomologous cocycle β′(x, y) = γ(x . y)β(x, y)γ(y)−1.
We then have

β′(x, 0) = γ((1− q)x)β(x, 0)γ(0)−1 = β(x, 0)−1β(x, 0)β(0, 0) = 1.

Also β′(x, x) = 1 ∀x ∈ X. We then assume that β has these properties. The cocycle condition
reads as

β((1− q)x + qy, (1− q)x + qz)β(x, z) = β(x, (1− q)y + qz)β(y, z).

Take x = −qz/(1− q), and get β(−qz + qy, 0)β(−qz
1−q

, z) = β(−qz
1−q

, (1− q)y + qz)β(y, z), i.e.,

β(
−qz

1− q
, z) = β(

−qz

1− q
, (1− q)y + qz)β(y, z).

Take now y = −qz/(1− q), and get β((1− q)x− q2z
1−q

, (1− q)x+ qz)β(x, z) = β(x, 0)β(−qz
1−q

, z),
i.e.,

β((1− q)x− q2z

1− q
, (1− q)x + qz)β(x, z) = β(

−qz

1− q
, z).

In particular, β(−qz
1−q

, (1− q)x + qz)β(x, z) = β((1− q)x− q2z
1−q

, (1− q)x + qz)β(x, z), and then

β(
−qz

1− q
, (1− q)x + qz) = β((1− q)x− q2z

1− q
, (1− q)x + qz).

Put now t = (1 − q)x + qz and get β(−qz
1−q

, t) = β(t − qz − q2z
1−q

, t) = β(t − qz
1−q

, t). Put

s = −qz/(1− q) and get
β(s, t) = β(t + s, t) ∀s, t ∈ X.

If t 6= 0, then t generates Zp and then β(s, t) = β(t, t) = 1 ∀s. Since for t = 0 we have
β(s, t) = 1, we are done.
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