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Abstract. Let D be a division ring and let m,n be integers ≥ 2. Let Mm×n(D)
be the space of m × n matrices. In the fundamental theorem of the geometry of
rectangular matrices all bijective mappings ϕ of Mm×n(D) are determined such
that both ϕ and ϕ−1 preserve adjacency. We show that if a bijective map ϕ of
Mm×n(D) preserves the adjacency then also ϕ−1 preserves the adjacency. Thus
the supposition that ϕ−1 preserves adjacency may be omitted in the fundamental
theorem.
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1. Introduction

L.K. Hua initiated the study of the geometry of matrices in the mid fourties of the last
century (cf. [3]). In this geometry, the points are a certain kind of matrices of a given size.
The four kinds of matrices studied by Hua are rectangular matrices, symmetric matrices,
skew-symmetric matrices and hermitian matrices. To each such space there is associated a
group of motions. It is the aim to characterize the group of motions in the space by as few
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geometric invariants as possible. Two rectangular, symmetric, or hermitian matrices A,B are
called adjacent, if A−B has rank 1. Two skew-symmetric matrices A,B are called adjacent if
A−B has rank 2. Hua discovered that the invariant “adjacency” is sufficient to characterize
the group of motions. He and his followers determined all bijections ϕ of the set of points
which satisfy

A,B are adjacent ⇐⇒ Aϕ, Bϕ are adjacent. (1.1)

This result is known as the fundamental theorem of the geometry of matrices.
In view of the fundamental theorems of affine and projective geometry, where all bijections

of affine resp. projective spaces are determined which take lines to lines, it is a natural and
important question posed in [4], whether in the geometries of matrices it is possible to replace
the condition (1.1) by

A,B are adjacent =⇒ Aϕ, Bϕ are adjacent. (1.2)

It is shown in [2] that this is possible in the case of symmetric and hermitian matrices. In the
present paper we answer this question for the space Mm×n(D) of m×n rectangular matrices
over a division ring D.

Theorem 1.1. Let D be a division ring. Let m,n be integers ≥ 2. If a bijective map ϕ
from Mm×n(D) to itself preserves the adjacency in Mm×n(D) then also ϕ−1 preserves the
adjacency.

According to the fundamental theorem of the geometry of rectangular matrices [1, 5], when
m 6= n, then ϕ is of the form

Xϕ = PXσQ+R for all X ∈Mm×n(D), (1.3)

where P ∈ GLm(D), Q ∈ GLn(D), R ∈ Mm×n(D), and σ is an automorphism of D. When
m = n, then in addition to (1.3), ϕ might also be a mapping of the form

Xϕ = P t(Xτ )Q+R for all X ∈Mm×n(D), (1.4)

where τ is an anti-automorphism of D.

The space Mm×n(D) can be treated as a graph. We call the points of Mm×n(D) vertices and
define two vertices A,B to be adjacent if rank(A−B) = 1. Then we obtain the graph of m×n
matrices over D, denoted by Γ(Mm×n(D)). If D is infinite, then Γ(Mm×n(D)) is an infinite
graph. For finite graphs, a bijection which satisfies (1.2) is an automorphism. But there are
counterexamples in the infinite case. For the graph Γ(Mm×n(D)), the above theorem can be
interpreted as follows.

Theorem 1.2. Let D be a division ring. Let m,n be integers ≥ 2 and Γ(Mm×n(D)) be the
graph of m × n rectangular matrices over D. If ϕ is a bijective map from Γ(Mm×n(D)) to
itself for which

A,B are adjacent =⇒ Aϕ, Bϕ are adjacent,

is satisfied for any two vertices A,B of Γ(Mm×n(D)) then ϕ is a graph automorphism of
Γ(Mm×n(D)).
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2. Preliminaries

In this section we mention some definitions and propositions which are also contained in
Wan’s book [3]. We then define the notion of covering radius of a subset of Mm×n(D) and
show some of its properties.

Definition 2.1. (Points, motions) Let D be a division ring. Let m,n be integers ≥ 2. Denote
by Mm×n(D) the space of m×n matrices over D. We call elements of Mm×n(D) the points of
the space Mm×n(D). The group Gm×n(D) of motions of Mm×n(D) consists of transformations
of the form

X 7→ PXQ+R for all X ∈Mm×n(D),

where P ∈ GLm(D), Q ∈ GLn(D), R ∈Mm×n(D).

Proposition 2.1. ([3], Proposition 3.1) The group Gm×n(D) acts transitively on Mm×n(D).

Definition 2.2. (Adjacency) Two points A,B ∈Mm×n(D) are said to be adjacent if
rank(A−B) = 1.

Definition 2.3. (Maximal set) A maximal set M in Mm×n(D) is a subset of Mm×n(D) with
the property that any two points in M are adjacent and there is no point in Mm×n(D) \M
which is adjacent to any point in M.

Proposition 2.2. (cf. [3], Proposition 3.9) There are two types of maximal sets of adjacent
matrices,

Type 1:

{
P

( x11 ... x1n
0 ... 0
...

...
0 ... 0

)
Q+R

∣∣∣ x11, . . . , x1n ∈ D

}
,

Type 2:

{
P

( y11 0 ... 0

...
...

...
ym1 0 ... 0

)
Q+R

∣∣∣ y11, . . . , ym1 ∈ D

}
,

where P ∈ GLm(D), Q ∈ GLn(D), and R ∈Mm×n(D). Any maximal set belongs to only one
type. A maximal set of type 1 cannot be carried to a maximal set of type 2 under the group
of motions Gm×n(D).

Proposition 2.3. ([3], Corollary 3.10) For any pair of adjacent points A,B ∈ Mm×n(D)
there are exactly one maximal set of type 1 and exactly one maximal set of type 2 containing
both A and B.

Proposition 2.4. Let M1, M2 be two distinct maximal sets with M1 ∩M2 6= ∅. Then

|M1 ∩M2|
{

= 1 when M1 and M2 are of the same type,
> 1 when M1 and M2 are not of the same type.

In the second case we call M1 ∩M2 a line.
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Proposition 2.5. ([3], Corollary 3.13) The parametric equation of a line in Mm×n(D) is

{tpxq +R | x ∈ D},

where p is a nonzero m-dimensional row vector over D, q is a nonzero n-dimensional row
vector over D, and R ∈Mm×n(D).

Proposition 2.6. ([3], Corollary 3.11 and Proposition 3.14)] Two maximal sets which have
only one point in common can be carried simultaneously under the group Gm×n(D) to{( x11 ... x1n

0 ... 0
...

...
0 ... 0

) ∣∣∣ x11, . . . , x1n ∈ D

}
, (2.1){(

0 ... 0
x21 ... x2n

...
...

0 ... 0

) ∣∣∣ x21, . . . , x2n ∈ D

}
(2.2)

or to {( y11 0 ... 0

...
...

...
ym1 0 ... 0

) ∣∣∣ y11, . . . , ym1 ∈ D

}
, (2.3){( 0 y12 0 ... 0

...
...

...
...

0 ym2 0 ... 0

) ∣∣∣ y12, . . . , ym2 ∈ D

}
. (2.4)

Two intersecting maximal sets of different type 1 and 2 can be carried simultaneously under
the group Gm×n(D) to (2.1) and (2.3).

Proposition 2.7. ([3], Proposition 3.20) Any maximal set M of type 1 has the structure
of an n-dimensional left affine space, and any maximal set of type 2 has the structure of an
m-dimensional right affine space, where the points and lines are defined above.

Definition 2.4. (Distance)The distance d(A,B) between two distinct points A,B∈Mm×n(D)
is defined to be the smallest nonnegative integer k with the property that there exists a sequence
of consecutively adjacent points A=A0, A1, . . . , Ak=B. When A=B, we define d(A,B)=0.

We have d(A,B) = d(B,A) and d(A,B) = 0 if, and only if, A = B. Furthermore, the
distance satisfies the triangle inequality

d(A,C) ≤ d(A,B) + d(B,C) for all A,B,C ∈Mm×n(D),

so (Mm×n(D), d) is a metric space. It was proved in [3] that for any two points A,B ∈
Mm×n(D),

d(A,B) = rank(A−B).

Hence 0 ≤ d(A,B) ≤ min{m,n}.
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Lemma 2.1. For any maximal sets M and M ′ of type 1 resp. type 2, we can find a positive
integer k and a sequence M = M0, . . . ,Mk = M ′ of maximal sets of type 1 resp. type 2
satisfying Mi ∩Mi+1 6= ∅, i = 0, . . . , k − 1.

Proof. Choose X ∈ M , Y ∈ M ′, X 6= Y , k − 1 := d(X,Y ). Then there is a sequence of
consecutively adjacent points X = X0, . . . , Xk−1 = Y . For i = 1, . . . , k − 1 define Mi to
be the maximal set of type 1 resp. type 2 which contains Xi−1 and Xi. Let M0 := M and
Mk := M ′. Then we have Mi ∩Mi+1 6= ∅, i = 0, . . . , k − 1. �

Definition 2.5. (Covering radius) Let A ∈Mm×n(D) and let M ⊂Mm×n(D). The distance
between A and M is d(A,M) := min

{
d(A,B) | B ∈M

}
. The covering radius of M is

ρ(M) := max
{
d(A,M) | A ∈Mm×n(D)

}
.

The covering radius of M ⊂ Mm×n(D) is the smallest positive integer ρ with the property
that the union of all balls ⋃

A∈M

{X ∈Mm×n(D) | d(A,X) ≤ ρ}

covers Mm×n(D). Clearly, for any two subsets M,M ′ ⊂ Mm×n(D), if there is an element
ψ ∈ Gm×n(D) such that Mψ = M ′ then ρ(M) = ρ(M ′).

Lemma 2.2. Let M =

{( x
0
...
0

) ∣∣∣ x ∈ Dn

}
and P =

( p1
...
pm

)
∈ Mm×n(D) with rank

( p2
...
pm

)
=

k. Then for all X =

( x
0
...
0

)
∈M we have

d(X,P ) ∈ {k, k + 1} and d(X,P ) = k ⇔ x ∈ p1 + 〈p2, . . . , pm〉 ⊂ Dn,

where 〈p2, . . . , pm〉 denotes the subspace of Dn which is spanned by {p2, . . . , pm}.

Proof. We have d(X,P ) = rank

( x−p1
−p2
...

−pm

)
≥ rank

( p2
...
pm

)
. Furthermore,

rank

( x−p1
−p2
...

−pm

)
= rank

( p2
...
pm

)
⇔ x− p1 ∈ 〈p2, . . . , pm〉

⇔ x ∈ p1 + 〈p2, . . . , pm〉 . �

Corollary 2.1. a) In the case m ≤ n let M be a maximal set of type 1. Let P ∈ Mm×n(D)
with d(P,M) = m− 1. Then {X ∈M | d(X,P ) = m− 1} is an affine (m− 1)-flat of M , if
we consider M as an n-dimensional affine space.
b) In the case n ≤ m let M be a maximal set of type 2. Let P ∈ Mm×n(D) with d(P,M) =
n− 1. Then {X ∈M | d(X,P ) = n− 1} is an affine (n− 1)-flat of M , if we consider M as
an m-dimensional affine space.
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Lemma 2.3. Let M be a maximal set of Mm×n(D). If M is of type 1,

ρ(M) =

{
m− 1 when m ≤ n,
n when m > n.

If M is of type 2,

ρ(M) =

{
n− 1 when m ≥ n,
m when m < n.

Proof. We only prove the case thatM is of type 1. The case thatM is of type 2 can be proved
similarly. Since the covering radius is invariant under the group Gm×n(D), we can assume

without loss of generality that M is of the form (2.1). Let A =

( a1

...
am

)
∈ Mm×n(D) be any

point. In the case m ≤ n from Lemma 2.2 we have d(A,M) = rank

( a2

...
am

)
≤ m−1. Thus we

have ρ(M) = m− 1. In the case m > n, for any point A we have d(A,M) = rank

( a2

...
am

)
≤ n

and d(A,M) = n if rank

( a2

...
am

)
= n. �

Lemma 2.4. a) Let m ≤ n. Let M be a maximal set of type 1. Consider M as an n-
dimensional left affine space, then for any hyperplane H of M we have ρ(H) = m.
b) Let n ≤ m. Let M be a maximal set of type 2. Consider M as an m-dimensional right
affine space, then for any hyperplane H of M we have ρ(H) = n.

Proof. We prove a). Let M be a maximal set of type 1. Without loss of generality
let M be of the form (2.1). Choose p1, . . . , pm ∈ Dn with dim 〈p2, . . . , pm〉 = m − 1 and

(p1 + 〈p2, . . . , pm〉) ∩ H = ∅. Let P :=

( p1
...
pm

)
∈ Mm×n(D). Then by Lemma 2.2 we have

d(P,H) = m and ρ(H) = m. �

Lemma 2.5. Let M1, M2 be two distinct maximal sets with M1 ∩M2 6= ∅.
a) Let m ≤ n. If M1 and M2 are of type 1, or m = n and M1, M2 are of different type, then
ρ(M1 ∪M2) = m− 1.
b) Let n ≤ m. If M1 and M2 are of type 2, or m = n and M1, M2 are of different type, then
ρ(M1 ∪M2) = n− 1.

Proof. a) Let m ≤ n. Without loss of generality we can assume that 0 ∈ M1 ∩M2. Then
for any A ∈ Mm×n(D) with rank(A) = m we have d(A,M1) = m − 1 = d(A,M2). Thus
d(A,M1 ∪M2) = m− 1 and ρ(M1 ∪M2) = m− 1.
The case b) can be proved similarly. �
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Lemma 2.6. a) Let m ≤ n,

M1 :=

{( x1
0
...
0

) ∣∣∣ x1 ∈ Dn

}
, M2 :=

{ 0
x2
0
...
0

 ∣∣∣ x2 ∈ Dn

}
,

M12 :=

{ x1
x2
0
...
0

 ∣∣∣ rank ( x1
x2 ) = 2

}

and S := M1 ∪M2 ∪M12. Then ρ(S) = m− 2 if m > 2 and ρ(S) = m− 1 if m = 2.
b) Let n ≤ m,

M1 :=
{( y11 0 ... 0

...
...

...
ym1 0 ... 0

) ∣∣∣ y11, . . . , ym1 ∈ D
}
,

M2 :=
{( 0 y12 0 ... 0

...
...

...
0 ym2 0 ... 0

) ∣∣∣ y12, . . . , ym2 ∈ D
}
,

M12 :=
{( y11 y12 0 ... 0

...
...

...
...

ym1 ym2 0 ... 0

) ∣∣∣ rank

( y11 y12
...

...
ym1 ym2

)
= 2
}

and S := M1 ∪M2 ∪M12. Then ρ(S) = n− 2 if n > 2 and ρ(S) = n− 1 if n = 2.

Proof. Let m ≤ n. Since M1 ⊂ S and d(X,S) = m − 2 for all X ∈ Mm×n(D) with
rank(X) = m, we have m − 2 ≤ ρ(S) ≤ ρ(M1) = m − 1. For any X ∈ Mm×n(D) we have
d(X,S) ≤ d(X, 0) = rank(X). Thus d(X,S) = m − 1 implies rank(X) ∈ {m,m − 1}. In

the case m > 2 let xi denote the ith row vector of X. If rank ( x1
x2 ) = 2, let Y =

 x1
x2
0
...
0

 ∈ S,

then d(X, Y ) = rank(X − Y ) = rank

( x3

...
xm

)
≤ m − 2. Now let rank(X) = m − 1 and

rank ( x1
x2 ) = 1. There exists v ∈ 〈x3, . . . , xm〉 \ 〈x1, x2〉. Let Y =

 x1
x2−v

0
...
0

 ∈ S, then

d(X, Y ) = rank

 0
v
x3

...
xm

 = m− 2. Thus ρ(S) = m− 2 for m > 2. In the case m = 2, for any

X ∈Mm×n(D) \ S we have d(X,S) = 1, thus ρ(S) = 1 = m− 1. �

Lemma 2.7. Let M1, M2 and M12 be defined as in Lemma 2.6. Then for any X ∈ M12

there is a maximal set M3 of the same type as M1, which contains X and satisfies M3∩M1 6=
∅ 6= M3 ∩M2.

Proof. Let m ≤ n. Let X ∈ M12. For any Yi ∈ Mi which are adjacent to X, i = 1, 2, we
have

Y1 =

(
x1+λ1x2

0
...
0

)
, Y2 =

 0
λ2x1+x2

0
...
0

 ,
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and Y1, Y2 are adjacent if, and only if, λ1λ2 = 1. Choose λ1 6= 0, λ2 = λ−1
1 and let M3 be a

maximal set which contains X, Y1 and Y2. Then M3 ∩M1 = {Y1}, |M3 ∩M1| = 1, and M3

is of type 1. �

Lemma 2.8. Let m = n. Let M1 be a maximal set of type 1 and M2 a maximal set of type
2 such that M1 ∩M2 6= ∅. Then for any A ∈ M1 ∩M2 there exists Q ∈ Mm×n(D) such that
d(Q,M1) = d(Q,M2) = m− 1, d(Q,A) = m− 1 and H1 ∩H2 = {A} = H1 ∩M2 = H2 ∩M1

where

H1 = {X ∈M1 | d(Q,X) = m− 1}, H2 = {Y ∈M2 | d(Q, Y ) = m− 1}.

Proof. Without loss of generality we can assume that M1 is of the form (2.1) and M2 is of

the form (2.3). For any A ∈M1∩M2, A =

(
a11 0 ... 0
0 0
...

...
0 0

)
, let Q :=

(
a11 0 ... 0
0 1
...

...
0 1

)
∈Mm×n(D).

Then d(Q,M1) = d(Q,M2) = m− 1 and d(Q,A) = m− 1. Let H1 = {X ∈ M1 | d(Q,X) =
m − 1} and H2 = {Y ∈ M2 | d(Q, Y ) = m − 1}, then we have H1 = {X ∈ M1 | x11 = a11},
H2 = {Y ∈M2 | y11 = a11} and H1 ∩H2 = {A} = H1 ∩M2 = H2 ∩M1. �

Lemma 2.9. Let n ≥ 2. Let V, V ′ be n-dimensional left or right affine spaces over a division
ring D, D 6= F2. Let f : V → V ′ be an injective mapping which takes collinear points to
collinear points, and let f(V ) not be contained in any affine hyperplane of V ′. Then f induces
injective mappings ft : V (t) → V ′(t) where V (t), V ′(t) denote the sets of all affine t-flats of
V resp. V ′, 0 ≤ t ≤ n. Furthermore, assume there exists an integer k, 0 < k < n such that
fk : V (k) → V ′(k) is bijective. Then f is bijective and f takes lines to lines.

Proof. Since f takes collinear points to collinear points, we have

f(〈a0, a1, . . . , at〉) ⊆ 〈f(a0), f(a1), . . . , f(at)〉

for all points a0, . . . , at ∈ V , where 〈a0, . . . , at〉 denotes the affine flat spanned by a0, . . . , at.
f(V ) is not contained in any affine hyperplane of V ′, thus f takes any affine basis of V to
an affine basis of V ′. This implies dim(v + U) = dim(〈f(v + U)〉) for any affine flats v + U
of V . Let V (t), V ′(t) denote the sets of all affine t-flats of V resp. V ′, 0 ≤ t ≤ n. Then
f induces injective mappings ft : V (t) → V ′(t) for all 0 ≤ t ≤ n defined by ft(v + U) :=
〈f(v + U)〉 ∈ V (t′) for any t-dimensional affine flat v + U ∈ V (t). Now let k be an integer,
0 < k < n such that fk : V (k) → V ′(k) is bijective. We prove by induction that ft is bijective
for all 0 ≤ t ≤ k. This is the assumption on f in the case t = k. Let ft be bijective for some
0 ≤ t ≤ k. Let s+T be an affine (t− 1)-flat of V ′. Let v′1 +U ′

1, v
′
2 +U ′

2 be two distinct affine
t-flats of V ′ with (v′1 + U ′

1) ∩ (v′2 + U ′
2) = s + T . Since ft : V (t) → V ′(t) is bijective, there

are v1 +U1, v2 +U2 ∈ V (t) with ft(vi +Ui) = v′i +U ′
i , i = 1, 2. Since v′1 +U ′

1 and v′2 +U ′
2 are

contained in an affine (t+1)-flat, also v1+U1 and v2+U2 are contained in an affine (t+1)-flat.
Suppose (v1 + U1) ∩ (v2 + U2) = ∅, i.e., (v1 + U1) ‖ (v2 + U2). For any point x ∈ v1 + U1, its
image f(x) 6∈ (v′1 +U ′

1)∩ (v′2 +U ′
2) since otherwise the join {x}∪ (v2 +U2) would be contained

in v′2 + U ′
2, and f(V ) would be contained in an affine hyperplane of V ′. Let v′ + U ′ be any

affine t-flat of V ′ such that v′ +U ′ is contained in the affine (t+ 1)-flat (v′1 +U ′
1)∪ (v′2 +U ′

2)
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and (v′ + U ′) ‖ (v′2 + U ′
2). Then (v + U) ‖ (v2 + U2) implies (v + U) ‖ (v1 + U1) where

v+U := ft(v
′ +U ′)−1. Analogously we have f(x) 6∈ (v′ +U ′)∩ (v′1 +U ′

1) for all x ∈ (v1 +U1).
Thus

f(x) 6∈ v′1 + U ′
1 =

⋃
U ′=U ′

2
v′∈(v′

1+U ′
1)∪(v′

2+U ′
2)

(
(v′ + U ′) ∩ (v′1 + U ′

1)
)

∀x ∈ v1 + U1,

a contradiction to ft(v1 + U1) = v′1 + U ′
1. So we have (v1 + U1) ∩ (v2 + U2) 6= ∅ and

dim
(
(v1 + U1) ∩ (v2 + U2)

)
= t − 1. Hence f = f0 is bijective. Let l be any line of V ,

then f1(l) is a line in V ′. Let Q be any point of f1(l). Since f is bijective there is a point P
with f(P ) = Q. Assume P 6∈ l. Then the plane spanned by P and l is mapped by f to a
subset of the line f1(l), a contradiction. So f(l) = f1(l) for any line l ⊂ V . �

Lemma 2.10. Let n ≥ 2. Let V, V ′ be n-dimensional left or right affine spaces over a
division ring D. Let f : V → V ′ be an injective mapping which takes any line onto a line,
i.e., for any line l ∈ V , its image f(l) is a line in V ′. Then f is a bijection.

Proof. The assertion is true when D is finite. Now let D be infinite. For any f(X) 6=
f(Y ) ∈ f(V ) the line 〈f(X), f(Y )〉 = f(〈X, Y 〉) is contained in f(V ). Then f(V ) is an affine
subspace of V ′. V and f(V ) are isomorphic, so we have n = dim(V ) = dim(f(V )). This
implies V ′ = f(V ). �

3. Proof of Theorem 1.1

We will prove the theorem only in the case m ≤ n. We can prove the theorem in the case
n < m analogously to the case m < n by replacing maximal sets of type 1 by maximal sets
of type 2 and vice versa.

We prove the theorem in several steps.

(i) For any maximal set M , there is a maximal set M ′ containing Mϕ.

Proof. This follows immediately from the fact that ϕ preserves adjacency. �

(ii) Let A ∈ Mm×n(D) and let M ⊂ Mm×n(D). Then we have d(A,M) ≥ d(Aϕ,Mϕ) ≥
d(Aϕ,M ′) and ρ(M) ≥ ρ(M ′) for all M ′ ⊂Mm×n(D) with Mϕ ⊂M ′.

Proof. We prove that ρ(M) ≥ ρ(M ′). Let X be a point with d(X,M ′) = ρ(M ′). Since
ϕ is bijective, there is a point Y with Y ϕ = X and we have d(Y,M) ≥ d(X,M ′), thus
ρ(M) ≥ d(Y,M) ≥ d(X,M ′) = ρ(M ′). �

(iii) Let M be a maximal set. Then there exists exactly one maximal set M ′ with M ′ ⊃Mϕ.
If m < n and M is of type 1, then also M ′ is of type 1.

Proof. Assume there are two distinct maximal sets M ′
1 and M ′

2 with Mϕ ⊂ M ′
i , i = 1, 2.

Since |M | > 1 we have |Mϕ| > 1, which implies |M ′
1 ∩ M ′

2| > 1. By Proposition 2.3,
M ′

1 and M ′
2 are not of the same type. By Proposition 2.6 we can assume that M ′

1 is of

the form (2.1) and M ′
2 is of the form (2.3). Then M ′

1 ∩ M ′
2 =

{
x

(
1

0
...

0

) ∣∣∣ x ∈ D
}

.
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Clearly, ρ(M ′
1 ∩M ′

2) = m. By Lemma 2.3, ρ(M) = m − 1. But Mϕ ⊂ M ′
1 ∩M ′

2. By (ii),
ρ(M ′

1 ∩M ′
2) ≤ ρ(M), a contradiction. Therefore there is a unique maximal set M ′ ⊃ Mϕ.

Now let m < n. Since M ′ ⊃ Mϕ, by (ii) we have ρ(M ′) ≤ ρ(M) = m − 1. By Lemma 2.3,
M ′ is of type 1. �

(iv) Let M1, M2 be two distinct maximal sets of type 1. Let M ′
i be two maximal sets with

M ′
i ⊃Mϕ

i . Then M ′
1 and M ′

2 are of the same type.

Proof. In the case m < n, by (iii) the sets M ′
i are of type 1.

In the case m = n assume that M ′
1 and M ′

2 are not of the same type. Since M1 and M2

can be joined by a sequence of consecutively intersecting maximal sets of the same type, we
may suppose that M1 ∩M2 6= ∅. Let {X} := M1 ∩M2. By Proposition 2.6 we may assume
without loss of generality that

X = 0, M1 =

{( v
0
...
0

) ∣∣∣ v ∈ Dn

}
, M2 =

{ 0
w
0
...
0

 ∣∣∣ w ∈ Dn

}
.

Let Y := Xϕ ∈M ′
1 ∩M ′

2. From Lemma 2.8 there exists a point Q with d(Q,M ′
1) = m− 1 =

d(Q,M ′
2) and d(Q, Y ) = m − 1 and such that H ′

1 ∩ M ′
2 = {Y }, H ′

2 ∩ M ′
1 = {Y }, where

H ′
i :=

{
A ∈ M ′

i | d(A,Q) = m − 1
}
, i = 1, 2. Let P ∈ Mm×n(D) with Pϕ = Q. Since

m− 1 = d(Q,M ′
i) ≤ d(P,Mi) ≤ m− 1, d(P,Mi) = m− 1. Define Hi :=

{
A ∈Mi | d(A,P ) =

m− 1
}
. We write P =

( p1
...
pm

)
, then p1 6= 0 6= p2 and

H1 =

{( v
0
...
0

) ∣∣∣ v ∈ p1 + 〈p2, . . . , pm〉

}
, H2 =

{ 0
w
0
...
0

 ∣∣∣ w ∈ p2 + 〈p1, p3, . . . , pm〉

}
.

If p1 = λp2 for some λ ∈ D∗ then let A :=

( p1
0
...
0

)
∈ H1 \ {0} and B :=

 0
p2
0
...
0

 ∈ H2 \ {0}, we

have d(A,B) = 1. If p1, p2 are linearly independent, then for

A =

( p1+p2
0
...
0

)
∈ H1 \ {0}, B =

 0
p2+p1

0
...
0

 ∈ H2 \ {0}

we have d(A,B) = 1. Let M be a maximal set containing 0, A and B. Since |M∩Mi| ≥ 2, M
is of type 2. Let M ′ be the maximal set containing Mϕ. Then |M ′ ∩M ′

i | ≥ 2, thus M ′ = M ′
1

or M ′ = M ′
2, and Bϕ ∈ M ′ ∩M ′

2 = M ′
1 ∩M ′

2 or Aϕ ∈ M ′
1 ∩M ′ = M ′

1 ∩M ′
2. But Bϕ ∈ H ′

2

and Aϕ ∈ H ′
1, so we have Bϕ = 0ϕ or Aϕ = 0ϕ, a contradiction to the injectivity of ϕ. �

(v) For any two distinct maximal sets M1 and M2 of type 1 with M1 ∩M2 6= ∅ there is no
maximal set M which contains Mϕ

1 ∪M
ϕ
2 .

Proof. Suppose there is a maximal setM which containsMϕ
1 ∪M

ϕ
2 . Without loss of generality

let M1, M2, M12, S be defined as in Lemma 2.6 a). Then for any X ∈M12, there is a maximal
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setM3 of type 1 which containsX and intersectsMi withM3∩M1 =: {A} 6= {B} := M3∩M2.
Then Aϕ, Bϕ ∈ Mϕ

3 ∩M , thus |Mϕ
3 ∩M | ≥ 2. From (iv) we have that the maximal sets

containing Mϕ
3 and M are of the same type. So Mϕ

3 ⊂ M , which implies Xϕ ∈ M . Then
Sϕ ⊂ M . In the case m > 2, from Lemma 2.6 we have ρ(S) = m − 2. Sϕ ⊂ M implies
ρ(M) ≤ ρ(Sϕ) ≤ ρ(S) = m − 2, a contradiction to ρ(M) = m − 1. In the case m = 2 let
Q ∈ Mm×n(D) with d(Q, 0ϕ) = 2, then Q 6∈ M . Let P ∈ Mm×n(D) with Pϕ = Q then
d(P, 0) ≥ d(Pϕ, 0ϕ) = d(Q, 0ϕ) = 2. Thus rank(P ) = 2, i.e., P ∈ S, and Q = Pϕ ∈ Sϕ ⊂M ,
a contradiction to Q 6∈M . �

(vi) Let M1 and M2 be two maximal sets of type 1 and type 2 respectively, such that M1∩M2

is a line. Then M ′
1 ∩M ′

2 is a line, where M ′
i is the maximal set with M ′

i ⊃ Mϕ
i , i = 1, 2.

Thus ϕ takes any line to the subset of a line.

Proof. Since M ′
1 ∩ M ′

2 ⊃ (M1 ∩ M2)
ϕ, M ′

1 ∩ M ′
2 is a line or M ′

1 = M ′
2. Choose points

X ∈M1∩M2 and Y ∈M2 \M1. Let M3 be the maximal set of type 1 with X, Y ∈M3. Then
from (iv) and (v) we have that M ′

3 6= M ′
1 are of the same type where M ′

3 is the maximal set
containing Mϕ

3 . Therefore |M ′
1 ∩M ′

3| = 1. Since Xϕ, Y ϕ ∈ M ′
2 ∩M ′

3, X
ϕ 6= Y ϕ, we have

|M ′
2 ∩M ′

3| ≥ 2 and thus M ′
2 6= M ′

1. It follows that M ′
1 ∩M ′

2 is a line. �

(vii) Let M be a maximal set of type 1 and let M ′ be the maximal set containing Mϕ. Consider
M and M ′ as affine spaces. Then Mϕ is not contained in any affine hyperplane of M ′.

Proof. Assume Mϕ is contained in a hyperplane H of M ′. Then by Lemma 2.4 and (ii), we
have m = ρ(H) ≤ ρ(Mϕ) ≤ ρ(M) = m− 1, a contradiction. �

(viii) Let M be a maximal set of type 1 and let M ′ be the maximal set containing Mϕ. Then
ϕ : M →M ′ is bijective and takes lines to lines.

Proof. The assertion is true when D is finite. Now let D be infinite. Consider M,M ′ as
affine spaces. Then ϕ : M → M ′ takes collinear points to collinear points, and by (vii),
Mϕ is not contained in a hyperplane of M ′. By Lemma 2.9, ϕ induces an injective mapping
ϕm−1 : M(m − 1) → M ′(m − 1), where M(m − 1), M ′(m − 1) denote the sets of all affine
(m− 1)-flats of M resp. M ′. Now let U ′ be an arbitrary affine (m− 1)-flat of M ′. There is
a point Pϕ of Mm×n(D) such that

d(Pϕ, X) = m− 1 ∀X ∈ U ′, d(Pϕ, X) = m ∀X ∈M ′ \ U ′.

By (ii) and Lemma 2.3, we have m − 1 = d(Pϕ,M ′) ≤ d(P,M) ≤ ρ(M) = m − 1 and
d(P,M) = m− 1. Let U := {X ∈M | d(P,X) = m− 1}. By Corollary 2.1, U is an (m− 1)-
flat of M , and Uϕ ⊂ U ′, this implies that ϕm−1 is bijective. By Lemma 2.9, ϕ : M → M ′ is
bijective and takes lines to lines. �

(ix) Let l be any line of Mm×n(D). Then lϕ is a line of Mm×n(D).

Proof. The assertion is true when D is finite. Now let D be infinite. Let M be a maximal
set of type 1 containing l. Let M ′ be the maximal set containing Mϕ. Consider M,M ′ as
affine spaces. Then by (viii) ϕ : M →M ′ takes lines to lines. �

(x) Two points A,B ∈Mm×n(D) are adjacent if Aϕ, Bϕ are adjacent.
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Proof. Choose maximal sets M1, M2 of type 1 with M1 3 A, M2 3 B. Let M ′
i be the

unique maximal set containing Mϕ
i , i = 1, 2. By (iv), M ′

1 and M ′
2 are of the same type. Let

M ′ be a maximal set containing Aϕ and Bϕ, which is not of the same type as M ′
1. Then

Aϕ ∈M ′
1 ∩M ′, Bϕ ∈M ′

2 ∩M ′, and M ′
i ∩M ′ is a line, i = 1, 2. There exist lines g1 3 A and

g2 3 B in M1 resp. M2 with gϕi = M ′
i ∩M ′, i = 1, 2. Choose two maximal sets Si of type

2 with Si ∩Mi = gi. Then Sϕi ⊂ M ′. Consider Si as m-dimensional right affine space over
D. If m < n then M ′

1 is of type 1 and M ′ is of type 2. Then M ′ is also an m-dimensional
right affine space over D. In the case m = n, if M ′ is of type 1 then M ′ can be considered as
m-dimensional left affine space over D. The restriction ϕ|Si

: Si →M ′ is injective and takes
lines to lines by (ix). Thus by Lemma 2.10, Sϕi = M ′ for i = 1, 2. This implies that S1 = S2

and A,B are adjacent. �
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